Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Int J Biol Macromol ; 270(Pt 1): 132030, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704069

ABSTRACT

The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-pim-1 , Signal Transduction , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship
2.
Prep Biochem Biotechnol ; 54(8): 1079-1087, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38411149

ABSTRACT

Reverse transcriptase (RT) is one of the most important enzymes used in molecular biology applications, enabling the conversion of RNA into complementary DNA (cDNA) that is used in reverse transcription-polymerase chain reaction (RT-PCR). The high demand of RT enzymes in biotechnological applications making the production optimization of RT is crucial for meeting the growing demand in industrial settings. Conventionally, the expression of recombinant RT is T7-induced promoter using IPTG in Escherichia coli expression systems, which is not cost-efficient. Here, we successfully made an alternative procedure for RT expression from Moloney murine leukemia virus (M-MLV) using autoinduction method in chemically defined medium. The optimization of carbon source composition (glucose, lactose, and glycerol) was analyzed using Response Surface Methodology (RSM). M-MLV RT was purified for further investigation on its activity. A total of 32.8 mg/L purified M-MLV RT was successfully obtained when glucose, glycerol, and lactose were present at concentration of 0.06%, 0.9%, and 0.5% respectively, making a 3.9-fold improvement in protein yield. In addition, the protein was produced in its active form by displaying 7462.50 U/mg of specific activity. This study provides the first step of small-scale procedures of M-MLV RT production that make it a cost-effective and industrially applicable strategy.


Subject(s)
Escherichia coli , Moloney murine leukemia virus , RNA-Directed DNA Polymerase , Escherichia coli/genetics , Escherichia coli/metabolism , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/enzymology , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Glycerol/metabolism , Glucose/metabolism , Lactose/metabolism
3.
Arab J Gastroenterol ; 24(3): 168-174, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36878814

ABSTRACT

BACKGROUND AND STUDY AIMS: The B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is associated with the progression of gastric cancer (GC). However, its role in drug resistance of gastric cancer stem cell (GCSC) remains unclear. This study aimed to explore the biological function of BMI-1 in GC cells and its role in drug resistance of GCSCs. PATIENTS AND METHODS: We assessed BMI-1 expression in the GEPIA database and in our collected samples from patients with GC. We silenced BMI-1 using siRNA to study the cell proliferation and migration of GC cells. We also used Hoechst 33342 staining to verify the effect of adriamycin (ADR) on side population (SP) cells, and measured the effects of BMI-1 on the expression of N-cadherin, E-cadherin, and drug-resistance-related proteins (multidrug resistance mutation 1 and lung resistance-related protein). Finally, we analyzed BMI-1-related proteins uing the STRING and GEPIA databases. RESULTS: BMI-1 mRNA was upregulated in GC tissues and cell lines, especially in MKN-45 and HGC-27 cells. Silencing BMI-1 reduced the proliferation and migration of GC cells. Knocking down BMI-1 significantly decreased epithelial-mesenchymal transition progression, expression levels of drug-resistant proteins, and the number of SP cells in ADR-treated GC cells. Bioinformatics analysis showed that EZH2, CBX8, CBX4, and SUZ12 were positively correlated with BMI-1 in GC tissues. CONCLUSION: Our study demonstrates that BMI-1 affects the cellular activity, proliferation, migration, and invasion of GC cells. Silencing the BMI-1 gene significantly reduces the number of SP cells and the expression of drug-resistant proteins in ADR-treated GC cells. We speculate that inhibition of BMI-1 increases the drug resistance of GC cells by affecting GCSCs, and that EZH2, CBX8, CBX4, and SUZ12 may participate in BMI-1-induced enhancement of GCSC-like phenotype and viability.


Subject(s)
Stomach Neoplasms , Animals , Mice , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Moloney murine leukemia virus/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Proliferation/genetics , Ligases/genetics , Ligases/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism
4.
Mol Med Rep ; 27(4)2023 Apr.
Article in English | MEDLINE | ID: mdl-36928400

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the immunohistochemical data shown in Fig. 1C and F, the cell invasion assay data shown in Fig. 2C and D, and all the data shown in Fig. 4D­F were strikingly similar to data appearing in different form in other articles by different authors at different research institutes; moreover, some of the scratch­wound data shown in Fig. 2B appeared to have been duplicated, such that the same data were shown to represent experiments that were meant to have been performed under different experimental conditions. Owing to the fact that the contentious data in the above article were already under consideration for publication prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they agreed with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 16: 7949­7958, 2017; DOI: 10.3892/mmr.2017.7660].

5.
Chem Pharm Bull (Tokyo) ; 70(12): 885-891, 2022.
Article in English | MEDLINE | ID: mdl-36450587

ABSTRACT

A new coumarin derivative (1) and 30 known compounds were isolated from Mammea siamensis and Andrographis paniculata, guided by B cell-specific Moloney murine leukemia virus insertion region 1 (BMI1) promoter inhibitory activity. Among the isolated compounds, 15 compounds showed BMI1 promoter inhibitory activity, and five compounds were found to be cytotoxic. 14-Deoxy-11,12-dehydroandrographolide (18) was highly cytotoxic to DU145 cells with an IC50 value of 25.4 µM. Western blotting analysis of compound 18 in DU145 cells suggested that compound 18 suppresses BMI1 expression.


Subject(s)
Mammea , Animals , Mice , Andrographis paniculata , Cell Line , Polycomb Repressive Complex 1 , Proto-Oncogene Proteins , Triiodobenzoic Acids
6.
Protein J ; 41(4-5): 515-526, 2022 10.
Article in English | MEDLINE | ID: mdl-35933571

ABSTRACT

Moloney murine leukemia virus reverse transcriptase (MMLV-RT) is the most frequently used enzyme in molecular biology for cDNA synthesis. To date, reverse transcription coupled with Polymerase Chain Reaction, known as RT-PCR, has been popular as an excellent approach for the detection of SARS-CoV-2 during the COVID-19 pandemic. In this study, we aimed to improve the enzymatic production and performance of MMLV-RT by optimizing both codon and culture conditions in E. coli expression system. By applying the optimized codon and culture conditions, the enzyme was successfully overexpressed and increased at high level based on the result of SDS-PAGE and Western blotting. The total amount of MMLV-RT has improved 85-fold from 0.002 g L-1 to 0.175 g L-1 of culture. One-step purification by nickel affinity chromatography has been performed to generate the purified enzyme for further analysis of qualitative and quantitative RT activity. Overall, our investigation provides useful strategies to enhance the recombinant enzyme of MMLV-RT in both production and performance. More importantly, the enzyme has shown promising activity to be used for RT-PCR assay.


Subject(s)
Moloney murine leukemia virus , Codon/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Moloney murine leukemia virus/enzymology , Moloney murine leukemia virus/genetics , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism
7.
Anat Rec (Hoboken) ; 305(5): 1112-1118, 2022 05.
Article in English | MEDLINE | ID: mdl-34101367

ABSTRACT

Encoded by B cell-specific moloney murine leukemia virus integration site 1, Bmi1 is part of the polycomb group of proteins localized in stem and undifferentiated cells. It regulates the expression of various differentiation genes. However, the regulatory mechanism of skeletal development by Bmi1 remains poorly understood. In this study, we aimed to observe Bmi1 distribution during endochondral ossification processes in rat bone development and fracture healing. Immunoreactivity of Bmi1 was detected in the mesenchymal cell aggregation area at embryonic day (E) 14 and in cells around the center of cartilage primordium at E 16. Subsequently, the calcified bone matrix was formed around the cartilage primordium, and osteoblasts expressing Runt-related transcription factor 2 (Runx2) and Osterix (Osx) showed immunopositivity for Bmi1. At 4 days after bone fracture, the connective tissue around the fractured bone contained Bmi1-positive cells. At 42 days after fracture, osteoblasts along the surface of the new bone revealed Bmi1-, Runx2- and Osx-positive reactions, but the Bmi1 immunoreactivity in osteocytes was less than the Runx2 and Osx immunoreactivities. In conclusion, Bmi1 is localized in the osteoblast-lineage cells in their early differentiation stages, and it might regulate their differentiation during endochondral ossification.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Osteogenesis , Animals , Bone Development , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/metabolism , Osteoblasts/metabolism , Osteogenesis/physiology , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , Rats
8.
J Hematol Oncol ; 14(1): 203, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876184

ABSTRACT

Unbiased genetic forward screening using retroviral insertional mutagenesis in a genetically engineered mouse model of human multiple myeloma may further our understanding of the genetic pathways that govern neoplastic plasma cell development. To evaluate this hypothesis, we performed a tumor induction study in MYC-transgenic mice infected as neonates with the Moloney-derived murine leukemia virus, MOL4070LTR. Next-generation DNA sequencing of proviral genomic integration sites yielded rank-ordered candidate tumor progression genes that accelerated plasma cell neoplasia in mice. Rigorous clinical and biological validation of these genes led to the discovery of two novel myeloma genes: WDR26 (WD repeat-containing protein 26) and MTF2 (metal response element binding transcription factor 2). WDR26, a core component of the carboxy-terminal to LisH (CTLH) complex, is overexpressed or mutated in solid cancers. MTF2, an ancillary subunit of the polycomb repressive complex 2 (PRC2), is a close functional relative of PHD finger protein 19 (PHF19) which is currently emerging as an important driver of myeloma. These findings underline the utility of genetic forward screens in mice for uncovering novel blood cancer genes and suggest that WDR26-CTLH and MTF2-PRC2 are promising molecular targets for new approaches to myeloma treatment and prevention.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Multiple Myeloma/genetics , Polycomb Repressive Complex 2/genetics , Animals , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Transgenic , Multiple Myeloma/therapy
9.
Exp Ther Med ; 22(4): 1151, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34504596

ABSTRACT

5-Fluorouracil (5-FU)-based chemotherapy is the conventional treatment approach for patients with colorectal cancer (CRC). However, de novo and acquired resistance to 5-FU are frequently observed during treatment, which eventually lead to patients succumbing to the disease. Accumulating data have revealed an association of CRC resistance to 5-FU with aberrant expression of microRNAs (miRs). In the present study, Cell Counting Kit-8 was performed to measure cell viability, flow cytometry was performed to detect cell apoptosis, reverse transcription-quantitative PCR was conducted to measure proviral integration site for Moloney murine leukemia virus 1 (PIM1) and miR-3135b expression, western blotting was conducted to measure PIM1 expression. Microarray data analysis indicated that the level of miR-3135b expression was decreased in patients with recurrent CRC that were treated with 5-FU when compared with non-recurrent cases. Overexpression of miR-3135b increased the sensitivity of CRC cells to 5-FU treatment. Moreover, PIM1 was identified as a target gene of miR-3135b using bioinformatics analysis, reverse transcription-quantitative PCR and western blotting. The direct interaction between these two targets was confirmed by luciferase reporter assays. Notably, PIM1 overexpression compensated the effect of miR-3135b in CRC cells. Furthermore, an inverse correlation between PIM1 mRNA expression levels and miR-3135b expression was observed in clinical samples. Therefore, the present study identified miR-3135b as a novel regulator of 5-FU sensitivity in CRC.

10.
Chem Pharm Bull (Tokyo) ; 69(9): 854-861, 2021.
Article in English | MEDLINE | ID: mdl-34470949

ABSTRACT

Proviral integration site for Moloney murine leukemia virus (PIM) kinases are proto-oncogenic kinases involved in the regulation of several cellular processes. PIM kinases are promising targets for new drug development because they play a major role in many cancer-specific pathways, such as survival, apoptosis, proliferation, cell cycle regulation, and migration. Here, 2-thioxothiazolidin-4-one derivatives were synthesized and evaluated as potent pan-PIM kinase inhibitors. Optimized compounds showed single-digit nanomolar IC50 values against all three PIM kinases with high selectivity over 14 other kinases. Compound 17 inhibited the growth of Molm-16 cell lines (EC50 = 14 nM) and modulated the expression of pBAD and p4EBP1 in a dose-dependent manner.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Thiazolidines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Structure-Activity Relationship , Thiazolidines/chemical synthesis , Thiazolidines/chemistry , Tumor Cells, Cultured
11.
Oncol Lett ; 22(2): 622, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34267815

ABSTRACT

Burkitt's lymphoma is an aggressive form of lymphoma affecting B lymphocytes. It occurs endemically in Africa and sporadically in the rest of the world. Due to the high proliferation rate of this tumor, intensive multi-drug treatment is required; however, the risk of tumor syndrome lysis is high. Overexpression of the proto-oncogene proviral integration of the Moloney murine leukemia virus (PIM-1) kinase is associated with the development of hematological abnormalities, including Burkitt's lymphoma (BL). PIM-1 primarily exerts anti-apoptotic activities through BAD phosphorylation. The aim of the present study was to investigate the in vitro efficiency of a PIM-1 kinase pharmacological inhibitor (PIM1-1) in BL. The impact of PIM1-1 was evaluated in terms of the viability and apoptosis status of the BL B cell lines, Raji and Daudi, compared with K562 leukemia cells, which highly express PIM-1. Cell viability and apoptotic status were assessed with western blotting, and PIM-1 gene expression was assessed with reverse transcription-quantitative PCR. After 48 h of treatment, PIM1-1 inhibited the Daudi, Raji and K562 cell viability with a half-maximal inhibitory concentration corresponding to 10, 20 and 30 µM PIM1-1, respectively. A significant decrease of ERK phosphorylation was detected in PIM1-1-treated Daudi cells, confirming the antiproliferative effect. The addition of 10 µM PIM1-1 significantly decreased the PIM-1 protein and gene expression in Daudi cells. An inhibition of the pro-apoptotic BAD phosphorylation was observed in the Daudi cells treated with 0.1-1 µM PIM1-1 and 10 µM PIM1-1 decreased BAD phosphorylation in the Raji cells. The apoptotic status of both PIM1-1-treated cells lines were confirmed with the detection of cleaved capase-3. However, no change in cell viability and PIM-1 protein expression was observed in the 10 µM PIM1-1-treated K562 cells. In conclusion, the findings indicated that the PIM1-1 pharmacological inhibitor may have therapeutic potential in BL, but with lower efficiency in leukemia.

12.
Biotechnol Prog ; 37(4): e3159, 2021 07.
Article in English | MEDLINE | ID: mdl-33913259

ABSTRACT

Chinese hamster ovary (CHO) cells are frequently used for recombinant protein production (RPP) as a host. While the RPP has been proven successful, there is still a compelling need for further improvement. Cyclo olefin polymer (COP) is a plastic material widely utilized due to its properties including its low protein absorption. We applied this as a raw material for RPP cell culture to see if the COP is suitable. A recombinant CHO cell line expressing the human erythropoietin (hEPO) gene under the control of the Moloney murine leukemia virus-long terminal repeat (MMLV-LTR) was established. When the cells were cultured in a dish made from COP, the cells attached to the bottom, and then started to float and form spheroids. RNASeq data analysis suggested the epithelial-mesenchymal transition (EMT) was triggered with receptor tyrosine kinase activation shortly after cultivation. It coincided with the hEPO transcription increase. After the cell floating, though EMT marker gene expression subsided, a hEPO expression increase sustained. When fibronectin was applied to COP dish surface, the cell floating was suppressed and hEPO expression decreased. We then treated cells with MßCD, a drug that destroys the lipid raft, eliminating molecules in the raft. This facilitated cell floating and spheroid formation coincided with hEPO expression enhancement. These results suggest interactions between a cell and COP surface might trigger the EMT and the subsequent event, both of which activated the MMLV-LTR promoter. Thus, employing COP for culturing cells, a potent RPP system could be established with its advantage for efficient protein purification.


Subject(s)
Epithelial-Mesenchymal Transition , Moloney murine leukemia virus , Alkenes , Animals , CHO Cells , Cricetinae , Cricetulus , Epithelial-Mesenchymal Transition/genetics , Gene Expression , Humans , Mice , Moloney murine leukemia virus/genetics , Polymers , Terminal Repeat Sequences
13.
Protein Eng Des Sel ; 342021 02 15.
Article in English | MEDLINE | ID: mdl-33825883

ABSTRACT

Moloney murine leukemia virus (MMLV) reverse transcriptase (RT) is widely used in research and clinical diagnosis. Improvement of MMLV RT thermostability has been an important topic of research for increasing the efficiency of cDNA synthesis. In this study, we attempted to increase MMLV RT thermostability by introducing a disulfide bridge in its RNase H region using site-directed mutagenesis. Five variants were designed, focusing on the distance between the two residues to be mutated into cysteine. The variants were expressed in Escherichia coli and purified. A551C/T662C was determined to be the most thermostable variant.


Subject(s)
Moloney murine leukemia virus , RNA-Directed DNA Polymerase , Animals , Disulfides , Mice , Moloney murine leukemia virus/genetics , Mutagenesis, Site-Directed , RNA-Directed DNA Polymerase/genetics , Ribonuclease H/genetics
14.
Acta Pharm Sin B ; 11(3): 609-620, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33777671

ABSTRACT

The Hedgehog (HH) signaling pathway plays important roles in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment (TME). Aberrant HH signaling activation may accelerate the growth of gastrointestinal tumors and lead to tumor immune tolerance and drug resistance. The interaction between HH signaling and the TME is intimately involved in these processes, for example, tumor growth, tumor immune tolerance, inflammation, and drug resistance. Evidence indicates that inflammatory factors in the TME, such as interleukin 6 (IL-6) and interferon-γ (IFN-γ), macrophages, and T cell-dependent immune responses, play a vital role in tumor growth by affecting the HH signaling pathway. Moreover, inhibition of proliferating cancer-associated fibroblasts (CAFs) and inflammatory factors can normalize the TME by suppressing HH signaling. Furthermore, aberrant HH signaling activation is favorable to both the proliferation of cancer stem cells (CSCs) and the drug resistance of gastrointestinal tumors. This review discusses the current understanding of the role and mechanism of aberrant HH signaling activation in gastrointestinal carcinogenesis, the gastrointestinal TME, tumor immune tolerance and drug resistance and highlights the underlying therapeutic opportunities.

15.
Cancers (Basel) ; 13(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540760

ABSTRACT

PURPOSE: Prognosis for acute myeloid leukemia (AML) patients is poor, particularly in TP53 mutated AML, secondary, relapsed, and refractory AML, and in patients unfit for intensive treatment, thus highlighting an unmet need for novel therapeutic approaches. The combined use of compounds targeting the stem cell oncoprotein BMI1 and activating the tumor suppressor protein p53 may represent a promising novel treatment option for poor risk AML patients. EXPERIMENTAL DESIGN: The BMI1 inhibitor PTC596, MCL1 inhibitor S63845, and MEK inhibitor trametinib, as well as the p53 activator APR-246 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells. AML cells represented all major morphologic and molecular subtypes including FLT3-ITD and FLT3 wild type, NPM1 mutant and wild type, as well as TP53 mutant and wild type AML cell lines and a variety of patient derived AML cells. RESULTS: AML cell lines were variably susceptible to PTC596 and to combination treatments with PTC596 and MCL1 inhibitor S63845, MEK inhibitor trametinib, or TP53 activator APR-246, independent of TP53 mutational status. Susceptibility of patient samples for PTC596 in combination with S63845 or trametinib was significant for the majority of adverse risk primary and secondary AML with minimal efficacy in favorable risk AML, and correlated significantly with CD34 positivity of the samples. BMI1 and MN1 gene expression, and MCL1 and MEK1 protein levels were identified as biomarkers for response to PTC596 combination treatments. CONCLUSIONS: The combination of PTC596 and S63845 may be an effective treatment in CD34+ adverse risk AML with elevated MN1 gene expression and MCL1 protein levels, while PTC596 and trametinib may be more effective in CD34+ adverse risk AML with elevated BMI1 gene expression and MEK protein levels.

16.
Structure ; 29(8): 886-898.e6, 2021 08 05.
Article in English | MEDLINE | ID: mdl-33592170

ABSTRACT

The extraterminal (ET) domain of BRD3 is conserved among BET proteins (BRD2, BRD3, BRD4), interacting with multiple host and viral protein-protein networks. Solution NMR structures of complexes formed between the BRD3 ET domain and either the 79-residue murine leukemia virus integrase (IN) C-terminal domain (IN329-408) or its 22-residue IN tail peptide (IN386-407) alone reveal similar intermolecular three-stranded ß-sheet formations. 15N relaxation studies reveal a 10-residue linker region (IN379-388) tethering the SH3 domain (IN329-378) to the ET-binding motif (IN389-405):ET complex. This linker has restricted flexibility, affecting its potential range of orientations in the IN:nucleosome complex. The complex of the ET-binding peptide of the host NSD3 protein (NSD3148-184) and the BRD3 ET domain includes a similar three-stranded ß-sheet interaction, but the orientation of the ß hairpin is flipped compared with the two IN:ET complexes. These studies expand our understanding of molecular recognition polymorphism in complexes of ET-binding motifs with viral and host proteins.


Subject(s)
Histone-Lysine N-Methyltransferase/chemistry , Integrases/chemistry , Leukemia Virus, Murine/enzymology , Nuclear Proteins/chemistry , Transcription Factors/chemistry , Binding Sites , Histone-Lysine N-Methyltransferase/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Integrases/metabolism , Models, Molecular , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation , Viral Proteins/chemistry , Viral Proteins/metabolism
17.
Int J Mol Med ; 47(1): 137-150, 2021 01.
Article in English | MEDLINE | ID: mdl-33236134

ABSTRACT

Overproduction of pro­inflammatory cytokines in the aged, which is called inflammaging, leads to the deterioration of periodontitis. Toll­like receptor 4 (TLR4) plays a role in the regulation of cellular senescence, and its expression increases with age. However, there has been limited research into the molecular mechanisms underlying the onset of periodontal inflammaging, and the interplay between TLR4 and inflammaging. In the present study, wild­type and TLR4 gene knockout mice were used to investigate the activation of the TLR4 pathway in mouse periodontitis and the expression of the nucleotide­binding and oligomerization domain­like receptor 3 (NLRP3) inflammasome, an upstream immune checkpoint during the development of inflammaging. Activation of TLR4 in a mouse model of periodontitis enhanced the expression of a senescence­associated secretory phenotype (SASP), which boosted the inflammaging process. Conversely, TLR4 activation downregulated the expression of B cell­specific Moloney murine leukemia virus integration site 1 (Bmi­1) and promoted the priming of NLRP3 inflammasome, both of which are regulators of SASP. Treating gingival fibroblasts with Bmi­1 inhibitor PTC209, it was demonstrated that TLR4 activated the NLRP3 pathway and the inflammaging process by suppressing Bmi­1. In addition, there was a significant reduction in the expression of Bmi­1 expression in the gingiva of patients with periodontitis compared with healthy controls. In conclusion, the present study demonstrated that TLR4 acted by inhibiting Bmi­1 to enhance the NLRP3 pathway and SASP factors. This cascade of reactions may contribute to the senescence of the periodontium.


Subject(s)
Gene Expression Regulation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Periodontitis/metabolism , Polycomb Repressive Complex 1/biosynthesis , Proto-Oncogene Proteins/biosynthesis , Toll-Like Receptor 4/metabolism , Animals , Female , Inflammasomes/genetics , Inflammation/genetics , Inflammation/metabolism , Male , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Periodontitis/genetics , Polycomb Repressive Complex 1/genetics , Proto-Oncogene Proteins/genetics , Toll-Like Receptor 4/genetics
18.
World J Surg Oncol ; 18(1): 328, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33302959

ABSTRACT

BACKGROUND: The alkB homolog 2, alpha-ketoglutarate-dependent dioxygenase (ALKBH2) gene is involved in DNA repair and is expressed in different types of malignancies. However, the role of ALKBH2 in colorectal carcinoma (CRC) remains unclear. This study aimed to explore the potential mechanism of ALKBH2 and its function in CRC. METHODS: The expression levels of ALKBH2 in CRC tissues and cells were determined by qRT-PCR. Following that, the role of ALKBH2 in cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) in CRC cells (Caco-2 and LOVO) were assessed by Cell Counting Kit-8 (CCK-8), transwell assays, and Western blotting, respectively. The effect of ALKBH2 on B cell-specific Moloney murine leukemia virus integration site 1 (BMI1) and downstream NF-κB pathway was determined by Western blotting and luciferase reporter assay. RESULTS: The expression of ALKBH2 was significantly upregulated both in CRC tissues and cells. Further experiments demonstrated that reduction of ALKBH2 suppressed Caco-2 and LOVO cell proliferation and invasion. Moreover, ALKBH2 knockdown also suppressed EMT, which increased E-cadherin expression and reduced N-cadherin expression. Besides, ALKBH2 silencing inhibited BMI1 expression and reduced nuclear accumulation of the NF-κB p65 protein, as well as the luciferase activity of NF-κB p65. Upregulation of BMI1 reversed the effect of ALKBH2 knockdown on the proliferation and invasion in CRC cells. CONCLUSIONS: Our findings suggest that suppression of ALKBH2 alleviates malignancy in CRC by regulating BMI1-mediated activation of NF-κB pathway. ALKBH2 may serve as a potential treatment target for human CRC.


Subject(s)
Colorectal Neoplasms , NF-kappa B , AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase , Caco-2 Cells , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/genetics , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Polycomb Repressive Complex 1/genetics , Prognosis , Proto-Oncogene Proteins/genetics
19.
Transl Lung Cancer Res ; 9(5): 1810-1821, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33209603

ABSTRACT

BACKGROUND: The role of MET alterations in non-small cell lung cancer (NSCLC) is increasing and several targeted agents are under evaluation. MET exon 14 skipping mutations and MET amplifications are associated with potential sensitivity to MET inhibition, though resistance mechanisms are emerging. In MET addicted cells, MET inhibition leads to activation of proviral integration site for Moloney murine leukemia virus-1 (PIM1). PIM1 and proto-oncogene tyrosine-protein kinase Src (SRC) can regulate the expression of receptor tyrosine kinases (RTKs), potentially inducing resistance to MET inhibition through cross-activation. METHODS: We evaluated the activity of class I-II MET inhibitors, the SRC inhibitor dasatinib, and pan-PIM inhibitors in four MET addicted cell lines. We assessed the effect of the dual MET/PIM and MET/SRC inhibition on cell viability and at the protein level. We evaluated RNA expression profiles of the cell lines. Advanced NSCLCs were also screened for MET alterations. RESULTS: All cell lines were sensitive to class I-II MET inhibitors. All cell lines were resistant to single PIM and SRC inhibition. Dual MET/PIM inhibition was synergistic or additive in MET amplified cell lines and dual MET/SRC inhibition was highly synergistic in all MET addicted cell lines. The addition of an SRC inhibitor partially prevents the RTKs cross-activation. MET alterations were found in 9 out of 97 evaluable samples (9.3%); median overall survival in MET altered patients was 5 months (95% CI, 3 m-NA). CONCLUSIONS: We identified a potential role of PIM inhibition in MET amplified tumors and of SRC inhibition in MET addicted tumors. Potential applications of this new treatment strategy warrant further evaluation.

20.
Comput Struct Biotechnol J ; 18: 2962-2971, 2020.
Article in English | MEDLINE | ID: mdl-33106757

ABSTRACT

The increasing application of single-cell RNA sequencing (scRNA-seq) technology in life science and biomedical research has significantly increased our understanding of the cellular heterogeneities in immunology, oncology and developmental biology. This review will summarize the development of various scRNA-seq technologies; primarily discussing the application of scRNA-seq on infectious diseases, and exploring the current development, challenges, and potential applications of scRNA-seq technology in the future.

SELECTION OF CITATIONS
SEARCH DETAIL