Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.832
Filter
1.
World J Diabetes ; 15(6): 1317-1339, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983802

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is the primary cause of visual problems in patients with diabetes. The Heyingwuzi formulation (HYWZF) is effective against DR. AIM: To determine the HYWZF prevention mechanisms, especially those underlying mitophagy. METHODS: Human retinal capillary endothelial cells (HRCECs) were treated with high glucose (hg), HYWZF serum, PX-478, or Mdivi-1 in vitro. Then, cell counting kit-8, transwell, and tube formation assays were used to evaluate HRCEC proliferation, invasion, and tube formation, respectively. Transmission electron microscopy was used to assess mitochondrial morphology, and Western blotting was used to determine the protein levels. Flow cytometry was used to assess cell apoptosis, reactive oxygen species (ROS) production, and mitochondrial membrane potential. Moreover, C57BL/6 mice were established in vivo using streptozotocin and treated with HYWZF for four weeks. Blood glucose levels and body weight were monitored continuously. Changes in retinal characteristics were evaluated using hematoxylin and eosin, tar violet, and periodic acid-Schiff staining. Protein levels in retinal tissues were determined via Western blotting, immunohistochemistry, and immunostaining. RESULTS: HYWZF inhibited excessive ROS production, apoptosis, tube formation, and invasion in hg-induced HRCECs via mitochondrial autophagy in vitro. It increased the mRNA expression levels of BCL2-interacting protein 3 (BNIP3), FUN14 domain-containing 1, BNIP3-like (BNIP3L, also known as NIX), PARKIN, PTEN-induced kinase 1, and hypoxia-inducible factor (HIF)-1α. Moreover, it downregulated the protein levels of vascular endothelial cell growth factor and increased the light chain 3-II/I ratio. However, PX-478 and Mdivi-1 reversed these effects. Additionally, PX-478 and Mdivi-1 rescued the effects of HYWZF by decreasing oxidative stress and apoptosis and increasing mitophagy. HYWZF intervention improved the symptoms of diabetes, tissue damage, number of acellular capillaries, and oxidative stress in vivo. Furthermore, in vivo experiments confirmed the results of in vitro experiments. CONCLUSION: HYWZF alleviated DR and associated damage by promoting mitophagy via the HIF-1α/BNIP3/NIX axis.

2.
Front Immunol ; 15: 1400431, 2024.
Article in English | MEDLINE | ID: mdl-38994370

ABSTRACT

Background: Clear Cell Renal Cell Carcinoma (ccRCC) is the most common type of kidney cancer, characterized by high heterogeneity and complexity. Recent studies have identified mitochondrial defects and autophagy as key players in the development of ccRCC. This study aims to delve into the changes in mitophagic activity within ccRCC and its impact on the tumor microenvironment, revealing its role in tumor cell metabolism, development, and survival strategies. Methods: Comprehensive analysis of ccRCC tumor tissues using single cell sequencing and spatial transcriptomics to reveal the role of mitophagy in ccRCC. Mitophagy was determined to be altered among renal clear cells by gene set scoring. Key mitophagy cell populations and key prognostic genes were identified using NMF analysis and survival analysis approaches. The role of UBB in ccRCC was also demonstrated by in vitro experiments. Results: Compared to normal kidney tissue, various cell types within ccRCC tumor tissues exhibited significantly increased levels of mitophagy, especially renal clear cells. Key genes associated with increased mitophagy levels, such as UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B, were identified, with their high expression closely linked to poor patient prognosis. Particularly, the ubiquitination process involving the UBB gene was found to be crucial for mitophagy and its quality control. Conclusion: This study highlights the central role of mitophagy and its regulatory factors in the development of ccRCC, revealing the significance of the UBB gene and its associated ubiquitination process in disease progression.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Mitophagy , Single-Cell Analysis , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Mitophagy/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Single-Cell Analysis/methods , Gene Expression Profiling , Transcriptome , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Prognosis , Biomarkers, Tumor/genetics , Cell Line, Tumor
3.
Autophagy ; : 1-12, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007805

ABSTRACT

Skeletal muscle plays a crucial role in generating force to facilitate movement. Skeletal muscle is a heterogenous tissue composed of diverse fibers with distinct contractile and metabolic profiles. The intricate classification of skeletal muscle fibers exists on a continuum ranging from type I (slow-twitch, oxidative) to type II (fast-twitch, glycolytic). The heterogenous distribution and characteristics of fibers within and between skeletal muscles profoundly influences cellular signaling; however, this has not been broadly discussed as it relates to macroautophagy/autophagy. The growing interest in skeletal muscle autophagy research underscores the necessity of comprehending the interplay between autophagic responses among skeletal muscles and fibers with different contractile properties, metabolic profiles, and other related signaling processes. We recommend approaching the interpretation of autophagy findings with careful consideration for two key reasons: 1) the distinct behaviors and responses of different skeletal muscles or fibers to various perturbations, and 2) the potential impact of alterations in skeletal muscle fiber type or metabolic profile on observed autophagic outcomes. This review provides an overview of the autophagic profile and response in skeletal muscles/fibers of different types and metabolic profiles. Further, this review discusses autophagic findings in various conditions and diseases that may differentially affect skeletal muscle. Finally, we provide key points of consideration to better enable researchers to fine-tune the design and interpretation of skeletal muscle autophagy experiments.Abbreviation: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG4: autophagy related 4 cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CS: citrate synthase; DIA: diaphragm; EDL: extensor digitorum longus; FOXO3/FOXO3A: forkhead box O3; GAS; gastrocnemius; GP: gastrocnemius-plantaris complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MYH: myosin heavy chain; PINK1: PTEN induced kinase 1; PLANT: plantaris; PRKN: parkin RBR E3 ubiquitin protein ligase; QUAD: quadriceps; RA: rectus abdominis; RG: red gastrocnemius; RQ: red quadriceps; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; WG: white gastrocnemius; WQ: white quadriceps; WVL: white vastus lateralis; VL: vastus lateralis; ULK1: unc-51 like autophagy activating kinase 1.

4.
EMBO Rep ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992176

ABSTRACT

Mitophagy must be carefully regulated to ensure that cells maintain appropriate numbers of functional mitochondria. The SCFFBXL4 ubiquitin ligase complex suppresses mitophagy by controlling the degradation of BNIP3 and NIX mitophagy receptors, and FBXL4 mutations result in mitochondrial disease as a consequence of elevated mitophagy. Here, we reveal that the mitochondrial phosphatase PPTC7 is an essential cofactor for SCFFBXL4-mediated destruction of BNIP3 and NIX, suppressing both steady-state and induced mitophagy. Disruption of the phosphatase activity of PPTC7 does not influence BNIP3 and NIX turnover. Rather, a pool of PPTC7 on the mitochondrial outer membrane acts as an adaptor linking BNIP3 and NIX to FBXL4, facilitating the turnover of these mitophagy receptors. PPTC7 accumulates on the outer mitochondrial membrane in response to mitophagy induction or the absence of FBXL4, suggesting a homoeostatic feedback mechanism that attenuates high levels of mitophagy. We mapped critical residues required for PPTC7-BNIP3/NIX and PPTC7-FBXL4 interactions and their disruption interferes with both BNIP3/NIX degradation and mitophagy suppression. Collectively, these findings delineate a complex regulatory mechanism that restricts BNIP3/NIX-induced mitophagy.

5.
J Ethnopharmacol ; : 118541, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992403

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Based on the core pathogenesis of hepatosplenic disorder and qi transformation disorder in ulcerative colitis, Tong-Xie-Yao-Fang (TXYF) is a classical traditional Chinese medicine commonly used to treat ulcerative colitis. Our study revealed that it has the potential to prevent colitis-associated colorectal cancer, which embodies the academic concept in traditional Chinese medicine of treating the disease before it develops. AIM OF THE STUDY: This study was aimed at evaluating the therapeutic role of TXYF in treating colitis-associated colorectal cancer and exploring its possible underlying mechanisms. MATERIALS AND METHODS: A colitis-associated colorectal cancer model was established in mice using azoxymethane and dextran sulfate sodium salt to examine the therapeutic effect of TXYF. The mouse body weights were observed. Hematoxylin-eosin staining was used to evaluate mouse colon histopathology. Colon cancer cells and colon epithelial cells were used to explore the potential molecular mechanisms. The proliferation and apoptosis of cells were detected by CCK-8 and cell colony assays, flow cytometry and western blotting. The epithelial-mesenchymal transition (EMT) and mitophagy markers were examined by immunohistochemistry, western blotting, quantitative real-time PCR and immunofluorescence staining. RESULTS: TXYF inhibited the tumorigenesis of mice with colitis-associated colorectal cancer and the growth of inflammatory colon cells. TXYF induced mitophagy in colon cancer cells through the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway to reverse EMT, which was consistent with the results in mice with colitis-associated colorectal cancer. CONCLUSIONS: The results of the present study demonstrated that TXYF effectively inhibited the progression of colitis-associated colorectal cancer through the PINK1/Parkin pathway, which provides new evidence for prevention strategies for this disease.

6.
J Biol Chem ; : 107543, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992440

ABSTRACT

The pathogenesis of Parkinson's disease (PD) has been associated with mitochondrial dysfunction. Given that the PINK1/Parkin pathway governs mitochondrial quality control by inducing mitophagy to remove damaged mitochondria, therapeutic approaches to activate PINK1/Parkin-mediated mitophagy have the potential in the treatment of PD. Here, we have identified a new small molecule, BL-918, as an inducer of mitophagy via activating the PINK1/Parkin pathway. BL-918 triggers PINK1 accumulation and Parkin mitochondrial translocation to initiate PINK1/Parkin-mediated mitophagy. We found that mitochondrial membrane potential and mitochondrial permeability transition (mPT) pore were involved in BL-918-induced PINK1/Parkin pathway activation. Moreover, we showed that BL-918 mitigated PD progression in MPTP-induced PD mice in a PINK1-dependent manner. Our results unravel a new activator of the PINK1/Parkin signaling pathway and provide a potential strategy for the treatment of PD and other diseases with dysfunctional mitochondria.

7.
Mitochondrion ; : 101928, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992857

ABSTRACT

Mitophagy, a crucial pathway in eukaryotic cells, selectively eliminates dysfunctional mitochondria, thereby maintaining cellular homeostasis via mitochondrial quality control. Pulmonary hypertension (PH) refers to a pathological condition where pulmonary arterial pressure is abnormally elevated due to various reasons, and the underlying pathogenesis remains elusive. This article examines the molecular mechanisms underlying mitophagy, emphasizing its role in PH and the progress in elucidating related molecular signaling pathways. Additionally, it highlights current drug regulatory pathways, aiming to provide novel insights into the prevention and treatment of pulmonary hypertension.

8.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000117

ABSTRACT

Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.


Subject(s)
Canagliflozin , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice, Inbred C57BL , Mitophagy , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Mitophagy/drug effects , Male , Mice , Protein Kinases/metabolism , Protein Kinases/genetics , Rats , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line , Signal Transduction/drug effects , Diet, High-Fat/adverse effects
9.
Asian J Pharm Sci ; 19(3): 100927, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948399

ABSTRACT

Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.

10.
Int Immunopharmacol ; 138: 112527, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38950457

ABSTRACT

BACKGROUND: Sepsis-associated acute kidney injury (SA-AKI) represents a frequent complication of in critically ill patients. The objective of this study is to illuminate the potential protective activity of Micheliolide (MCL) and its behind mechanism against SA-AKI. METHODS: The protective potential of MCL on SA-AKI was investigated in lipopolysaccharide (LPS) treated HK2 cells and SA-AKI mice model. The mitochondrial damage was determined by detection of reactive oxygen species and membrane potential. The Nrf2 silencing was achieved by transfection of Nrf2-shRNA in HK2 cells, and Nrf2 inhibitor, ML385 was employed in SA-AKI mice. The mechanism of MCL against SA-AKI was evaluated through detecting hallmarks related to inflammation, mitophagy and Nrf2 pathway via western blotting, immunohistochemistry, and enzyme linked immunosorbent assay. RESULTS: MCL enhanced viability, suppressed apoptosis, decreased inflammatory cytokine levels and improved mitochondrial damage in LPS-treated HK2 cells, and ameliorated renal injury in SA-AKI mice. Moreover, MCL could reduce the activation of NLRP3 inflammasome via enhancing mitophagy. Additionally, Nrf2 deficiency reduced the suppression effect of MCL on NLRP3 inflammasome activation and blocked the facilitation effect of MCL on mitophagy in LPS-treated HK2 cells, the consistent is true for ML385 treatment in SA-AKI mice. CONCLUSIONS: MCL might target Nrf2 and further reduce the NLRP3 inflammasome activation via enhancing mitophagy, which alleviated SA-AKI.

11.
Cell Biochem Funct ; 42(5): e4085, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951992

ABSTRACT

This review rigorously investigates the early cerebral changes associated with Alzheimer's disease, which manifest long before clinical symptoms arise. It presents evidence that the dysregulation of calcium (Ca2+) homeostasis, along with mitochondrial dysfunction and aberrant autophagic processes, may drive the disease's progression during its asymptomatic, preclinical stage. Understanding the intricate molecular interplay that unfolds during this critical period offers a window into identifying novel therapeutic targets, thereby advancing the treatment of neurodegenerative disorders. The review delves into both established and emerging insights into the molecular alterations precipitated by the disruption of Ca2+ balance, setting the stage for cognitive decline and neurodegeneration.


Subject(s)
Alzheimer Disease , Autophagy , Calcium , Mitochondria , Mitophagy , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mitochondria/metabolism , Mitochondria/pathology , Calcium/metabolism , Animals , Hemostasis , Homeostasis
12.
J Cell Physiol ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946060

ABSTRACT

Skeletal muscle is crucial for animal movement and posture maintenance, and it serves as a significant source of meat in the livestock and poultry industry. The number of muscle fibers differentiated from myoblast in the embryonic stage is one of the factors determining the content of skeletal muscle. Insulin-like growth factor 2 (IGF2), a well-known growth-promoting hormone, is crucial for embryonic and skeletal muscle growth and development. However, the specific molecular mechanism underlying its impact on chicken embryonic myoblast differentiation remains unclear. To elucidate the molecular mechanism by which IGF2 regulates chicken myoblast differentiation, we manipulated IGF2 expression in chicken embryonic myoblast. The results demonstrated that IGF2 was upregulated during chicken skeletal muscle development and myoblast differentiation. On the one hand, we found that IGF2 promotes mitochondrial biogenesis through the PGC1/NRF1/TFAM pathway, thereby enhancing mitochondrial membrane potential, oxidative phosphorylation, and ATP synthesis during myoblast differentiation. This process is mediated by the PI3K/AKT pathway. On the other hand, IGF2 regulates BNIP3-mediated mitophagy, clearing dysfunctional mitochondria. Collectively, our findings confirmed that IGF2 cooperatively regulates mitochondrial biogenesis and mitophagy to remodel the mitochondrial network and enhance mitochondrial function, ultimately promoting myoblast differentiation.

13.
Br J Haematol ; 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946206

ABSTRACT

Erythroid cells undergo a highly complex maturation process, resulting in dynamic changes that generate red blood cells (RBCs) highly rich in haemoglobin. The end stages of the erythroid cell maturation process primarily include chromatin condensation and nuclear polarization, followed by nuclear expulsion called enucleation and clearance of mitochondria and other organelles to finally generate mature RBCs. While healthy RBCs are devoid of mitochondria, recent evidence suggests that mitochondria are actively implicated in the processes of erythroid cell maturation, erythroblast enucleation and RBC production. However, the extent of mitochondrial participation that occurs during these ultimate steps is not completely understood. This is specifically important since abnormal RBC retention of mitochondria or mitochondrial DNA contributes to the pathophysiology of sickle cell and other disorders. Here we review some of the key findings so far that elucidate the importance of this process in various aspects of erythroid maturation and RBC production under homeostasis and disease conditions.

14.
Plant Cell Environ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946254

ABSTRACT

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.

15.
World J Gastroenterol ; 30(23): 2934-2946, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38946875

ABSTRACT

In this editorial, we comment on an article titled "Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases", which was published in a recent issue of the World Journal of Gastroenterology. We focused on the statement that "autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal cells". With advancing research, autophagy, and particularly the pivotal role of the macroautophagy in maintaining cellular equilibrium and stress response in the gastrointestinal system, has garnered extensive study. However, the significance of mitophagy, a unique selective autophagy pathway with ubiquitin-dependent and independent variants, should not be overlooked. In recent decades, mitophagy has been shown to be closely related to the occurrence and development of gastrointestinal diseases, especially inflammatory bowel disease, gastric cancer, and colorectal cancer. The interplay between mitophagy and mitochondrial quality control is crucial for elucidating disease mechanisms, as well as for the development of novel treatment strategies. Exploring the pathogenesis behind gastrointestinal diseases and providing individualized and efficient treatment for patients are subjects we have been exploring. This article reviews the potential mechanism of mitophagy in gastrointestinal diseases with the hope of providing new ideas for diagnosis and treatment.


Subject(s)
Autophagy , Gastrointestinal Diseases , Mitochondria , Mitophagy , Humans , Autophagy/physiology , Gastrointestinal Diseases/pathology , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/physiopathology , Mitochondria/metabolism , Mitochondria/pathology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/metabolism , Animals
16.
Autophagy Rep ; 3(1): 2326402, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38988500

ABSTRACT

PINK1, mutated in familial forms of Parkinson's disease, initiates mitophagy following mitochondrial depolarization. However, it is difficult to monitor this pathway physiologically in mice as loss of PINK1 does not alter basal mitophagy levels in most tissues. To further characterize this pathway in vivo, we used mito-QC mice in which loss of PINK1 was combined with the mitochondrial-associated POLGD257A mutation. We focused on skeletal muscle as gene expression data indicates that this tissue has the highest PINK1 levels. We found that loss of PINK1 in oxidative hindlimb muscle significantly reduced mitophagy. Of interest, the presence of the POLGD257A mutation, while having a minor effect in most tissues, restored levels of muscle mitophagy caused by the loss of PINK1. Although our observations highlight that multiple mitophagy pathways operate within a single tissue, we identify skeletal muscle as a tissue of choice for the study of PINK1-dependant mitophagy under basal conditions.

17.
Foods ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998642

ABSTRACT

This study explored the potential of saponins from Korean Red Ginseng to target the PINK1/Parkin mitophagy pathway, aiming to enhance insulin sensitivity in hepatocytes-a key factor in metabolic disorders like metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes. Results from both in vitro and in vivo experiments showed increased expression of PINK1 and Parkin, activating mitophagy and reducing oxidative stress through reduction in mitochondrial and total reactive oxygen species. Additionally, improvements in insulin signaling were observed, including the upregulation of phosphorylated IRS and AKT, and downregulation of gluconeogenic enzymes, underscoring the saponins' efficacy in boosting insulin sensitivity. The findings highlighted Korean Red Ginseng-derived saponins as potential treatments for insulin resistance and related metabolic conditions.

18.
Biomed Pharmacother ; 177: 117144, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39004063

ABSTRACT

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and the leading cause of age-related cognitive decline. Recent studies have established a close relationship between mitophagy and the pathogenesis of AD. Various phytochemicals have shown promising therapeutic effects in mitigating the onset and progression of AD. This review offers a comprehensive overview of the typical features of mitophagy and the underlying mechanisms leading to its occurrence in AD, highlighting its significance in the disease's pathogenesis and progression. Additionally, we examine the therapeutic mechanisms of synthetic drugs that induce mitophagy in AD. Finally, we summarize recent advances in research on phytochemicals that regulate mitophagy in the treatment of AD, potentially guiding the development of new anti-AD drugs.

19.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963052

ABSTRACT

Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the immunofluorescence data featured in Fig. 1H, TUNEL assay data in Fig. 2A, cytochome c leakage assay data in Fig. 2H, staining of cardiolipin images in Fig. 2H, lamellipodia­stained data in Fig. 3A, and immunofluorescence assay data in Figs. 3F and 5D were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Oncology Reports, or were under consideration for publication at around the same time (several of which have now been retracted). In addition, overlapping sections of data were noted within the data panels in Fig. 3D and F, such that data which were intended to represent the results from differently performed experiments had apparently been derived from the same original source(s). In view of the fact that certain of these data had already apparently been published prior to the submission of this article for publication, and in view of an overall lack of confidence in the presented data, the Editor of Oncology Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 39: 1671­1681, 2018; DOI: 10.3892/or.2018.6252].

20.
Biomed Pharmacother ; 177: 117059, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955086

ABSTRACT

Hepatic cancer is one of the main causes of cancer-related death worldwide. Cancer stem cells (CSCs) are a unique subset of cancer cells that promote tumour growth, maintenance, and therapeutic resistance, leading to recurrence. In the present work, the ability of a ruthenium complex containing 1,3-thiazolidine-2-thione (RCT), with the chemical formula [Ru(tzdt)(bipy)(dppb)]PF6, to inhibit hepatic CSCs was explored in human hepatocellular carcinoma HepG2 cells. RCT exhibited potent cytotoxicity to solid and haematological cancer cell lines and reduced the clonogenic potential, CD133+ and CD44high cell percentages and tumour spheroid growth of HepG2 cells. RCT also inhibited cell motility, as observed in the wound healing assay and transwell cell migration assay. RCT reduced the levels of Akt1, phospho-Akt (Ser473), phospho-Akt (Thr308), phospho-mTOR (Ser2448), and phospho-S6 (Ser235/Ser236) in HepG2 cells, indicating that interfering with Akt/mTOR signalling is a mechanism of action of RCT. The levels of active caspase-3 and cleaved PARP (Asp214) were increased in RCT-treated HepG2 cells, indicating the induction of apoptotic cell death. In addition, RCT modulated the autophagy markers LC3B and p62/SQSTM1 in HepG2 cells and increased mitophagy in a mt-Keima-transfected mouse embryonic fibroblast (MEF) cell model, and RCT-induced cytotoxicity was partially prevented by autophagy inhibitors. Furthermore, mutant Atg5-/- MEFs and PentaKO HeLa cells (human cervical adenocarcinoma with five autophagy receptor knockouts) were less sensitive to RCT cytotoxicity than their parental cell lines, indicating that RCT induces autophagy-mediated cell death. Taken together, these data indicate that RCT is a novel potential anti-liver cancer drug with a suppressive effect on CSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...