Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.612
Filter
1.
Front Plant Sci ; 15: 1396389, 2024.
Article in English | MEDLINE | ID: mdl-39239196

ABSTRACT

Introduction: Among cultivated tea plants (Camellia sinensis), only four mitogenomes for C. sinensis var. assamica (CSA) have been reported so far but none for C. sinensis var. sinensis (CSS). Here, two mitogenomes of CSS (CSSDHP and CSSRG) have been sequenced and assembled. Methods: Using a combination of Illumina and Nanopore data for the first time. Comparison between CSS and CSA mitogenomes revealed a huge heterogeneity. Results: The number of the repetitive sequences was proportional to the mitogenome size and the repetitive sequences dominated the intracellular gene transfer segments (accounting for 88.7%- 92.8% of the total length). Predictive RNA editing analysis revealed that there might be significant editing in NADH dehydrogenase subunit transcripts. Codon preference analysis showed a tendency to favor A/T bases and T was used more frequently at the third base of the codon. ENc plots analysis showed that the natural selection play an important role in shaping the codon usage bias, and Ka/Ks ratios analysis indicated Nad1 and Sdh3 genes may have undergone positive selection. Further, phylogenetic analysis shows that six C. sinensis clustered together, with the CSA and CSS forming two distinct branches, suggesting two different evolutionary pathway. Discussion: Altogether, this investigation provided an insight into evolution and phylogeny relationship of C. sinensis mitogenome, thereby enhancing comprehension of the evolutionary patterns within C. sinensis species.

2.
Genomics ; : 110935, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243912

ABSTRACT

BACKGROUND: Santalum album L. is an evergreen tree which is mainly distributes throughout tropical and temperate regions. And it has a great medicinal and economic value. RESULTS: In this study, the complete mitochondrial genome of S. album were assembled and annotated, which could be described by a complex branched structure consisting of three contigs. The lengths of these three contigs are 165,122 bp, 93,430 bp and 92,491 bp. We annotated 34 genes coding for proteins (PCGs), 26 tRNA genes, and 4 rRNA genes. The analysis of repeated elements shows that there are 89 SSRs and 242 pairs of dispersed repeats in S. album mitochondrial genome. Also we found 20 MTPTs among the chloroplast and mitochondria. The 20 MTPTs sequences span a combined length of 22,353 bp, making up 15.52 % of the plastome, 6.37 % of the mitochondrial genome. Additionally, by using the Deepred-mt tool, we found 628 RNA editing sites in 34 PCGs. Moreover, significant genomic rearrangement is observed between S. album and its associated mitochondrial genomes. Finally, based on mitochondrial genome PCGs, we deduced the phylogenetic ties between S. album and other angiosperms. CONCLUSIONS: We reported the mitochondrial genome from Santalales for the first time, which provides a crucial genetic resource for our study of the evolution of mitochondrial genome.

3.
Mitochondrial DNA B Resour ; 9(9): 1166-1169, 2024.
Article in English | MEDLINE | ID: mdl-39234580

ABSTRACT

Pachylophus belongs to the subfamily Chloropinae, the second most diverse subfamily of Chloropidae. However, there have been few complete mitochondrial genomes of Chloropinae reported in the public database. Consequently, we sequenced and annotated the complete mitochondrial genome of Pachylophus rufescens (de Meijere, 1904). The whole mitochondrial genome is 17, 926 bp in length, consisting of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs) and two ribosomal RNAs (rRNAs). The mitochondrial genome exhibits high A + T bias, accounting for 79.7% of its entirety. All PCGs start with ATN codon and end with TAN or incomplete stop codon TA or single T. The Maximum likelihood phylogenetic tree revealed a close relationship between Pachylophus and Cetema. This study contributes to the expansion of the mitochondrial genome library of Chloropinae, providing a valuable resource for gaining insights into the evolutionary history of Chloropidae.

4.
Mitochondrial DNA B Resour ; 9(9): 1170-1174, 2024.
Article in English | MEDLINE | ID: mdl-39239166

ABSTRACT

Chlaenius bimaculatus Dejean, 1826 (Coleoptera: Carabidea) is a predator of several lepidopteran pests, including Spodoptera frugiperda, S. litura and Helcystogramma triannulella. However, there has been little research into using C. bimaculatus to control crop pests. In this study, we sequenced the complete mitochondrial genome of C. bimaculatus. The results showed that the entire mitochondrial genome was 16,419 bp and contained 24% GC. 13 protein-coding, 22 transfer RNA, and two ribosomal RNA genes were identified. C. bimaculatus shares the same genetic arrangement and composition as other Coleoptera insects. In addition, phylogenetic analysis revealed that C. bimaculatus is closely related to Diplocheila zeelandica.

5.
Mitochondrial DNA B Resour ; 9(9): 1181-1184, 2024.
Article in English | MEDLINE | ID: mdl-39239165

ABSTRACT

In this study, we employed high-throughput sequencing data to assemble the mitochondrial genome (mitogenome) of the White-tufted Sunbeam (Aglaeactis castelnaudii). The total length of the mitogenome was found to be 16,872 base pairs (bp), containing 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region. The nucleotide composition was as follows: A 30.6%, T 24.0%, C 31.2%, and G 14.2%, resulting in a GC content of 45.4%. Phylogenetic analysis, utilizing the concatenation of the 13 mitochondrial PCGs, indicated a closer evolutionary relationship between the genus Aglaeactis and the genus Coeligena compared to other genera within the family Trochilidae investigated in this study. The mitogenome of A. castelnaudii not only contributes to species identification but also provides valuable insights for phylogenetic and conservation genetic analyses of A. castelnaudii.

6.
Front Plant Sci ; 15: 1430443, 2024.
Article in English | MEDLINE | ID: mdl-39258299

ABSTRACT

Introduction: Accurate reference genomes are fundamental to understanding biological evolution, biodiversity, hereditary phenomena and diseases. However, many assembled nuclear chromosomes are often contaminated by organelle genomes, which will mislead bioinformatic analysis, and genomic and transcriptomic data interpretation. Methods: To address this issue, we developed a tool named Chlomito, aiming at precise identification and elimination of organelle genome contamination from nuclear genome assembly. Compared to conventional approaches, Chlomito utilized new metrics, alignment length coverage ratio (ALCR) and sequencing depth ratio (SDR), thereby effectively distinguishing true organelle genome sequences from those transferred into nuclear genomes via horizontal gene transfer (HGT). Results: The accuracy of Chlomito was tested using sequencing data from Plum, Mango and Arabidopsis. The results confirmed that Chlomito can accurately detect contigs originating from the organelle genomes, and the identified contigs covered most regions of the organelle reference genomes, demonstrating efficiency and precision of Chlomito. Considering user convenience, we further packaged this method into a Docker image, simplified the data processing workflow. Discussion: Overall, Chlomito provides an efficient, accurate and convenient method for identifying and removing contigs derived from organelle genomes in genomic assembly data, contributing to the improvement of genome assembly quality.

7.
Zookeys ; 1210: 173-195, 2024.
Article in English | MEDLINE | ID: mdl-39220723

ABSTRACT

Two previously unknown species of Rhinogobius have been discovered in the streams of the Upper Youshui River, within the Yuan River Basin, Xiushan County, Chongqing, China. These new species are named as Rhinogobiussudoccidentalis and Rhinogobiuslithopolychroma. Phylogenetic analysis based on mitochondrial genomes revealed that R.sudoccidentalis is genetically closest to R.reticulatus, while R.lithopolychroma shares the greatest genetic similarity with R.leavelli. Morphological distinctions allow for the clear differentiation of these species. Rhinogobiussudoccidentalis sp. nov. is characterized by having VI-VII rays in the first dorsal fin and I, 8-9 rays in the second dorsal fin. The longitudinal scale series typically consists of 22-24 scales, while the transverse scale series comprises 7-8 scales. Notably, the predorsal scale series is absent and the total vertebrae count is 12+17=29. Rhinogobiuslithopolychroma sp. nov. can be distinguished from other species by the presence of 13-15 rays on the pectoral fin. Its longitudinal scale series ranges from 30 to 33 scales, with no scales in the predorsal area. The total vertebral count is 30, with 12 precaudal and 18 caudal vertebrae. The head and body of this species are light gray with irregular orange markings on the cheeks and opercle. Through morphological and molecular analyses, it has been confirmed that R.lithopolychroma and R.sudoccidentalis represent novel species within the Rhinogobius genus.

8.
Front Plant Sci ; 15: 1421170, 2024.
Article in English | MEDLINE | ID: mdl-39100089

ABSTRACT

Saccharum complex includes genera Saccharum, Miscanthus, Erianthus, Narenga, and Tripidium. Since the Saccharum complex/Saccharinae constitutes the gene pool used by sugarcane breeders to introduce useful traits into sugarcane, studying the genomic characterization of the Saccharum complex has become particularly important. Here, we assembled graph-based mitochondrial genomes (mitogenomes) of four Saccharinae species (T. arundinaceum, E. rockii, M. sinensis, and N. porphyrocoma) using Illumina and PacBio sequencing data. The total lengths of the mitogenomes of T. arundinaceum, M. sinensis, E. rockii and N. porphyrocoma were 549,593 bp, 514,248 bp, 481,576 bp and 513,095 bp, respectively. Then, we performed a comparative mitogenomes analysis of Saccharinae species, including characterization, organelles transfer sequence, collinear sequence, phylogenetics analysis, and gene duplicated/loss. Our results provided the mitogenomes of four species closely related to sugarcane breeding, enriching the mitochondrial genomic resources of the Saccharinae. Additionally, our study offered new insights into the evolution of mitogenomes at the family and genus levels and enhanced our understanding of organelle evolution in the highly polyploid Saccharum genus.

9.
Mitochondrial DNA B Resour ; 9(8): 991-994, 2024.
Article in English | MEDLINE | ID: mdl-39108544

ABSTRACT

The soft-shell clam Mya japonica (Jay, 1857) is a commercially important fishery resource. In this study, we identified the complete mitochondrial genome of M. japonica and performed a phylogenetic analysis to explore its genetic relationship with Mya arenaria. The genome is 21,396 bp in length and contains 13 protein-coding genes (PCGs), 23 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and 5 D-Loop control regions. The atp8 gene was annotated in Myidae for the first time. Notably, the genome contains an additional trnM, consistent with M. arenaria. The length of the cox2 gene is 1,947 bp, which is 513 bp longer than that in M. arenaria. Its base composition is 29.14% A, 37.26% T, 10.89% C, and 22.71% G. Phylogenetic analysis based on 12 PCGs and 2 rRNAs indicates that M. japonica and M. arenaria form a sister group. In this study, the identification and phylogenetic analysis of the complete mitochondrial genome of M. japonica provide significant information for future taxonomic and evolutionary research of the genus Mya.

10.
BMC Genomics ; 25(1): 773, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118028

ABSTRACT

BACKGROUND: Fritillaria ussuriensis is an endangered medicinal plant known for its notable therapeutic properties. Unfortunately, its population has drastically declined due to the destruction of forest habitats. Thus, effectively protecting F. ussuriensis from extinction poses a significant challenge. A profound understanding of its genetic foundation is crucial. To date, research on the complete mitochondrial genome of F. ussuriensis has not yet been reported. RESULTS: The complete mitochondrial genome of F. ussuriensis was sequenced and assembled by integrating PacBio and Illumina sequencing technologies, revealing 13 circular chromosomes totaling 737,569 bp with an average GC content of 45.41%. A total of 55 genes were annotated in this mitogenome, including 2 rRNA genes, 12 tRNA genes, and 41 PCGs. The mitochondrial genome of F. ussuriensis contained 192 SSRs and 4,027 dispersed repeats. In the PCGs of F. ussuriensis mitogenome, 90.00% of the RSCU values exceeding 1 exhibited a preference for A-ended or U-ended codons. In addition, 505 RNA editing sites were predicted across these PCGs. Selective pressure analysis suggested negative selection on most PCGs to preserve mitochondrial functionality, as the notable exception of the gene nad3 showed positive selection. Comparison between the mitochondrial and chloroplast genomes of F. ussuriensis revealed 20 homologous fragments totaling 8,954 bp. Nucleotide diversity analysis revealed the variation among genes, and gene atp9 was the most notable. Despite the conservation of GC content, mitogenome sizes varied significantly among six closely related species, and colinear analysis confirmed the lack of conservation in their genomic structures. Phylogenetic analysis indicated a close relationship between F. ussuriensis and Lilium tsingtauense. CONCLUSIONS: In this study, we sequenced and annotated the mitogenome of F. ussuriensis and compared it with the mitogenomes of other closely related species. In addition to genomic features and evolutionary position, this study also provides valuable genomic resources to further understand and utilize this medicinal plant.


Subject(s)
Endangered Species , Fritillaria , Genome, Mitochondrial , Phylogeny , Plants, Medicinal , RNA Editing , Fritillaria/genetics , Plants, Medicinal/genetics , Base Composition , RNA, Transfer/genetics , Molecular Sequence Annotation
11.
Int J Genomics ; 2024: 7518528, 2024.
Article in English | MEDLINE | ID: mdl-39156922

ABSTRACT

Background: Progressive myoclonus epilepsy (PME) is a neurodegenerative disorder marked by recurrent seizures and progressive myoclonus. To date, based on the phenotypes and causal genes, more than 40 subtypes of PMEs have been identified, and more remain to be characterized. Our study is aimed at identifying the aberrant gene(s) possibly associated with PMEs in two siblings born to asymptomatic parents, in the absence of known genetic mutations. Methods: Clinical assessments and molecular analyses, such as the repeat expansion test for CSTB; SCA1, 2, 3, 6, and 7; whole exome sequencing (WES); and mitochondrial genome sequencing coupled with computational analysis, were performed. Results: A family-based segregation analysis of WES data was performed to identify novel genes associated with PMEs. The potassium channel, KCNH8 [c.298T>C; (p.Tyr100His)], a DNA repair gene, regulator of telomere elongation helicase 1 (RTEL1) [c.691G>T; (p.Asp231Tyr)] and long noncoding RNA, RTEL1-TNFRSF6B [chr20:62298898_G>T; NR_037882.1, hg19] were among the candidate genes that were found to be associated with PMEs. These homozygous variations in siblings belong to genes with a loss-of-function intolerant (pLI) score of ≤ 0.86, expected to be detrimental by multiple computational analyses, and were heterozygous in parents. Additionally, computational analysis and the expression of RTEL1 and RTEL1-TNFRSF6B revealed that RTEL1-TNFRSF6B may modulate RTEL1 via hsa-miR-3529-3p. In the patient with the severe phenotype, a further deleterious mutation in SLC22A17 was identified. No de novo variants specific to these probands were identified in the mitochondrial genome. Conclusions: Our study is the first to report variants in KCNH8, RTEL1, and RTEL1-TNFRSF6B among PME cases. These genes when characterized fully may shed light on pathogenicity and have the potential to be used in the diagnosis of PME.

13.
Mitochondrial DNA B Resour ; 9(8): 960-964, 2024.
Article in English | MEDLINE | ID: mdl-39091511

ABSTRACT

Singerocybe alboinfundibuliformis (Seok et al.) Yang, Qin & Takah 2014 is an edible mushroom distributed in several East or Southeast Asian countries. Herein, we report the mitochondrial genome of S. alboinfundibuliformis based on Illumina sequencing data. The overall length of the mitochondrial genome is 64,279 bp, with a GC content of 29.0%. It contains 14 typical protein-coding genes, 27 tRNA genes, two rRNA genes, and 13 intergenic ORFs. Most of these genes (39 out of 56) are transcribed at the forward strand, and few (17 out of 56) are transcribed at the reverse strand. Among these genes, only the rnl gene is invaded by an intron, and all other genes are intron-free. Phylogenetic analysis based on mitochondrial amino acid sequences supports the phylogenetic position of S. alboinfundibuliformis in Clitocybaceae, being close to Lepista sordida (Schumach.) Singer 1951. This study serves as a springboard for future investigation on fungal evolution in Clitocybaceae.

14.
Front Plant Sci ; 15: 1429545, 2024.
Article in English | MEDLINE | ID: mdl-39139720

ABSTRACT

The genus Dendrobium, part of the Orchidaceae family, encompasses species of significant medicinal, nutritional, and economic value. However, many Dendrobium species are threatened by environmental stresses, low seed germination rates, and overharvesting. Mitochondria generate the energy necessary for various plant life activities. Despite their importance, research on the mitochondrial genomes of Dendrobium species is currently limited. To address this gap, we performed a comprehensive genetic analysis of four Dendrobium species-D. flexicaule, D. nobile, D. officinale, and D. huoshanense-focusing on their mitochondrial and chloroplast genomes to elucidate their genetic architecture and support conservation efforts. We utilized advanced sequencing technologies, including Illumina for high-throughput sequencing and Nanopore for long-read sequencing capabilities. Our findings revealed the multichromosomal mitochondrial genome structures, with total lengths ranging from 596,506 bp to 772,523 bp. The mitochondrial genomes contained 265 functional genes, including 64-69 protein-coding genes, 23-28 tRNA genes, and 3 rRNA genes. We identified 647 simple sequence repeats (SSRs) and 352 tandem repeats, along with 440 instances of plastid-to-mitochondrial gene transfer. Additionally, we predicted 2,023 RNA editing sites within the mitochondrial protein-coding genes, predominantly characterized by cytosine-to-thymine transitions. Comparative analysis of mitochondrial DNA across the species highlighted 25 conserved genes, with evidence of positive selection in five genes: ccmFC, matR, mttB, rps2, and rps10. Phylogenetic assessments suggested a close sister relationship between D. nobile and D. huoshanense, and a similar proximity between D. officinale and D. flexicaule. This comprehensive genomic study provides a critical foundation for further exploration into the genetic mechanisms and biodiversity of Dendrobium species, contributing valuable insights for their conservation and sustainable utilization.

15.
Mitochondrial DNA B Resour ; 9(8): 1029-1033, 2024.
Article in English | MEDLINE | ID: mdl-39135642

ABSTRACT

The chiton (Polyplacophora) occupies a significant position in molluscan evolutionary history as one of the most primitive groups within the phylum Mollusca. Acanthochitona defilippii (Tapparone-Canefri 1874) (Chitonida: Acanthochitonidae) is a commonly found intertidal chiton species in South Korea. In this study, we characterized the complete mitochondrial genome of A. defilippii (14,999 bp long), comprising 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and an A + T rich region (166 bp). The base composition is as follows: 31.82% for A, 11.63% for C, 16.69% for G, and 39.86% for T. We reconstructed a maximum likelihood (ML) tree to elucidate phylogenetic relationships among the eight chitonid families using the nucleotide sequences of all PCGs. The ML tree revealed that A. defilippii clustered with Acanthochitona avicula (BP 100) within the family Acanthochitonidae. Acanthochitonidae formed a sister group with Mopaliidae. The results could provide a valuable understanding the phylogenetic relationships of chitonid species.

16.
Mitochondrial DNA B Resour ; 9(8): 1044-1047, 2024.
Article in English | MEDLINE | ID: mdl-39135643

ABSTRACT

In this study, we sequenced the complete mitochondrial genome of the shield-faced leaf-nosed bat (Hipposideros lylei Thomas, 1914) using the Illumina platform. The mitochondrial genome of H. lylei is 16,856 bp in length, encoding 37 genes, which include 13 protein-coding genes, 22 tRNA genes, two rRNA genes, one replication start, and one non-coding control region (D-loop) of 417 bp in length. It has a G + C content of 42.0%, lower than the A + T content, indicating an obvious AT base preference. Phylogenetic analyses revealed that H. lylei clusters with three species of the genus Hipposideros in one branch and is relatively closely related to H. armiger and H. larvatus.

17.
Muscle Nerve ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126144

ABSTRACT

INTRODUCTION/AIMS: Amyotrophic lateral sclerosis (ALS) may be familial or sporadic, and twin studies have revealed that even sporadic forms have a significant genetic component. Variants in 55 nuclear genes have been associated with ALS and although mitochondrial dysfunction is observed in ALS, variants in mitochondrial genomes (mitogenomes) have not yet been tested for association with ALS. The aim of this study was to determine whether mitogenome variants are associated with ALS. METHODS: We conducted a genome-wide association study (GWAS) in mitogenomes of 1965 ALS patients and 2547 controls. RESULTS: We identified 51 mitogenome variants with p values <10-7, of which 13 had odds ratios (ORs) >1, in genes RNR1, ND1, CO1, CO3, ND5, ND6, and CYB, while 38 variants had OR <1 in genes RNR1, RNA2, ND1, ND2, CO2, ATP8, ATP6, CO3, ND3, ND4, ND5, ND6, and CYB. The frequencies of haplogroups H, U, and L, the most frequent in our ALS data set, were the same in different onset sites (bulbar, limb, spinal, and axial). Also, intra-haplogroup GWAS revealed unique ALS-associated variants in haplogroups L and U. DISCUSSION: Our study shows that mitogenome single nucleotide variants (SNVs) are associated with ALS and suggests that these SNVs could be included in routine genetic testing for ALS and that mitochondrial replacement therapy has the potential to serve as a basis for ALS treatment.

18.
Biology (Basel) ; 13(8)2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39194546

ABSTRACT

The complete mitochondrial genome has been extensively utilized in studies related to phylogenetics, offering valuable perspectives on evolutionary relationships. The mitochondrial genome of the fine-eyed plateau loach, Triplophysa microphthalma, has not attracted much attention, although this species is endemic to China. In this study, we characterized the mitochondrial genome of T. microphthalma and reassessed the classification status of its genus. The complete mitochondrial genome of T. microphthalma was 16,591 bp and contained thirty-seven genes, including thirteen protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and twenty-two transfer RNA genes (tRNAs). All but one of the thirteen PCGs had the regular start codon ATG; the gene cox1 started with GTG. Six PCGs had incomplete stop codons (T--). These thirteen PCGs are thought to have evolved under purifying selection, and the mitogenome shared a high degree of similarity with the genomes of species within the genus Leptobotia. All tRNA genes exhibited the standard clover-shaped structure, with the exception of the trnS1 gene, which lacked a DHU stem. A phylogenetic analysis indicated that T. microphthalma was more closely related to species within the genus Triplophysa than to those in Barbatula. The present study contributes valuable genomic information for T. microphthalma, and offers new perspectives on the phylogenetic relationships among species of Triplophysa and Barbatula. The findings also provide essential data that can inform the management and conservation strategies for T. microphthalma and other species of Triplophysa and Barbatula.

19.
Curr Issues Mol Biol ; 46(8): 8104-8110, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39194696

ABSTRACT

We sequenced and analyzed the complete mitogenome of a Norwegian isolate of the octocoral Alcyonium digitatum using the Ion Torrent sequencing technology. The 18,790 bp circular mitochondrial genome was found to harbor the same set of 17 genes, which encode 14 protein subunits, two structural ribosomal RNAs and one tRNA, as reported in other octocorals. In addition, we detected a new tRNAPro-like gene sequence nested within the MutS protein coding region. This putative tRNA gene feature appears to be conserved among the octocorals but has not been reported previously. The A. digitatum mitogenome was also shown to harbor an optional gene (ORFA) that encodes a putative protein of 191 amino acids with unknown function. A mitogenome-based phylogenetic analysis, presented as a maximum likelihood tree, showed that A. digitatum clustered with high statistical confidence with two other Alcyonium species endemic to the Mediterranean Sea and the Southeast Pacific Ocean.

20.
J Fungi (Basel) ; 10(8)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39194896

ABSTRACT

Diaporthe longicolla (syn. Phomopsis longicolla) is an important seed-borne fungal pathogen and the primary cause of Phomopsis seed decay (PSD) in soybean. PSD is one of the most devastating seed diseases, reducing soybean seed quality and yield worldwide. As part of a genome sequencing project on the fungal Diaporthe-Phomopsis complex, draft genomes of eight D. longicolla isolates were sequenced and assembled. Sequences of mitochondrial genomes were extracted and analyzed. The circular mitochondrial genomes ranged from 52,534 bp to 58,280 bp long, with a mean GC content of 34%. A total of 14 core protein-coding genes, 23 tRNA, and 2 rRNA genes were identified. Introns were detected in the genes of atp6, cob, cox1, cox2, cox3, nad1, nad2, nad5, and rnl. Three isolates (PL7, PL10, and PL185E) had more introns than other isolates. Approximately 6.4% of the mitochondrial genomes consist of repetitive elements. Moreover, 48 single-nucleotide polymorphisms (SNPs) and were identified. The mitochondrial genome sequences of D. longicolla will be useful to further study the molecular basis of seed-borne pathogens causing seed diseases, investigate genetic variation among isolates, and develop improved control strategies for Phomopsis seed decay of soybean.

SELECTION OF CITATIONS
SEARCH DETAIL