Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 620
Filter
1.
Front Psychiatry ; 15: 1323109, 2024.
Article in English | MEDLINE | ID: mdl-39006826

ABSTRACT

Background and purpose: There are distinct challenges in the preprocessing of spinal cord fMRI data, particularly concerning the mitigation of voluntary or involuntary movement artifacts during image acquisition. Despite the notable progress in data processing techniques for movement detection and correction, applying motion correction algorithms developed for the brain cortex to the brainstem and spinal cord remains a challenging endeavor. Methods: In this study, we employed a deep learning-based convolutional neural network (CNN) named DeepRetroMoCo, trained using an unsupervised learning algorithm. Our goal was to detect and rectify motion artifacts in axial T2*-weighted spinal cord data. The training dataset consisted of spinal cord fMRI data from 27 participants, comprising 135 runs for training and 81 runs for testing. Results: To evaluate the efficacy of DeepRetroMoCo, we compared its performance against the sct_fmri_moco method implemented in the spinal cord toolbox. We assessed the motion-corrected images using two metrics: the average temporal signal-to-noise ratio (tSNR) and Delta Variation Signal (DVARS) for both raw and motion-corrected data. Notably, the average tSNR in the cervical cord was significantly higher when DeepRetroMoCo was utilized for motion correction, compared to the sct_fmri_moco method. Additionally, the average DVARS values were lower in images corrected by DeepRetroMoCo, indicating a superior reduction in motion artifacts. Moreover, DeepRetroMoCo exhibited a significantly shorter processing time compared to sct_fmri_moco. Conclusion: Our findings strongly support the notion that DeepRetroMoCo represents a substantial improvement in motion correction procedures for fMRI data acquired from the cervical spinal cord. This novel deep learning-based approach showcases enhanced performance, offering a promising solution to address the challenges posed by motion artifacts in spinal cord fMRI data.

2.
EJNMMI Phys ; 11(1): 58, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977533

ABSTRACT

BACKGROUND: Residual image noise is substantial in positron emission tomography (PET) and one of the factors limiting lesion detection, quantification, and overall image quality. Thus, improving noise reduction remains of considerable interest. This is especially true for respiratory-gated PET investigations. The only broadly used approach for noise reduction in PET imaging has been the application of low-pass filters, usually Gaussians, which however leads to loss of spatial resolution and increased partial volume effects affecting detectability of small lesions and quantitative data evaluation. The bilateral filter (BF) - a locally adaptive image filter - allows to reduce image noise while preserving well defined object edges but manual optimization of the filter parameters for a given PET scan can be tedious and time-consuming, hampering its clinical use. In this work we have investigated to what extent a suitable deep learning based approach can resolve this issue by training a suitable network with the target of reproducing the results of manually adjusted case-specific bilateral filtering. METHODS: Altogether, 69 respiratory-gated clinical PET/CT scans with three different tracers ( [ 18 F ] FDG, [ 18 F ] L-DOPA, [ 68 Ga ] DOTATATE) were used for the present investigation. Prior to data processing, the gated data sets were split, resulting in a total of 552 single-gate image volumes. For each of these image volumes, four 3D ROIs were delineated: one ROI for image noise assessment and three ROIs for focal uptake (e.g. tumor lesions) measurements at different target/background contrast levels. An automated procedure was used to perform a brute force search of the two-dimensional BF parameter space for each data set to identify the "optimal" filter parameters to generate user-approved ground truth input data consisting of pairs of original and optimally BF filtered images. For reproducing the optimal BF filtering, we employed a modified 3D U-Net CNN incorporating residual learning principle. The network training and evaluation was performed using a 5-fold cross-validation scheme. The influence of filtering on lesion SUV quantification and image noise level was assessed by calculating absolute and fractional differences between the CNN, manual BF, or original (STD) data sets in the previously defined ROIs. RESULTS: The automated procedure used for filter parameter determination chose adequate filter parameters for the majority of the data sets with only 19 patient data sets requiring manual tuning. Evaluation of the focal uptake ROIs revealed that CNN as well as BF based filtering essentially maintain the focal SUV max values of the unfiltered images with a low mean ± SD difference of δ SUV max CNN , STD = (-3.9 ± 5.2)% and δ SUV max BF , STD = (-4.4 ± 5.3)%. Regarding relative performance of CNN versus BF, both methods lead to very similar SUV max values in the vast majority of cases with an overall average difference of δ SUV max CNN , BF = (0.5 ± 4.8)%. Evaluation of the noise properties showed that CNN filtering mostly satisfactorily reproduces the noise level and characteristics of BF with δ Noise CNN , BF = (5.6 ± 10.5)%. No significant tracer dependent differences between CNN and BF were observed. CONCLUSIONS: Our results show that a neural network based denoising can reproduce the results of a case by case optimized BF in a fully automated way. Apart from rare cases it led to images of practically identical quality regarding noise level, edge preservation, and signal recovery. We believe such a network might proof especially useful in the context of improved motion correction of respiratory-gated PET studies but could also help to establish BF-equivalent edge-preserving CNN filtering in clinical PET since it obviates time consuming manual BF parameter tuning.

3.
ArXiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979484

ABSTRACT

Diffusion magnetic resonance imaging (dMRI) is pivotal for probing the microstructure of the rapidly-developing fetal brain. However, fetal motion during scans and its interaction with magnetic field inhomogeneities result in artifacts and data scattering across spatial and angular domains. The effects of those artifacts are more pronounced in high-angular resolution fetal dMRI, where signal-to-noise ratio is very low. Those effects lead to biased estimates and compromise the consistency and reliability of dMRI analysis. This work presents HAITCH, the first and the only publicly available tool to correct and reconstruct multi-shell high-angular resolution fetal dMRI data. HAITCH offers several technical advances that include a blip-reversed dual-echo acquisition for dynamic distortion correction, advanced motion correction for model-free and robust reconstruction, optimized multi-shell design for enhanced information capture and increased tolerance to motion, and outlier detection for improved reconstruction fidelity. The framework is open-source, flexible, and can be used to process any type of fetal dMRI data including single-echo or single-shell acquisitions, but is most effective when used with multi-shell multi-echo fetal dMRI data that cannot be processed with any of the existing tools. Validation experiments on real fetal dMRI scans demonstrate significant improvements and accurate correction across diverse fetal ages and motion levels. HAITCH successfully removes artifacts and reconstructs high-fidelity fetal dMRI data suitable for advanced diffusion modeling, including fiber orientation distribution function estimation. These advancements pave the way for more reliable analysis of the fetal brain microstructure and tractography under challenging imaging conditions.

4.
Article in English | MEDLINE | ID: mdl-39041007

ABSTRACT

The quality of brain MRI volumes is often compromised by motion artifacts arising from intricate respiratory patterns and involuntary head movements, manifesting as blurring and ghosting that markedly degrade imaging quality. In this study, we introduce an innovative approach employing a 3D deep learning framework to restore brain MR volumes afflicted by motion artifacts. The framework integrates a densely connected 3D U-net architecture augmented by generative adversarial network (GAN)-informed training with a novel volumetric reconstruction loss function tailored to 3D GAN to enhance the quality of the volumes. Our methodology is substantiated through comprehensive experimentation involving a diverse set of motion artifact-affected MR volumes. The generated high-quality MR volumes have similar volumetric signatures comparable to motion-free MR volumes after motion correction. This underscores the significant potential of harnessing this 3D deep learning system to aid in the rectification of motion artifacts in brain MR volumes, highlighting a promising avenue for advanced clinical applications.

5.
Magn Reson Med ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075868

ABSTRACT

PURPOSE: To develop a framework for simultaneous three-dimensional (3D) mapping of T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat signal fraction in the liver at 0.55 T. METHODS: The proposed sequence acquires four interleaved 3D volumes with a two-echo Dixon readout. T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ are encoded into each volume via preparation modules, and dictionary matching allows simultaneous estimation of T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and M 0 $$ {M}_0 $$ for water and fat separately. 2D image navigators permit respiratory binning, and motion fields from nonrigid registration between bins are used in a nonrigid respiratory-motion-corrected reconstruction, enabling 100% scan efficiency from a free-breathing acquisition. The integrated nature of the framework ensures the resulting maps are always co-registered. RESULTS: T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat-signal-fraction measurements in phantoms correlated strongly (adjusted r 2 > 0 . 98 $$ {r}^2>0.98 $$ ) with reference measurements. Mean liver tissue parameter values in 10 healthy volunteers were 427 ± 22 $$ 427\pm 22 $$ , 47 . 7 ± 3 . 3 ms $$ 47.7\pm 3.3\;\mathrm{ms} $$ , and 7 ± 2 % $$ 7\pm 2\% $$ for T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat signal fraction, giving biases of 71 $$ 71 $$ , - 30 . 0 ms $$ -30.0\;\mathrm{ms} $$ , and - 5 $$ -5 $$ percentage points, respectively, when compared to conventional methods. CONCLUSION: A novel sequence for comprehensive characterization of liver tissue at 0.55 T was developed. The sequence provides co-registered 3D T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat-signal-fraction maps with full coverage of the liver, from a single nine-and-a-half-minute free-breathing scan. Further development is needed to achieve accurate proton-density fat fraction (PDFF) estimation in vivo.

6.
J Nucl Med ; 65(8): 1313-1319, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38991753

ABSTRACT

Brain PET imaging often faces challenges from head motion (HM), which can introduce artifacts and reduce image resolution, crucial in clinical settings for accurate treatment planning, diagnosis, and monitoring. United Imaging Healthcare has developed NeuroFocus, an HM correction (HMC) algorithm for the uMI Panorama PET/CT system, using a data-driven, statistics-based approach. The HMC algorithm automatically detects HM using a centroid-of-distribution technique, requiring no parameter adjustments. This study aimed to validate NeuroFocus and assess the prevalence of HM in clinical short-duration 18F-FDG scans. Methods: The study involved 317 patients undergoing brain PET scans, divided into 2 groups: 15 for HMC validation and 302 for evaluation. Validation involved patients undergoing 2 consecutive 3-min single-bed-position brain 18F-FDG scans-one with instructions to remain still and another with instructions to move substantially. The evaluation examined 302 clinical single-bed-position brain scans for patients with various neurologic diagnoses. Motion was categorized as small or large on the basis of a 5% SUV change in the frontal lobe after HMC. Percentage differences in SUVmean were reported across 11 brain regions. Results: The validation group displayed a large negative difference (-10.1%), with variation of 5.2% between no-HM and HM scans. After HMC, this difference decreased dramatically (-0.8%), with less variation (3.2%), indicating effective HMC application. In the evaluation group, 38 of 302 patients experienced large HM, showing a 10.9% ± 8.9% SUV increase after HMC, whereas most exhibited minimal uptake changes (0.1% ± 1.3%). The HMC algorithm not only enhanced the image resolution and contrast but also aided in disease identification and reduced the need for repeat scans, potentially optimizing clinical workflows. Conclusion: The study confirmed the effectiveness of NeuroFocus in managing HM in short clinical 18F-FDG studies on the uMI Panorama PET/CT system. It found that approximately 12% of scans required HMC, establishing HMC as a reliable tool for clinical brain 18F-FDG studies.


Subject(s)
Algorithms , Brain , Image Processing, Computer-Assisted , Positron Emission Tomography Computed Tomography , Humans , Male , Female , Middle Aged , Aged , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Adult , Fluorodeoxyglucose F18 , Artifacts , Head/diagnostic imaging , Aged, 80 and over , Young Adult
7.
Magn Reson Med ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860530

ABSTRACT

PURPOSE: This study leverages externally generated Pilot Tone (PT) signals to perform motion-corrected brain MRI for sequences with arbitrary k-space sampling and image contrast. THEORY AND METHODS: PT signals are promising external motion sensors due to their cost-effectiveness, easy workflow, and consistent performance across contrasts and sampling patterns. However, they lack robust calibration pipelines. This work calibrates PT signal to rigid motion parameters acquired during short blocks (˜4 s) of motion calibration (MC) acquisitions, which are short enough to unobstructively fit between acquisitions. MC acquisitions leverage self-navigated trajectories that enable state-of-the-art motion estimation methods for efficient calibration. To capture the range of patient motion occurring throughout the examination, distributed motion calibration (DMC) uses data acquired from MC scans distributed across the entire examination. After calibration, PT is used to retrospectively motion-correct sequences with arbitrary k-space sampling and image contrast. Additionally, a data-driven calibration refinement is proposed to tailor calibration models to individual acquisitions. In vivo experiments involving 12 healthy volunteers tested the DMC protocol's ability to robustly correct subject motion. RESULTS: The proposed calibration pipeline produces pose parameters consistent with reference values, even when distributing only six of these approximately 4-s MC blocks, resulting in a total acquisition time of 22 s. In vivo motion experiments reveal significant ( p < 0.05 $$ p<0.05 $$ ) improved motion correction with increased signal to residual ratio for both MPRAGE and SPACE sequences with standard k-space acquisition, especially when motion is large. Additionally, results highlight the benefits of using a distributed calibration approach. CONCLUSIONS: This study presents a framework for performing motion-corrected brain MRI in sequences with arbitrary k-space encoding and contrast, using externally generated PT signals. The DMC protocol is introduced, promoting observation of patient motion occurring throughout the examination and providing a calibration pipeline suitable for clinical deployment. The method's application is demonstrated in standard volumetric MPRAGE and SPACE sequences.

8.
EJNMMI Phys ; 11(1): 49, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874674

ABSTRACT

BACKGROUND: Head motion during brain positron emission tomography (PET)/computed tomography (CT) imaging degrades image quality, resulting in reduced reading accuracy. We evaluated the performance of a head motion correction algorithm using 18F-flutemetamol (FMM) brain PET/CT images. METHODS: FMM brain PET/CT images were retrospectively included, and PET images were reconstructed using a motion correction algorithm: (1) motion estimation through 3D time-domain signal analysis, signal smoothing, and calculation of motion-free intervals using a Merging Adjacent Clustering method; (2) estimation of 3D motion transformations using the Summing Tree Structural algorithm; and (3) calculation of the final motion-corrected images using the 3D motion transformations during the iterative reconstruction process. All conventional and motion-corrected PET images were visually reviewed by two readers. Image quality was evaluated using a 3-point scale, and the presence of amyloid deposition was interpreted as negative, positive, or equivocal. For quantitative analysis, we calculated the uptake ratio (UR) of 5 specific brain regions, with the cerebellar cortex as a reference region. The results of the conventional and motion-corrected PET images were statistically compared. RESULTS: In total, 108 sets of FMM brain PET images from 108 patients (34 men and 74 women; median age, 78 years) were included. After motion correction, image quality significantly improved (p < 0.001), and there were no images of poor quality. In the visual analysis of amyloid deposition, higher interobserver agreements were observed in motion-corrected PET images for all specific regions. In the quantitative analysis, the UR difference between the conventional and motion-corrected PET images was significantly higher in the group with head motion than in the group without head motion (p = 0.016). CONCLUSIONS: The motion correction algorithm provided better image quality and higher interobserver agreement. Therefore, we suggest that this algorithm be adopted as a routine post-processing protocol in amyloid brain PET/CT imaging and applied to brain PET scans with other radiotracers.

9.
Eur J Radiol ; 176: 111538, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838412

ABSTRACT

OBJECTIVES: This study aimed to investigate the diagnostic performance of computed tomography (CT) fractional flow reserve (CT-FFR) derived from standard images (STD) and images processed via first-generation (SnapShot Freeze, SSF1) and second-generation (SnapShot Freeze 2, SSF2) motion correction algorithms. METHODS: 151 patients who underwent coronary CT angiography (CCTA) and invasive coronary angiography (ICA)/FFR within 3 months were retrospectively included. CCTA images were reconstructed using an iterative reconstruction technique and then further processed through SSF1 and SSF2 algorithms. All images were divided into three groups: STD, SSF1, and SSF2. Obstructive stenosis was defined as a diameter stenosis of ≥ 50 % in the left main artery or ≥ 70 % in other epicardial vessels. Stenosis with an FFR of ≤ 0.8 or a diameter stenosis of ≥ 90 % (as revealed via ICA) was considered ischemic. In patients with multiple lesions, the lesion with lowest CT-FFR was used for patient-level analysis. RESULTS: The overall quality score in SSF2 group (median = 3.67) was markedly higher than that in STD (median = 3) and SSF1 (median = 3) groups (P < 0.001). The best correlation (r = 0.652, P < 0.001) and consistency (mean difference = 0.04) between the CT-FFR and FFR values were observed in the SSF2 group. At the per-lesion level, CT-FFRSSF2 outperformed CT-FFRSSF1 in diagnosing ischemic lesions (area under the curve = 0.887 vs. 0.795, P < 0.001). At the per-patient level, the SSF2 group also demonstrated the highest diagnostic performance. CONCLUSION: The SSF2 algorithm significantly improved CCTA image quality and enhanced its diagnostic performance for evaluating stenosis severity and CT-FFR calculations.


Subject(s)
Algorithms , Computed Tomography Angiography , Coronary Angiography , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Humans , Fractional Flow Reserve, Myocardial/physiology , Female , Male , Computed Tomography Angiography/methods , Middle Aged , Retrospective Studies , Coronary Angiography/methods , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/physiopathology , Aged , Reproducibility of Results , Radiographic Image Interpretation, Computer-Assisted/methods , Sensitivity and Specificity , Motion
10.
Sensors (Basel) ; 24(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931521

ABSTRACT

Optical tracking of head pose via fiducial markers has been proven to enable effective correction of motion artifacts in the brain during magnetic resonance imaging but remains difficult to implement in the clinic due to lengthy calibration and set up times. Advances in deep learning for markerless head pose estimation have yet to be applied to this problem because of the sub-millimetre spatial resolution required for motion correction. In the present work, two optical tracking systems are described for the development and training of a neural network: one marker-based system (a testing platform for measuring ground truth head pose) with high tracking fidelity to act as the training labels, and one markerless deep-learning-based system using images of the markerless head as input to the network. The markerless system has the potential to overcome issues of marker occlusion, insufficient rigid attachment of the marker, lengthy calibration times, and unequal performance across degrees of freedom (DOF), all of which hamper the adoption of marker-based solutions in the clinic. Detail is provided on the development of a custom moiré-enhanced fiducial marker for use as ground truth and on the calibration procedure for both optical tracking systems. Additionally, the development of a synthetic head pose dataset is described for the proof of concept and initial pre-training of a simple convolutional neural network. Results indicate that the ground truth system has been sufficiently calibrated and can track head pose with an error of <1 mm and <1°. Tracking data of a healthy, adult participant are shown. Pre-training results show that the average root-mean-squared error across the 6 DOF is 0.13 and 0.36 (mm or degrees) on a head model included and excluded from the training dataset, respectively. Overall, this work indicates excellent feasibility of the deep-learning-based approach and will enable future work in training and testing on a real dataset in the MRI environment.


Subject(s)
Head , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Head/diagnostic imaging , Head Movements , Neural Networks, Computer , Fiducial Markers , Calibration , Image Processing, Computer-Assisted/methods , Deep Learning , Brain/diagnostic imaging , Artifacts
11.
J Neurosci Methods ; 409: 110202, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906335

ABSTRACT

BACKGROUND: Fluorescence imaging of calcium dynamics in neuronal populations is powerful because it offers a way of relating the activity of individual cells to the broader population of nearby cells. The method's growth across neuroscience has particularly been driven by the introduction of sophisticated mathematical techniques related to motion correction, image registration, cell detection, spike estimation, and population characterization. However, for many researchers, making good use of these techniques has been difficult because they have been devised by different workers and impose differing - and sometimes stringent - technical requirements on those who seek to use them. NEW METHOD: We have built a simple toolbox of analysis routines that encompass the complete workflow for analyzing calcium imaging data. The workflow begins with preprocessing of data, includes motion correction and longitudinal image registration, detects active cells using constrained non-negative matrix factorization, and offers multiple options for estimating spike times and characterizing population activity. The routines can be navigated through a simple graphical user interface. Although written in MATLAB, a standalone version for researchers who do not have access to MATLAB is included. RESULTS: We have used the toolbox on two very different preparations: spontaneously active brain slices and microendoscopic imaging from deep structures in awake behaving mice. In both cases, the toolbox offered a seamless flow from raw data all the way through to prepared graphs. CONCLUSION: The field of calcium imaging has benefited from the development of numerous innovative mathematical techniques. Here we offer a simple toolbox that allows ordinary researchers to fully exploit these techniques.


Subject(s)
Calcium , Image Processing, Computer-Assisted , Neurons , Software , Animals , Calcium/metabolism , Calcium/analysis , Neurons/metabolism , Image Processing, Computer-Assisted/methods , Mice , Brain/diagnostic imaging , Brain/metabolism , Optical Imaging/methods
12.
J Appl Clin Med Phys ; : e14412, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807292

ABSTRACT

PURPOSE: To investigate the enhancement of image quality achieved through the utilization of SnapShot Freeze 2 (SSF2), a comparison was made against the results obtained from the original SnapShot Freeze algorithm (SSF) and standard motion correction (STND) in stent patients undergoing coronary CT angiography (CCTA) across the entire range of heart rates. MATERIALS AND METHODS: A total of 118 patients who underwent CCTA, were retrospectively included in this study. Images of these patients were reconstructed using three different algorithms: SSF2, SSF, and STND. Objective assessments include signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diameters of stents and artifact index (AI). The image quality was subjectively evaluated by two readers. RESULTS: Compared with SSF and STND, SSF2 had similar or even higher quality in the parameters (AI, SNR, CNR, inner diameters) of coronary artery, stent, myocardium, MV (mitral valve), TV (tricuspid valve), AV (aorta valve), and PV (pulmonary valve), and aortic root (AO). Besides the above structures, SSF2 also demonstrated comparable or even higher subjective scores in atrial septum (AS), ventricular septum (VS), and pulmonary artery root (PA). Furthermore, the enhancement in image quality with SSF2 was significantly greater in the high heart rate group compared to the low heart rate group. Moreover, the improvement in both high and low heart rate groups was better in the SSF2 group compared to the SSF and STND group. Besides, when using the three algorithms, an effect of heart rate variability on stent image quality was not detected. CONCLUSION: Compared to SSF and STND, SSF2 can enhance the image quality of whole-heart structures and mitigate artifacts of coronary stents. Furthermore, SSF2 has demonstrated a significant improvement in the image quality for patients with a heart rate equal to or higher than 85 bpm.

13.
NMR Biomed ; : e5179, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808752

ABSTRACT

Deep learning presents a generalizable solution for motion correction requiring no pulse sequence modifications or additional hardware, but previous networks have all been applied to coil-combined data. Multichannel MRI data provide a degree of spatial encoding that may be useful for motion correction. We hypothesize that incorporating deep learning for motion correction prior to coil combination will improve results. A conditional generative adversarial network was trained using simulated rigid motion artifacts in brain images acquired at multiple sites with multiple contrasts (not limited to healthy subjects). We compared the performance of deep-learning-based motion correction on individual channel images (single-channel model) with that performed after coil combination (channel-combined model). We also investigate simultaneous motion correction of all channel data from an image volume (multichannel model). The single-channel model significantly (p < 0.0001) improved mean absolute error, with an average 50.9% improvement compared with the uncorrected images. This was significantly (p < 0.0001) better than the 36.3% improvement achieved by the channel-combined model (conventional approach). The multichannel model provided no significant improvement in quantitative measures of image quality compared with the uncorrected images. Results were independent of the presence of pathology, and generalizable to a new center unseen during training. Performing motion correction on single-channel images prior to coil combination provided an improvement in performance compared with conventional deep-learning-based motion correction. Improved deep learning methods for retrospective correction of motion-affected MR images could reduce the need for repeat scans if applied in a clinical setting.

14.
Sensors (Basel) ; 24(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794026

ABSTRACT

Participant movement is a major source of artifacts in functional near-infrared spectroscopy (fNIRS) experiments. Mitigating the impact of motion artifacts (MAs) is crucial to estimate brain activity robustly. Here, we suggest and evaluate a novel application of the nonlinear Hammerstein-Wiener model to estimate and mitigate MAs in fNIRS signals from direct-movement recordings through IMU sensors mounted on the participant's head (head-IMU) and the fNIRS probe (probe-IMU). To this end, we analyzed the hemodynamic responses of single-channel oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) signals from 17 participants who performed a hand tapping task with different levels of concurrent head movement. Additionally, the tapping task was performed without head movements to estimate the ground-truth brain activation. We compared the performance of our novel approach with the probe-IMU and head-IMU to eight established methods (PCA, tPCA, spline, spline Savitzky-Golay, wavelet, CBSI, RLOESS, and WCBSI) on four quality metrics: SNR, △AUC, RMSE, and R. Our proposed nonlinear Hammerstein-Wiener method achieved the best SNR increase (p < 0.001) among all methods. Visual inspection revealed that our approach mitigated MA contaminations that other techniques could not remove effectively. MA correction quality was comparable with head- and probe-IMUs.


Subject(s)
Artifacts , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Adult , Female , Movement/physiology , Motion , Oxyhemoglobins/analysis , Brain/physiology , Young Adult , Hemoglobins/analysis , Algorithms , Signal Processing, Computer-Assisted , Hemodynamics/physiology
15.
Comput Med Imaging Graph ; 115: 102389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692199

ABSTRACT

Accurate reconstruction of a high-resolution 3D volume of the heart is critical for comprehensive cardiac assessments. However, cardiac magnetic resonance (CMR) data is usually acquired as a stack of 2D short-axis (SAX) slices, which suffers from the inter-slice misalignment due to cardiac motion and data sparsity from large gaps between SAX slices. Therefore, we aim to propose an end-to-end deep learning (DL) model to address these two challenges simultaneously, employing specific model components for each challenge. The objective is to reconstruct a high-resolution 3D volume of the heart (VHR) from acquired CMR SAX slices (VLR). We define the transformation from VLR to VHR as a sequential process of motion correction and super-resolution. Accordingly, our DL model incorporates two distinct components. The first component conducts motion correction by predicting displacement vectors to re-position each SAX slice accurately. The second component takes the motion-corrected SAX slices from the first component and performs the super-resolution to fill the data gaps. These two components operate in a sequential way, and the entire model is trained end-to-end. Our model significantly reduced inter-slice misalignment from originally 3.33±0.74 mm to 1.36±0.63 mm and generated accurate high resolution 3D volumes with Dice of 0.974±0.010 for left ventricle (LV) and 0.938±0.017 for myocardium in a simulation dataset. When compared to the LAX contours in a real-world dataset, our model achieved Dice of 0.945±0.023 for LV and 0.786±0.060 for myocardium. In both datasets, our model with specific components for motion correction and super-resolution significantly enhance the performance compared to the model without such design considerations. The codes for our model are available at https://github.com/zhennongchen/CMR_MC_SR_End2End.


Subject(s)
Deep Learning , Heart , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Motion , Image Processing, Computer-Assisted/methods
16.
Med Image Anal ; 96: 103190, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820677

ABSTRACT

Inter-frame motion in dynamic cardiac positron emission tomography (PET) using rubidium-82 (82Rb) myocardial perfusion imaging impacts myocardial blood flow (MBF) quantification and the diagnosis accuracy of coronary artery diseases. However, the high cross-frame distribution variation due to rapid tracer kinetics poses a considerable challenge for inter-frame motion correction, especially for early frames where intensity-based image registration techniques often fail. To address this issue, we propose a novel method called Temporally and Anatomically Informed Generative Adversarial Network (TAI-GAN) that utilizes an all-to-one mapping to convert early frames into those with tracer distribution similar to the last reference frame. The TAI-GAN consists of a feature-wise linear modulation layer that encodes channel-wise parameters generated from temporal information and rough cardiac segmentation masks with local shifts that serve as anatomical information. Our proposed method was evaluated on a clinical 82Rb PET dataset, and the results show that our TAI-GAN can produce converted early frames with high image quality, comparable to the real reference frames. After TAI-GAN conversion, the motion estimation accuracy and subsequent myocardial blood flow (MBF) quantification with both conventional and deep learning-based motion correction methods were improved compared to using the original frames. The code is available at https://github.com/gxq1998/TAI-GAN.


Subject(s)
Myocardial Perfusion Imaging , Positron-Emission Tomography , Rubidium Radioisotopes , Humans , Positron-Emission Tomography/methods , Myocardial Perfusion Imaging/methods , Coronary Artery Disease/diagnostic imaging , Image Processing, Computer-Assisted/methods
17.
Magn Reson Med ; 92(4): 1617-1631, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38775235

ABSTRACT

PURPOSE: To develop a generalized rigid body motion correction method in 3D radial brain MRI to deal with continuous motion pattern through projection moment analysis. METHODS: An assumption was made that the multichannel coil moves with the head, which was achieved by using a flexible head coil. A two-step motion correction scheme was proposed to directly extract the motion parameters from the acquired k-space data using the analysis of center-of-mass with high noise robustness, which were used for retrospective motion correction. A recursive least-squares model was introduced to recursively estimate the motion parameters for every single spoke, which used the smoothness of motion and resulted in high temporal resolution and low computational cost. Five volunteers were scanned at 3 T using a 3D radial multidimensional golden-means trajectory with instructed motion patterns. The performance was tested through both simulation and in vivo experiments. Quantitative image quality metrics were calculated for comparison. RESULTS: The proposed method showed good accuracy and precision in both translation and rotation estimation. A better result was achieved using the proposed two-step correction compared to traditional one-step correction without significantly increasing computation time. Retrospective correction showed substantial improvements in image quality among all scans, even for stationary scans. CONCLUSIONS: The proposed method provides an easy, robust, and time-efficient tool for motion correction in brain MRI, which may benefit clinical diagnosis of uncooperative patients as well as scientific MRI researches.


Subject(s)
Algorithms , Brain , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Motion , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Artifacts , Image Processing, Computer-Assisted/methods , Computer Simulation , Retrospective Studies , Reproducibility of Results , Adult , Image Enhancement/methods
18.
Sci Rep ; 14(1): 10781, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734781

ABSTRACT

Magnetic resonance (MR) acquisitions of the torso are frequently affected by respiratory motion with detrimental effects on signal quality. The motion of organs inside the body is typically decoupled from surface motion and is best captured using rapid MR imaging (MRI). We propose a pipeline for prospective motion correction of the target organ using MR image navigators providing absolute motion estimates in millimeters. Our method is designed to feature multi-nuclear interleaving for non-proton MR acquisitions and to tolerate local transmit coils with inhomogeneous field and sensitivity distributions. OpenCV object tracking was introduced for rapid estimation of in-plane displacements in 2D MR images. A full three-dimensional translation vector was derived by combining displacements from slices of multiple and arbitrary orientations. The pipeline was implemented on 3 T and 7 T MR scanners and tested in phantoms and volunteers. Fast motion handling was achieved with low-resolution 2D MR image navigators and direct implementation of OpenCV into the MR scanner's reconstruction pipeline. Motion-phantom measurements demonstrate high tracking precision and accuracy with minor processing latency. The feasibility of the pipeline for reliable in-vivo motion extraction was shown on heart and kidney data. Organ motion was manually assessed by independent operators to quantify tracking performance. Object tracking performed convincingly on 7774 navigator images from phantom scans and different organs in volunteers. In particular the kernelized correlation filter (KCF) achieved similar accuracy (74%) as scored from inter-operator comparison (82%) while processing at a rate of over 100 frames per second. We conclude that fast 2D MR navigator images and computer vision object tracking can be used for accurate and rapid prospective motion correction. This and the modular structure of the pipeline allows for the proposed method to be used in imaging of moving organs and in challenging applications like cardiac magnetic resonance spectroscopy (MRS) or magnetic resonance imaging (MRI) guided radiotherapy.


Subject(s)
Phantoms, Imaging , Humans , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Respiration , Image Processing, Computer-Assisted/methods , Motion , Movement , Algorithms
19.
MAGMA ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758490

ABSTRACT

OBJECT: In a typical MR session, several contrasts are acquired. Due to the sequential nature of the data acquisition process, the patient may experience some discomfort at some point during the session, and start moving. Hence, it is quite common to have MR sessions where some contrasts are well-resolved, while other contrasts exhibit motion artifacts. Instead of repeating the scans that are corrupted by motion, we introduce a reference-guided retrospective motion correction scheme that takes advantage of the motion-free scans, based on a generalized rigid registration routine. MATERIALS AND METHODS: We focus on various existing clinical 3D brain protocols at 1.5 Tesla MRI based on Cartesian sampling. Controlled experiments with three healthy volunteers and three levels of motion are performed. RESULTS: Radiological inspection confirms that the proposed method consistently ameliorates the corrupted scans. Furthermore, for the set of specific motion tests performed in this study, the quality indexes based on PSNR and SSIM shows only a modest decrease in correction quality as a function of motion complexity. DISCUSSION: While the results on controlled experiments are positive, future applications to patient data will ultimately clarify whether the proposed correction scheme satisfies the radiological requirements.

20.
Quant Imaging Med Surg ; 14(5): 3447-3460, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720850

ABSTRACT

Background: Magnetic resonance elastography (MRE) is a non-invasive method to measure the viscoelastic properties of tissue and has been applied in multiple abdominal organs. However, abdominal MRE suffers from detrimental breathing motion causing misalignment of structures between repeated acquisitions for different MRE dimensions (e.g., motion encoding directions and wave phase offsets). This study investigated motion correction strategies to resolve all breathing motion on sagittal free-breathing MRE acquisitions in a phantom, in healthy volunteers and showed feasibility in patients. Methods: First, in silico experiments were performed on a static phantom dataset with simulated motion. Second, eight healthy volunteers underwent two sagittal MRE acquisitions in the pancreas and right kidney. The multi-frequency free-breathing spin-echo echo-planar-imaging (SE-EPI) MRE consisted of four frequencies (30, 40, 50, 60 Hz), eight wave-phase offsets, with 3 mm3 isotropic voxel size. Following data re-sorting in different number of motion states (4 till 12) based on respiratory waveform signal, three intensity-based registration methods (monomodal, multimodal, and phase correlation) and non-rigid local registration were compared. A ranking method was used to determine the best registration method, based on seven signal-to-noise and image quality measures. Repeatability was assessed for no motion correction (Original) and the best performing method (Best) using Bland-Altman analysis. Lastly, the best motion correction method was compared to no motion correction on patient MRE data [pancreatic ductal adenocarcinoma (PDAC, n=5) and metabolic dysfunction-associated steatotic liver disease (MASLD) (n=1)]. Results: In silico experiments showed a deviation of shear wave speed (SWS) with simulated motion to the ground truth, which was (partially) resolved using motion correction. In healthy volunteers ranking resulted in the best motion correction method of monomodal registration using nine motion states, while no motion correction was ranked last. Limits of agreement were (-0.18, 0.14), and (-0.25, 0.18) m/s for Best and Original, respectively. Using motion correction in patients resulted in a significant increase in SWS in the pancreas (Original: 1.39±0.10 and Best: 1.50±0.17 m/s). After motion correction PDAC had a mean SWS of 1.56±0.27 m/s (Original: 1.42±0.25 m/s). The fibrotic liver mean SWS was 2.07±0.20 m/s (Original: 2.12±0.18 m/s). Conclusions: Motion correction in sagittal free-breathing abdominal MRE results in improved data quality, inversion precision, repeatability, and is feasible in patients.

SELECTION OF CITATIONS
SEARCH DETAIL