Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Bioorg Med Chem ; 111: 117844, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39106652

ABSTRACT

Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG), and has attracted great interest due to its involvement in various physiological and pathological processes, such as cancer progression. In the past, a number of covalent irreversible inhibitors have been reported for MAGL, however, experimental evidence highlighted some drawbacks associated with the use of these irreversible agents. Therefore, efforts were mainly focused on the development of reversible MAGL inhibitor in recent years. Here, we designed and synthesized a series of naphthyl amide derivatives (12-39) as another type of reversible MAGL inhibitors, exemplified by ± 34, which displayed good MAGL inhibition with a pIC50 of 7.1, and the potency and selectivity against endogenous MAGL were further demonstrated by competitive ABPP. Moreover, the compound showed appreciable antiproliferative activities against several cancer cells, including H460, HT29, CT-26, Huh7 and HCCLM-3. The investigations culminated in the discovery of the naphthyl amide derivative ± 34, and it may represent as a new scaffold for MAGL inhibitor development, particularly for the reversible ones.


Subject(s)
Amides , Antineoplastic Agents , Cell Proliferation , Drug Design , Enzyme Inhibitors , Monoacylglycerol Lipases , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Structure-Activity Relationship , Cell Line, Tumor , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Molecular Structure , Drug Screening Assays, Antitumor , Naphthalenes/pharmacology , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Dose-Response Relationship, Drug , Molecular Docking Simulation
2.
Eur J Pharm Biopharm ; : 114397, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972466

ABSTRACT

Monoacylglycerol lipase (MAGL) is a promising target for cancer therapy due to its involvement in lipid metabolism and its impact on cancer hallmarks like cell proliferation, migration, and tumor progression. A potent reversible MAGL inhibitor, MAGL23, has been recently developed by our group, demonstrating promising anticancer activities. To enhance its pharmacological properties, a nanoformulation using nanocrystals coated with albumin was prepared (MAGL23AF). In a previous work, the formulated inhibitor showed to maintain its potency in ovarian and colon cancer cell lines in terms of IC50, and the formulation was tested on mice in order to assess its biocompatibility, organs biodistribution and toxicity. In the present work, we expanded the investigation to assess the potential in vivo application of MAGL23AF. Stability assays in serum and in human derived microsomes showed a good structural stability in physiological conditions of MAGL23AF. Antitumor efficacy tested on mice bearing ovarian cancer tumor highlighted that MAGL23AF has a more potent antitumor efficacy compared to non-formulated drug and leads to a necrosis-driven cancer cell death. In vivo studies revealed that albumin-complexed nanocrystals improved the therapeutic window of MAGL23, exhibiting a favorable biodistribution with slightly increased accumulation in the tumor. In conclusion, the MAGL23AF showed increased in vitro stability in conditions mirroring the bloodstream environment and hepatic metabolism coupled with an optimal antitumor efficacy in vivo. These results not only validates the efficacy of our formulation but also positions it as a promising strategy for addressing challenges related to the solubility of drugs in body fluids.

3.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062935

ABSTRACT

The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/ß-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.


Subject(s)
Amidohydrolases , Endocannabinoids , Enzyme Assays , Endocannabinoids/metabolism , Humans , Enzyme Assays/methods , Amidohydrolases/metabolism , Amidohydrolases/antagonists & inhibitors , Hydrolysis , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Animals , Fluorometry/methods , Fluorescence , Kinetics , Fluorescent Dyes/chemistry , Enzyme Inhibitors/pharmacology
4.
Front Immunol ; 15: 1374301, 2024.
Article in English | MEDLINE | ID: mdl-38835765

ABSTRACT

Background: Human immunodeficiency virus (HIV) affects nearly 40 million people globally, with roughly 80% of all people living with HIV receiving antiretroviral therapy. Antiretroviral treatment suppresses viral load in peripheral tissues but does not effectively penetrate the blood-brain barrier. Thus, viral reservoirs persist in the central nervous system and continue to produce low levels of inflammatory factors and early viral proteins, including the transactivator of transcription (Tat). HIV Tat is known to contribute to chronic neuroinflammation and synaptodendritic damage, which is associated with the development of cognitive, motor, and/or mood problems, collectively known as HIV-associated neurocognitive disorders (HAND). Cannabinoid anti-inflammatory effects are well documented, but therapeutic utility of cannabis remains limited due to its psychotropic effects, including alterations within brain regions encoding reward processing and motivation, such as the nucleus accumbens. Alternatively, inhibiting monoacylglycerol lipase (MAGL) has demonstrated therapeutic potential through interactions with the endocannabinoid system. Methods: The present study utilized a reward-related operant behavioral task to quantify motivated behavior in female Tat transgenic mice treated with vehicle or MAGL inhibitor MJN110 (1 mg/kg). Brain tissue was collected to assess dendritic injury and neuroinflammatory profiles, including dendritic microtubule-associated protein (MAP2ab) intensity, microglia density, microglia morphology, astrocyte density, astrocytic interleukin-1ß (IL-1ß) colocalization, and various lipid mediators. Results: No significant behavioral differences were observed; however, MJN110 protected against Tat-induced dendritic injury by significantly upregulating MAP2ab intensity in the nucleus accumbens and in the infralimbic cortex of Tat(+) mice. No or only minor effects were noted for Iba-1+ microglia density and/or microglia morphology. Further, Tat increased GFAP+ astrocyte density in the infralimbic cortex and GFAP+ astrocytic IL-1ß colocalization in the nucleus accumbens, with MJN110 significantly reducing these measures in Tat(+) subjects. Lastly, selected HETE-related inflammatory lipid mediators in the striatum were downregulated by chronic MJN110 treatment. Conclusions: These findings demonstrate anti-inflammatory and neuroprotective properties of MJN110 without cannabimimetic behavioral effects and suggest a promising alternative to cannabis for managing neuroinflammation.


Subject(s)
HIV-1 , Monoacylglycerol Lipases , Neuroinflammatory Diseases , Animals , Female , Humans , Mice , AIDS Dementia Complex/drug therapy , Brain/drug effects , Brain/metabolism , Brain/virology , Brain/pathology , Disease Models, Animal , HIV Infections/drug therapy , HIV-1/physiology , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , tat Gene Products, Human Immunodeficiency Virus/metabolism
5.
Prep Biochem Biotechnol ; : 1-9, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832778

ABSTRACT

Thermophilic Geobacillus kaustophilus HTA426 genome possesses a monoacylglycerol lipase (MAGL) gene. MAGLs can synthesize emulsifiers for use in the food and pharmaceutical industries from fatty acids and glycerol. They can also be used to analyze monoacylglycerol (MAG) levels in serum and food. The MAGL gene from strain HTA426 was artificially synthesized and heterologously expressed in Escherichia coli BL21(DE3). The recombinant His-tag fused MAGL (GkMAGL) was purified using a Ni2+-affinity column. The purified enzyme showed a temperature optimum at 65 °C and was stable up to 75 °C after 30 min incubation. In addition, the enzyme exhibited a pH optimum of 7.5 and was stable from pH 5.0 to 11.0. The enzyme hydrolyzed monoacylglycerols and showed the highest activity toward 1-monolauroylglycerol. The enzyme was stable in the presence of various organic solvents and detergents. The addition of Triton X-100 significantly increased GkMAGL activity. The thermal stability of the enzyme was higher than that of thermostable MAGL from Geobacillus sp. 12AMOR1 (12AMOR1_MAGL). Circular dichroism spectral analysis showed that the conformational stability of the GkMAGL was higher than that of 12AMOR1_MAGL at higher temperatures. These results indicate that the GkMAGL has useful features that can be used for various biotechnological applications.

6.
Brain Commun ; 6(3): fcae172, 2024.
Article in English | MEDLINE | ID: mdl-38863573

ABSTRACT

Intracellular pH is a valuable index for predicting neuronal damage and injury. However, no PET probe is currently available for monitoring intracellular pH in vivo. In this study, we developed a new approach for visualizing the hydrolysis rate of monoacylglycerol lipase, which is widely distributed in neurons and astrocytes throughout the brain. This approach uses PET with the new radioprobe [11C]QST-0837 (1,1,1,3,3,3-hexafluoropropan-2-yl-3-(1-phenyl-1H-pyrazol-3-yl)azetidine-1-[11C]carboxylate), a covalent inhibitor containing an azetidine carbamate skeleton for monoacylglycerol lipase. The uptake and residence of this new radioprobe depends on the intracellular pH gradient, and we evaluated this with in silico, in vitro and in vivo assessments. Molecular dynamics simulations predicted that because the azetidine carbamate moiety is close to that of water molecules, the compound containing azetidine carbamate would be more easily hydrolyzed following binding to monoacylglycerol lipase than would its analogue containing a piperidine carbamate skeleton. Interestingly, it was difficult for monoacylglycerol lipase to hydrolyze the azetidine carbamate compound under weakly acidic (pH 6) conditions because of a change in the interactions with water molecules on the carbamate moiety of their complex. Subsequently, an in vitro assessment using rat brain homogenate to confirm the molecular dynamics simulation-predicted behaviour of the azetidine carbamate compound showed that [11C]QST-0837 reacted with monoacylglycerol lipase to yield an [11C]complex, which was hydrolyzed to liberate 11CO2 as a final product. Additionally, the 11CO2 liberation rate was slower at lower pH. Finally, to indicate the feasibility of estimating how the hydrolysis rate depends on intracellular pH in vivo, we performed a PET study with [11C]QST-0837 using ischaemic rats. In our proposed in vivo compartment model, the clearance rate of radioactivity from the brain reflected the rate of [11C]QST-0837 hydrolysis (clearance through the production of 11CO2) in the brain, which was lower in a remarkably hypoxic area than in the contralateral region. In conclusion, we indicated the potential for visualization of the intracellular pH gradient in the brain using PET imaging, although some limitations remain. This approach should permit further elucidation of the pathological mechanisms involved under acidic conditions in multiple CNS disorders.

7.
Neuropharmacology ; 252: 109940, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38570068

ABSTRACT

The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.


Subject(s)
Arachidonic Acids , Encephalomyelitis, Autoimmune, Experimental , Endocannabinoids , Glycerides , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Glycerides/metabolism , Mice , Endocannabinoids/metabolism , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Synapses/drug effects , Synapses/pathology , Synapses/metabolism , Microglia/drug effects , Microglia/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism
8.
Chembiochem ; 25(7): e202300819, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441502

ABSTRACT

Monoacylglycerol lipase (MAGL) plays a crucial role in the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids in the brain. Inhibiting MAGL could lead to increased levels of 2-AG, which showed beneficial effects on pain management, anxiety, inflammation, and neuroprotection. In the current study, we report the characterization of an enantiomerically pure (R)-[11C]YH132 as a novel MAGL PET tracer. It demonstrates an improved pharmacokinetic profile compared to its racemate. High in vitro MAGL specificity of (R)-[11C]YH132 was confirmed by autoradiography studies using mouse and rat brain sections. In vivo, (R)-[11C]YH132 displayed a high brain penetration, and high specificity and selectivity toward MAGL by dynamic PET imaging using MAGL knockout and wild-type mice. Pretreatment with a MAGL drug candidate revealed a dose-dependent reduction of (R)-[11C]YH132 accumulation in WT mouse brains. This result validates its utility as a PET probe to assist drug development. Moreover, its potential application in neurodegenerative diseases was explored by in vitro autoradiography using brain sections from animal models of Alzheimer's disease and Parkinson's disease.


Subject(s)
Monoacylglycerol Lipases , Neurodegenerative Diseases , Rats , Mice , Animals , Monoacylglycerol Lipases/metabolism , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/drug therapy , Positron-Emission Tomography/methods , Inflammation , Drug Development , Enzyme Inhibitors/pharmacology
9.
Eur J Med Chem ; 268: 116285, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38428273

ABSTRACT

Biological studies on the endocannabinoid system (ECS) have suggested that monoacylglycerol lipase (MAGL), an essential enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), is a novel target for developing antidepressants. A decrease of 2-AG levels in the hippocampus of the brain has been observed in depressive-like models induced by chronic stress. Herein, employing a structure-based approach, we designed and synthesized a new class of (piperazine-1-carbonyl) quinolin-2(1H)-one derivatives as potent, reversible and selective MAGL inhibitors. And detailed structure-activity relationships (SAR) studies were discussed. Compound 27 (IC50 = 10.3 nM) exhibited high bioavailability (92.7%) and 2-AG elevation effect in vivo. Additionally, compound 27 exerted rapid antidepressant effects caused by chronic restraint stress (CRS) and didn't show signs of addictive properties in the conditioned place preference (CPP) assays. Our study is the first to report that reversible MAGL inhibitors can treat chronic stress-induced depression effectively, which may provide a new potential therapeutic strategy for the discovery of an original class of safe, rapid antidepressant drugs.


Subject(s)
Enzyme Inhibitors , Monoacylglycerol Lipases , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Monoacylglycerol Lipases/metabolism , Depression/drug therapy , Monoglycerides , Structure-Activity Relationship , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Endocannabinoids
10.
Neurourol Urodyn ; 43(5): 1207-1216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38533637

ABSTRACT

AIMS: Activation of the endocannabinoid system by monoacylglycerol lipase (MAGL) blockade may affect the lower urinary tract function. We investigated the effect of an MAGL inhibitor, MJN110, on neurogenic lower urinary tract dysfunction (LUTD) in the mouse model of spinal cord injury (SCI). METHODS: Female C57BL/6 mice that underwent spinal cord transection at T8-10 level were divided into three groups consisting of (1) vehicle-treated SCI mice, (2) 5 mg/kg, or (3) 10 mg/kg of MJN110-treated SCI mice. MJN110 and vehicle were administered intraperitoneally for 7 days from 4 weeks after spinal cord transection. We then conducted awake cystometrograms and compared urodynamic parameters between three groups. The expression of cannabinoid (CB) receptors, TRP receptors, and inflammatory cytokines in L6-S1 dorsal root ganglia (DRG) or the bladder mucosa were evaluated and compared among three groups. Changes in the level of serum 2-arachidonoylglycerol (2-AG) and bladder MAGL were also evaluated. RESULTS: In the cystometrogram, detrusor overactivity (DO) parameters, such as the number of nonvoiding contraction (NVC), a ratio of time to the 1st NVC to intercontraction interval (ICI), and NVC integrals were improved by MJN110 treatment, and some effects were dose dependent. Although MJN110 did not improve voiding efficiency, it decreased bladder capacity, ICI, and residual urine volume compared to vehicle injection. MJN110 treatment groups had lower CB2, TRPV1, TRPA1, and inflammatory cytokines mRNA levels in DRG and bladder mucosa. Serum 2-AG was increased, and bladder MAGL was decreased after MAGL inhibitor treatment. CONCLUSIONS: MAGL inhibition improved LUTD including attenuation of DO after SCI. Thus, MAGL can be a therapeutic target for neurogenic LUTD after SCI.


Subject(s)
Mice, Inbred C57BL , Monoacylglycerol Lipases , Spinal Cord Injuries , Urinary Bladder , Urodynamics , Animals , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/complications , Spinal Cord Injuries/metabolism , Female , Urinary Bladder/drug effects , Urinary Bladder/physiopathology , Urodynamics/drug effects , Mice , Disease Models, Animal , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiopathology , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/drug effects , Enzyme Inhibitors/pharmacology , Endocannabinoids/metabolism , Cytokines/metabolism , Urinary Bladder, Neurogenic/drug therapy , Urinary Bladder, Neurogenic/physiopathology , Urinary Bladder, Neurogenic/etiology , Lower Urinary Tract Symptoms/drug therapy , Lower Urinary Tract Symptoms/physiopathology , Lower Urinary Tract Symptoms/etiology , Carbamates , Succinimides
11.
Article in English | MEDLINE | ID: mdl-38394322

ABSTRACT

Background: Evidence suggests that monoacylglycerol lipase (MAGL) inhibitors can potentially treat HIV symptoms by increasing the concentration of 2-arachidonoylglycerol (2-AG). We examined a selective MAGL inhibitor ABX1431 in the context of neuroHIV. Methods: To assess the effects of ABX1431, we conducted in vitro and in vivo studies. In vitro calcium imaging on frontal cortex neuronal cultures was performed to evaluate the role of ABX1431 (10, 30, 100 nM) on transactivator of transcription (Tat)-induced neuronal hyperexcitability. Following in vitro experiments, in vivo experiments were performed using Tat transgenic male mice. Mice were treated with 4 mg/kg ABX1431 and assessed for antinociception using tail-flick and hot plate assays followed by locomotor activity. After the behavioral experiments, their brains were harvested to quantify endocannabinoids (eCB) and related lipids through mass spectrometry, and cannabinoid type-1 and -2 receptors (CB1R and CB2R) were quantified through western blot. Results: In vitro studies revealed that adding Tat directly to the neuronal cultures significantly increased intracellular calcium concentration, which ABX1431 completely reversed at all concentrations. Preincubating the cultures with CB1R and CB2R antagonists showed that ABX1431 exhibited its effects partially through CB1R. In vivo studies demonstrated that acute ABX1431 increased overall total distance traveled and speed of mice regardless of their genotype. Mass spectrometry and western blot analyses revealed differential effects on the eCB system based on Tat expression. The 2-AG levels were significantly upregulated following ABX1431 treatment in the striatum and spinal cord. Arachidonic acid (AA) was also upregulated in the striatum of vehicle-treated Tat(+) mice. No changes were noted in CB1R expression levels; however, CB2R levels were increased in ABX1431-treated Tat(-) mice only. Conclusion: Findings indicate that ABX1431 has potential neuroprotective effects in vitro partially mediated through CB1R. Acute treatment of ABX1431 in vivo shows antinociceptive effects, and seems to alter locomotor activity, with upregulating 2-AG levels in the striatum and spinal cord.

12.
J Nucl Med ; 65(2): 300-305, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38164615

ABSTRACT

This study aimed to evaluate (R)-[18F]YH134 as a novel PET tracer for imaging monoacylglycerol lipase (MAGL). Considering the ubiquitous expression of MAGL throughout the whole body, the impact of various MAGL inhibitors on (R)-[18F]YH134 brain uptake and its application in brain-periphery crosstalk were explored. Methods: MAGL knockout and wild-type mice were used to evaluate (R)-[18F]YH134 in in vitro autoradiography and PET experiments. To explore the impact of peripheral MAGL occupancy on (R)-[18F]YH134 brain uptake, PET kinetics with an arterial input function were studied in male Wistar rats under baseline and blocking conditions. Results: In in vitro autoradiography, (R)-[18F]YH134 revealed a heterogeneous distribution pattern with high binding to MAGL-rich brain regions in wild-type mouse brain slices, whereas the radioactive signal was negligible in MAGL knockout mouse brain slices. The in vivo brain PET images of (R)-[18F]YH134 in wild-type and MAGL knockout mice demonstrated its high specificity and selectivity in mouse brain. A Logan plot with plasma input function was applied to estimate the distribution volume (V T) of (R)-[18F]YH134. V T was significantly reduced by a brain-penetrant MAGL inhibitor but was unchanged by a peripherally restricted MAGL inhibitor. The MAGL target occupancy in the periphery was estimated using (R)-[18F]YH134 PET imaging data from the brain. Conclusion: (R)-[18F]YH134 is a highly specific and selective PET tracer with favorable kinetic properties for imaging MAGL in rodent brain. Our results showed that blocking of the peripheral target influences brain uptake but not the V T of (R)-[18F]YH134. (R)-[18F]YH134 can be used for estimating the dose of MAGL inhibitor at half-maximal peripheral target occupancy.


Subject(s)
Monoacylglycerol Lipases , Neuroimaging , Rats , Mice , Male , Animals , Monoacylglycerol Lipases/metabolism , Rats, Wistar , Neuroimaging/methods , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Mice, Knockout , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
13.
Oncol Lett ; 27(1): 34, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38108074

ABSTRACT

Glycerol-3-phosphate dehydrogenase (GPD1) and monoacylglycerol lipase (MAGL) levels are known to be significantly downregulated in both the tissue and serum samples of patients with triple-negative breast cancer (TNBC), compared with other BC subtypes and healthy controls. As such, the association between GPD1 and MAGL levels and lymph node metastasis was evaluated in the present study. Utilizing western blotting, lymph node protein extracts from metastasized BC subtypes were analyzed and a significant downregulation of GPD1 and MAGL protein expression levels in the lymph node metastases was demonstrated in the TNBC subtype, compared with healthy controls. This finding further highlighted the potential use of these two proteins in early BC onset and metastasis detection.

14.
Cell J ; 25(11): 783-789, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38071410

ABSTRACT

OBJECTIVE: From the perspective of etiology, borderline personality disorder (BPD) is a multifactorial and complex disorder, hence our understanding about the molecular basis and signaling of this disorder is extremely limited. The purpose of this study was evaluating the relationship between BPD and the Monoacylglycerol lipase (MGLL) polymorphism rs782440 in the population of Hamadan, Iran. MATERIALS AND METHODS: In this case-control study, 106 participants including 53 patients with BPD and 53 healthy control subjects were selected by psychiatrists in the Department of Psychiatry at Farshchian Sina Hospital in Hamadan. The BPD patients were selected based on the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) form for diagnosing BPD patients. For genotyping, polymerase chain reaction (PCR) was used to amplify the desired region including the (MGLL) intronic C>T single nucleotide polymorphism (SNP) (rs782440) and afterward the amplicon was sequenced using the Sanger sequencing method. To determine the genotype of these patients, their sequences were aligned with the reference sequence of MGLL through the CLC genomic workbench software. RESULTS: The results indicated that the frequency of TT in comparison to the CC genotype was significantly different (P=0.003) and the risk of BPD in change from the TT genotype to CC genotype was increased by 6.679%. Regarding the frequency of allele in this group, no significant difference was observed. CONCLUSION: This paper, has studied and reports for the first time, the association between MGLL SNP (rs782440) with BPD. The findings of the current research revealed that the TT genotype increases the risk of BPD compared to the CC genotype. Considering the lack of a suitable diagnostic biomarker for BPD, using this potential biomarker in the near future can be promising.

15.
J Inflamm Res ; 16: 6073-6086, 2023.
Article in English | MEDLINE | ID: mdl-38107381

ABSTRACT

Purpose: To explore the molecular mechanisms of intestinal injury and treatment by analyzing changes in cellular heterogeneity and composition in rat ileal tissue during injury and treatment processes. Methods: We constructed a rat model of SAP and evaluated treatment with an injected of monoacylglycerol lipase (MAGL) inhibitor (JZL184) solution using three experimental groups: healthy male Sprague-Dawley (SD) rats injected with vehicle (CON), male SD SAP model rats injected with vehicle (SAP), and male SAP rats injected with JZL184. We obtained and prepared a single-cell suspension of ileal tissue of each rat for single-cell transcriptome sequencing. Results: This project classified changes in cellular heterogeneity and composition in rat ileal tissue during SAP-induced intestinal injury and MAGL treatment. We found that the number of fibroblast clusters was decreased in the SAP group relative to the CON group, and increased after JZL184 treatment. Further analysis of differences in gene expression between cell clusters in each group reveals that fibroblasts had the greatest number of differentially expressed genes. Most notably, expression of genes involved in communication between cells was found to vary during SAP-induced intestinal injury and JZL184 treatment. Among these changes, the degree of difference in expression of genes involved in communication between fibroblasts and other cells was the highest, indicating that fibroblasts in rat ileal tissue affect intestinal injury and repair through cell-to-cell communication. In addition, our results reveal that differentially expressed RNA-binding proteins in fibroblasts may affect their functions in intestinal injury and treatment by affecting the expression of genes regulating communication between cells. Conclusion: These findings emphasize the importance of understanding the interactions between fibroblasts and other cells in the context of intestinal injury, providing valuable insights for further exploring molecular mechanisms and insight for discovering new treatment targets and strategies.

16.
Sheng Wu Gong Cheng Xue Bao ; 39(11): 4397-4412, 2023 Nov 25.
Article in Chinese | MEDLINE | ID: mdl-38013174

ABSTRACT

Monoacylglycerol lipase (MGL) is a serine hydrolase that plays a major role in the degradation of endogenous cannabinoid 2-arachidonoylglycerol. The role of MGL in some cancer cells has been confirmed, where inhibition of the MGL activity shows inhibition on cell proliferation. This makes MGL a promising drug target for the treatment of cancer. Recently, the development of covalent inhibitors of MGL has developed rapidly. These drugs have strong covalent binding ability, high affinity, long duration, low dose and low risk of drug resistance, so they have received increasing attention. This article introduces the structure and function of MGL, the characteristics, mechanisms and progress of covalent MGL inhibitors, providing reference for the development of novel covalent small molecule inhibitors of MGL.


Subject(s)
Endocannabinoids , Monoacylglycerol Lipases , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Endocannabinoids/metabolism
17.
Cells ; 12(19)2023 09 22.
Article in English | MEDLINE | ID: mdl-37830546

ABSTRACT

JZL184, an inhibitor of monoacylglycerol lipase (MAGL) and thus of the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG), mediates various anticancer effects in preclinical studies. However, studies on the effect of this or other MAGL inhibitors under hypoxia, an important factor in tumor biology and response to cancer therapy, have not yet been performed in cancer cells. In the present study, the impact of the conditioned media (CM) of A549 and H358 lung cancer cells incubated with JZL184 under hypoxic conditions on the angiogenic properties of human umbilical vein endothelial cells (HUVECs) was investigated. Treatment of HUVECs with CM derived from cancer cells cultured for 48 h under hypoxic conditions was associated with a substantial increase in migration and tube formation compared with unconditioned medium, which was inhibited when cancer cells were incubated with JZL184. In this process, JZL184 led to a significant increase in 2-AG levels in both cell lines. Analysis of a panel of proangiogenic factors revealed inhibition of hypoxia-induced vascular endothelial growth factor (VEGF) expression by JZL184. Antiangiogenic and VEGF-lowering effects were also demonstrated for the MAGL inhibitor MJN110. Receptor antagonist experiments suggest partial involvement of the cannabinoid receptors CB1 and CB2 in the antiangiogenic and VEGF-lowering effects induced by JZL184. The functional importance of VEGF for angiogenesis in the selected system is supported by observations showing inhibition of VEGF receptor 2 (VEGFR2) phosphorylation in HUVECs by CM from hypoxic cancer cells treated with JZL184 or when hypoxic cancer cell-derived CM was spiked with a neutralizing VEGF antibody. On the other hand, JZL184 did not exert a direct effect on VEGFR2 activation induced by recombinant VEGF, so there seems to be no downstream effect on already released VEGF. In conclusion, these results reveal a novel mechanism of antiangiogenic action of JZL184 under conditions of hypoxic tumor-endothelial communication.


Subject(s)
Lung Neoplasms , Vascular Endothelial Growth Factor A , Humans , Endothelial Cells , Lung Neoplasms/drug therapy , Hypoxia
18.
Article in English | MEDLINE | ID: mdl-37573716

ABSTRACT

We recently described that monoacylglycerol lipase (MGL) is present in the tumor microenvironment (TME), increasing tumor growth. In this study we compare the implications of MGL deficiency in the TME in different tumor types. We show that subcutaneous injection of KP (KrasLSL-G12D/p53fl/fl, mouse lung adenocarcinoma) or B16-F10 cells (mouse melanoma) induced tumor growth in MGL wild type (WT) and knockout (KO) mice. MGL deficiency in the TME attenuated the growth of KP cell tumors whereas tumors from B16-F10 cells increased in size. Opposite immune cell profiles were detected between the two tumor types in MGL KO mice. In line with their anti-tumorigenic function, the number of CD8+ effector T cells and eosinophils increased in KP cell tumors of MGL KO vs. WT mice whereas their presence was reduced in B16-F10 cell tumors of MGL KO mice. Differences were seen in lipid profiles between the investigated tumor types. 2-arachidonoylglycerol (2-AG) content significantly increased in KP, but not B16-F10 cell tumors of MGL KO vs. WT mice while other endocannabinoid-related lipids remained unchanged. However, profiles of phospho- and lysophospholipids, sphingomyelins and fatty acids in KP cell tumors were clearly distinct to those measured in B16-F10 cell tumors. Our data indicate that TME-localized MGL impacts tumor growth, as well as levels of 2-AG and other lipids in a tumor specific manner.


Subject(s)
Monoacylglycerol Lipases , Neoplasms , Mice , Animals , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Tumor Microenvironment , Fatty Acids , Mice, Inbred C57BL
19.
BMC Cancer ; 23(1): 626, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37403022

ABSTRACT

BACKGROUND: CXC-chemokine receptor 2 (CXCR2) expression was found to be down-regulated on circulating monocytes of cancer patients. Here, we analyze the percentage of CD14+CXCR2+ monocyte subsets in hepatocellular carcinoma (HCC) patients, and investigate the mechanisms that regulate CXCR2 surface expression on monocytes and its biological function. METHODS: Flow cytometry was used to analyze the proportion of the CD14+CXCR2+ subset from the total circulating monocytes of HCC patients. Interleukin 8 (IL-8) levels were measured from serum and ascites, and their correlation with the CD14+CXCR2+ monocyte subset proportion was calculated. THP-1 cells were cultured in vitro and treated with recombinant human IL-8 and CXCR2 surface expression was analyzed. CXCR2 was knocked down to examine how it affects the antitumor activity of monocytes. Finally, a monoacylglycerol lipase (MAGL) inhibitor was added to analyze its effect on CXCR2 expression. RESULTS: A decrease in the proportion of the CD14+CXCR2+ monocyte subset was observed in HCC patients compared with healthy controls. CXCR2+ monocyte subset proportion was associated with the AFP value, TNM stage, and liver function. Overexpression of IL-8 was observed in the serum and ascites of HCC patients, and negatively correlated with CXCR2+ monocyte proportion. IL-8 decreased CXCR2 expression in THP-1 cells, contributing to decreased antitumor activity toward HCC cells. MAGL expression in THP-1 cells was up-regulated after IL-8 treatment, and the MAGL inhibitor partially reversed the effects of IL-8 on CXCR2 expression. CONCLUSIONS: Overexpression of IL-8 drives CXCR2 down-regulation on circulating monocytes of HCC patients, which could be partially reversed by a MAGL inhibitor.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Ascites/metabolism , Carcinoma, Hepatocellular/pathology , Down-Regulation , Immunologic Factors , Interleukin-8/metabolism , Lipopolysaccharide Receptors/metabolism , Liver Neoplasms/pathology , Monoacylglycerol Lipases/metabolism , Monocytes/pathology
20.
Cells ; 12(13)2023 06 30.
Article in English | MEDLINE | ID: mdl-37443791

ABSTRACT

Despite the well-described anticarcinogenic effects of endocannabinoids, the influence of the endocannabinoid system on tumor angiogenesis is still debated. In the present study, conditioned medium (CM) from A549 and H358 lung cancer cells treated with ascending concentrations of the monoacylglycerol lipase (MAGL) inhibitor JZL184 and 2-arachidonoylglycerol (2-AG), a prominent MAGL substrate, caused a concentration-dependent reduction in human umbilical vein endothelial cell (HUVEC) migration and tube formation compared with CM from vehicle-treated cancer cells. Comparative experiments with MAGL inhibitors JW651 and MJN110 showed the same results. On the other hand, the angiogenic properties of HUVECs were not significantly altered by direct stimulation with JZL184 or 2-AG or by exposure to CM of JZL184- or 2-AG-treated non-cancerous bronchial epithelial cells (BEAS-2B). Inhibition of HUVEC migration and tube formation by CM of JZL184- and 2-AG-treated A549 cells was abolished in the presence of the CB1 antagonist AM-251. Increased release of tissue inhibitor of metalloproteinase-1 (TIMP-1) from JZL184- or 2-AG-stimulated A549 or H358 cells was shown to exert an antiangiogenic effect on HUVECs, as confirmed by siRNA experiments. In addition, JZL184 caused a dose-dependent regression of A549 tumor xenografts in athymic nude mice, which was associated with a decreased number of CD31-positive cells and upregulation of TIMP-1-positive cells in xenograft tissue. In conclusion, our data suggest that elevation of 2-AG by MAGL inhibition leads to increased release of TIMP-1 from lung cancer cells, which mediates an antiangiogenic effect on endothelial cells.


Subject(s)
Lung Neoplasms , Tissue Inhibitor of Metalloproteinase-1 , Mice , Animals , Humans , Monoacylglycerol Lipases , Endothelial Cells , Mice, Nude , Monoglycerides , Lung Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL