Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Affect Disord ; 360: 229-241, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823591

ABSTRACT

A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic inflammation and contribute to neuroinflammation. Empagliflozin (EF), an SGLT2 inhibitor-type hypoglycemic drug, has been reported to treat neuroinflammation. However, there is a lack of evidence showing that EF regulates the gut microbiota axis to control neuroinflammation in HFD models. In this study, we explored whether EF could improve neuroinflammation caused by an HFD via regulation of the gut microbiota and the mechanism underlying this phenomenon. Our data revealed that EF alleviates pathological brain injury, reduces the reactive proliferation of astrocytes, and increases the expression of synaptophysin. In addition, the levels of inflammatory factors in hippocampal tissue were significantly decreased after EF intervention. Subsequently, the results of 16S rRNA gene sequencing showed that EF could change the microbial community structure of mice, indicating that the abundance of Lactococcus, Ligilactobacillus and other microbial populations decreased dramatically. Therefore, EF alleviates neuroinflammation by inhibiting gut microbiota-mediated astrocyte activation in the brains of high-fat diet-fed mice. Our study focused on the gut-brain axis, and broader research on neuroinflammation can provide a more holistic understanding of the mechanisms driving neurodegenerative diseases and inform the development of effective strategies to mitigate their impact on brain health. The results provide strong evidence supporting the larger clinical application of EF.


Subject(s)
Astrocytes , Benzhydryl Compounds , Diet, High-Fat , Gastrointestinal Microbiome , Glucosides , Neuroinflammatory Diseases , Animals , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Astrocytes/drug effects , Glucosides/pharmacology , Mice , Benzhydryl Compounds/pharmacology , Neuroinflammatory Diseases/drug therapy , Male , Mice, Inbred C57BL , Brain/drug effects , Brain-Gut Axis/drug effects , Disease Models, Animal , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Dysbiosis
2.
Phytomedicine ; 128: 155499, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492367

ABSTRACT

BACKGROUND: Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross (P. capitata, PCB), a traditional drug of the Miao people in China, is potential traditional drug used for the treatment of diabetic nephropathy (DN). PURPOSE: The purpose of this study is to investigate the function of P. capitata and clarify its protective mechanism against DN. METHODS: We induced DN in the Guizhou miniature pig with injections of streptozotocin, and P. capitata was added to the pigs' diet to treat DN. In week 16, all the animals were slaughtered, samples were collected, and the relative DN indices were measured. 16S rRNA sequencing, metagenomics, metabolomics, RNA sequencing, and proteomics were used to explore the protective mechanism of P. capitata against DN. RESULTS: Dietary supplementation with P. capitata significantly reduced the extent of the disease, not only in term of the relative disease indices but also in hematoxylin-eosin-stained tissues. A multiomic analysis showed that two microbes (Clostridium baratii and Escherichia coli), five metabolites (oleic acid, linoleic acid, 4-phenylbutyric acid, 18-ß-glycyrrhetinic acid, and ergosterol peroxide), four proteins (ENTPD5, EPHX1, ARVCF and TREH), four important mRNAs (encoding ENTPD5, EPHX1, ARVCF, and TREH), six lncRNAs (TCONS_00024194, TCONS_00085825, TCONS_00006937, TCONS_00070981, TCONS_00074099, and TCONS_00097913), and two circRNAs (novel_circ_0001514 and novel_circ_0017507) are all involved in the protective mechanism of P. capitata against DN. CONCLUSIONS: Our results provide multidimensional theoretical support for the study and application of P. capitata.


Subject(s)
Diabetic Nephropathies , Swine, Miniature , Animals , Diabetic Nephropathies/drug therapy , Swine , Diabetes Mellitus, Experimental , Streptozocin , Drugs, Chinese Herbal/pharmacology , Dietary Supplements , Male , Proteomics
3.
Front Immunol ; 15: 1362543, 2024.
Article in English | MEDLINE | ID: mdl-38504986

ABSTRACT

Introduction: Glioblastoma (GBM) presents significant challenges due to its malignancy and limited treatment options. Precision treatment requires subtyping patients based on prognosis. Disulfidptosis, a novel cell death mechanism, is linked to aberrant glucose metabolism and disulfide stress, particularly in tumors expressing high levels of SLC7A11. The exploration of disulfidptosis may provide a new perspective for precise diagnosis and treatment of glioblastoma. Methods: Transcriptome sequencing was conducted on samples from GBM patients treated at Tiantan Hospital (January 2022 - December 2023). Data from CGGA and TCGA databases were collected. Consensus clustering based on disulfidptosis features categorized GBM patients into two subtypes (DRGclusters). Tumor immune microenvironment, response to immunotherapy, and drug sensitivity were analyzed. An 8-gene disulfidptosis-based subtype predictor was developed using LASSO machine learning algorithm and validated on CGGA dataset. Results: Patients in DRGcluster A exhibited improved overall survival (OS) compared to DRGcluster B. DRGcluster subtypes showed differences in tumor immune microenvironment and response to immunotherapy. The predictor effectively stratified patients into high and low-risk groups. Significant differences in IC50 values for chemotherapy and targeted therapy were observed between risk groups. Discussion: Disulfidptosis-based classification offers promise as a prognostic predictor for GBM. It provides insights into tumor immune microenvironment and response to therapy. The predictor aids in patient stratification and personalized treatment selection, potentially improving outcomes for GBM patients.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/therapy , Multiomics , Immunotherapy , Algorithms , Cell Death , Tumor Microenvironment
4.
Technol Cancer Res Treat ; 23: 15330338241233443, 2024.
Article in English | MEDLINE | ID: mdl-38409962

ABSTRACT

Purpose: Treatment of triple-negative breast cancer (TNBC) remains challenging. Intermittent fasting (IF) has emerged as a promising approach to improve metabolic health of various metabolic disorders. Clinical studies indicate IF is essential for TNBC progression. However, the molecular mechanisms underlying metabolic remodeling in regulating IF and TNBC progression are still unclear. Methods: In this study, we utilized a robust mouse model of TNBC and exposed subjects to a high-fat diet (HFD) with IF to explore its impact on the metabolic reprogramming linked to cancer progression. To identify crucial serum metabolites and signaling events, we utilized targeted metabolomics and RNA sequencing (RNA-seq). Furthermore, we conducted immunoblotting, real-time quantitative polymerase chain reaction (RT-qPCR), cell migration assays, lentivirus-mediated Mmp9 overexpression, and Mmp9 inhibitor experiments to elucidate the role of decanoylcarnitine/Mmp9 in TNBC cell migration. Results: Our observations indicate that IF exerts notable inhibitory effects on both the proliferation and cancer metastasis. Utilizing targeted metabolomics and RNA-seq, we initially identified pivotal serum metabolites and signaling events in the progression of TNBC. Among the 349 serum metabolites identified, decanoylcarnitine was picked out to inhibit TNBC cell proliferation and migration. RNA-seq analysis of TNBC cells treated with decanoylcarnitine revealed its suppressive effects on extracellular matrix-related protein components, with a notable reduction observed in Mmp9. Further investigations confirmed that decanoylcarnitine could inhibit Mmp9 expression in TNBC cells, primary tumors, lung, and liver metastasis tissues. Mmp9 overexpression abolished the inhibitory effect of decanoylcarnitine on cell migration. Conclusion: This study pioneers the exploration of IF intervention and the role of decanoylcarnitine/Mmp9 in the progression of TNBC in obese mice, enhancing our comprehension of the potential roles of various dietary patterns in the process of cancer treatment.


Subject(s)
Carnitine/analogs & derivatives , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Mice, Obese , Cell Line, Tumor , Intermittent Fasting , Obesity/drug therapy , Obesity/genetics , Cell Proliferation , Cell Movement , Gene Expression Regulation, Neoplastic
5.
Microorganisms ; 11(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38004640

ABSTRACT

Epilepsy (EP) is a complex brain disorder showing a lot of unknows reasons. Recent studies showed that gut microbiota can influence epilepsy via the brain-gut axis. Nevertheless, the mechanism by which gut microbiota affects adult epilepsy still remains unclear. In this study, fecal and serum samples were obtained from patients with epilepsy and normal controls. Using an integrated analysis, sequencing was performed by macrogenomics and high-throughput targeted metabolomics with various bioinformatics approaches. The macrogenomic sequencing revealed significant changes in microbial structure in patients suffering from epilepsy. For example, at the phylum level, the relative abundance of Actinobacteria, Bacteroidetes and Proteobacteria showed an increase in the patients with epilepsy, whereas that of Firmicutes decreased. In addition, the patients with epilepsy had significantly differential metabolite profiles compared to normal controls, and five clusters with 21 metabolites, mainly containing the upregulation of some fatty acids and downregulation of some amino acids. Tryptophan (AUC = 91.81, p < 0.0001), kynurenine (AUC = 79.09, p < 0.01) and 7Z,10Z,13Z,16Z-Docosatetraenoic acid (AUC = 80.95, p < 0.01) may be used as potential diagnostic markers for epilepsy. Differential serum metabolites have effects on tryptophan metabolism, iron death and other pathways. Furthermore, a multiomic joint analysis observed a statistically significant correlation between the differential flora and the differential serum metabolites. In our findings, a macrogenomic analysis revealed the presence of dysregulated intestinal flora species and function in adult epileptic patients. Deeper metabolomic analyses revealed differences in serum metabolites between patients with epilepsy and healthy populations. Meanwhile, the multiomic combination showed connection between the gut microbes and circulating metabolites in the EP patients, which may be potential therapeutic targets.

6.
MedComm (2020) ; 4(4): e317, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37457661

ABSTRACT

Although great advances have been made over the past decades, therapeutics for osteosarcoma are quite limited. We performed long-read RNA sequencing and tandem mass tag (TMT)-based quantitative proteome on osteosarcoma and the adjacent normal tissues, next-generation sequencing (NGS) on paired osteosarcoma samples before and after neoadjuvant chemotherapy (NACT), and high-throughput drug combination screen on osteosarcoma cell lines. Single-cell RNA sequencing data were analyzed to reveal the heterogeneity of potential therapeutic target genes. Additionally, we clarified the synergistic mechanisms of doxorubicin (DOX) and HDACs inhibitors for osteosarcoma treatment. Consequently, we identified 2535 osteosarcoma-specific genes and several alternative splicing (AS) events with osteosarcoma specificity and/or patient heterogeneity. Hundreds of potential therapeutic targets were identified among them, which showed the core regulatory roles in osteosarcoma. We also identified 215 inhibitory drugs and 236 synergistic drug combinations for osteosarcoma treatment. More interestingly, the multiomic analysis pointed out the pivotal role of HDAC1 and TOP2A in osteosarcoma. HDAC inhibitors synergized with DOX to suppress osteosarcoma both in vitro and in vivo. Mechanistically, HDAC inhibitors synergized with DOX by downregulating SP1 to transcriptionally modulate TOP2A expression. This study provided a comprehensive view of molecular features, therapeutic targets, and synergistic drug combinations for osteosarcoma.

7.
Can J Microbiol ; 69(12): 464-478, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37463516

ABSTRACT

In our study, Bacillus subtilis was disposed to a simulated microgravity (SMG) environment in high-aspect ratio rotating-wall vessel bioreactors for 14 days, while the control group was disposed to the same bioreactors in a normal gravity (NG) environment for 14 days. The B. subtilis strain exposed to the SMG (labeled BSS) showed an enhanced growth ability, increased biofilm formation ability, increased sensitivity to ampicillin sulbactam and cefotaxime, and some metabolic alterations compared with the B. subtilis strain under NG conditions (labeled BSN) and the original strain of B. subtilis (labeled BSO). The differentially expressed proteins (DEPs) associated with an increased growth rate, such as DNA strand exchange activity, oxidoreductase activity, proton-transporting ATP synthase complex, and biosynthetic process, were significantly upregulated in BSS. The enhanced biofilm formation ability may be related with the DEPs of spore germination and protein processing in BSS, and differentially expressed genes involved in protein localization and peptide secretion were also significantly enriched. The results revealed that SMG may increase the level of related functional proteins by upregulating or downregulating affiliated genes to change physiological characteristics and modulate growth ability, biofilm formation ability (epsB, epsC, epsN), antibiotic sensitivity (penP) and metabolism. Our experiment may gives new ideas for the study of space microbiology.


Subject(s)
Bacillus subtilis , Weightlessness , Bacillus subtilis/genetics , Multiomics , Anti-Bacterial Agents/pharmacology , Bioreactors
8.
Semin Perinatol ; 47(2): 151715, 2023 03.
Article in English | MEDLINE | ID: mdl-36906478

ABSTRACT

The ductus arteriosus (DA) connects the aorta to the pulmonary artery (PA), directing placentally oxygenated blood away from the developing lungs. High pulmonary vascular resistance and low systemic vascular resistance facilitate shunting of blood in utero from the pulmonary to the systemic circulation through the widely patent DA, thereby optimizing fetal oxygen (O2) delivery. With the transition from fetal (hypoxia) to neonatal (normoxia) oxygen conditions, the DA constricts while the PA dilates. This process often fails in prematurity, promoting congenital heart disease. Impaired O2-responsivness in the DA promotes persistent ductus arteriosus (PDA), the most common form of congenital heart disease. Knowledge of DA oxygen sensing has greatly advanced in the past few decades, however we still lack a complete understanding of the sensing mechanism. The genomic revolution of the past two decades has facilitated unprecedented discovery in every biological system. This review will demonstrate how multiomic integration of data generated from the DA can breathe new life into our understanding of the DA's oxygen response.


Subject(s)
Ductus Arteriosus, Patent , Ductus Arteriosus , Heart Defects, Congenital , Infant, Newborn , Humans , Ductus Arteriosus/physiology , Oxygen , Infant, Premature
9.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36901697

ABSTRACT

Malignant mesothelioma (MESO) consists of epithelioid, biphasic, and sarcomatoid subtypes with different epithelial-mesenchymal transition (EMT) phenotypes. We previously identified a panel of four MESO EMT genes correlating with an immunosuppressive tumor microenvironment and poor survival. In this study, we investigated the correlation between these MESO EMT genes, the immune profile, and the genomic and epigenomic alterations to identify potential therapeutic targets to prevent or reverse the EMT process. Using multiomic analysis, we observed that the MESO EMT genes were positively correlated with hypermethylation of epigenetic genes and loss of CDKN2A/B expression. MESO EMT genes such as COL5A2, ITGAV, SERPINH1, CALD1, SPARC, and ACTA2 were associated with upregulation of TGF-ß signaling, hedgehog signaling, and IL-2-STAT5 signaling and downregulation of the IFN-α and IFN-γ response. Immune checkpoints such as CTLA4, CD274 (PD-L1), PDCD1LG2 (PD-L2), PDCD1 (PD-1), and TIGIT were upregulated, while LAG3, LGALS9, and VTCN1 were downregulated with the expression of MESO EMT genes. CD160, KIR2DL1, and KIR2DL3 were also broadly downregulated with the expression of MESO EMT genes. In conclusion, we observed that the expression of a panel of MESO EMT genes was associated with hypermethylation of epigenetic genes and loss of expression of CDKN2A and CDKN2B. Expression of MESO EMT genes was associated with downregulation of the type I and type II IFN response, loss of cytotoxicity and NK cell activity, and upregulation of specific immune checkpoints, as well as upregulation of the TGF-ß1/TGFBR1 pathway.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Humans , Epithelial-Mesenchymal Transition/genetics , Hedgehog Proteins , Mesothelioma/pathology , Prognosis , Tumor Microenvironment , Interferons
10.
Animals (Basel) ; 13(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36830346

ABSTRACT

Campylobacter jejuni is a foodborne pathogen that causes campylobacteriosis globally, affecting ~95 million people worldwide. Most C. jejuni infections involve consuming and/or handling improperly cooked poultry meat. To better understand chicken host factors modulated by Campylobacter colonization, we explored a novel LCMS-based multiomic technology using three experimental groups: (1) negative control, (2) positive control, and (3) eugenol nanoemulsion (EGNE) treatment (supplemented with 0.125% EGNE in the water) of broiler chickens (n = 10 birds/group). Birds in groups two and three were challenged with C. jejuni on day 7, and serum samples were collected from all groups on day 14. Using this multiomic analysis, we identified 1216 analytes (275 compounds, seven inorganics, 407 lipids, and 527 proteins). The colonization of C. jejuni significantly upregulated CREG1, creatinine, and 3-[2-(3-Hydroxyphenyl) ethyl]-5-methoxyphenol and downregulated sphingosine, SP d18:1, high mobility group protein B3, phosphatidylcholines (PC) P-20:0_16:0, PC 11:0_26:1, and PC 13:0_26:2. We found that 5-hydroxyindole-3-acetic acid significantly increased with the EGNE treatment when compared to the positive and negative controls. Additionally, the treatment increased several metabolites when compared to the negative controls. In conclusion, this study revealed several potential targets to control Campylobacter in broiler chickens.

11.
J Hazard Mater ; 442: 130082, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36209609

ABSTRACT

Neonicotinoid insecticides (NNIs) are the most widely used class of pesticides globally. However, NNIs may cause adverse health effects, including chronic liver disease, and perturbation of the gut microbiota. Thiacloprid (THI) is one of the NNIs widely used in agriculture. Therefore, it is essential to elucidate effects of THI on the microbiota-gut-liver axis to assess the risk of chronic liver disease following exposure to NNIs. This study aimed at investigating whether THI exposure promoted liver injury by altering the gut microbiota and related metabolites. In this study, healthy male quails were exposed to 2 or 4 mg/kg THI or 0.75 % (w/v) saline once daily for 6 weeks, respectively. Metabolomics, 16S rRNA sequencing, and transcriptomic methods were performed to analyze the toxic mechanisms of THI in Japanese quails. We found that THI evoked damage and disruption to intestinal barrier function, leading to increased harmful substances such as lipopolysaccharide (LPS) and phenylacetic acid entering the liver. Besides, our results showed significantly altered hepatic bile acid and cholesterol metabolism in THI-exposed quails, with abnormal liver lipid metabolism, showing severe liver injury, fibrosis, and steatosis compared with the control quails. In conclusion, THI exposure aggravates liver injury via microbiota-gut-liver axis.


Subject(s)
Gastrointestinal Microbiome , Insecticides , Animals , Male , Coturnix/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Lipopolysaccharides , Insecticides/metabolism , Liver/metabolism , Neonicotinoids/toxicity , Neonicotinoids/metabolism , Bile Acids and Salts/metabolism , Bile Acids and Salts/pharmacology , Cholesterol/metabolism , Cholesterol/pharmacology
12.
Int J Mol Sci ; 25(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38203530

ABSTRACT

The identification of genetic factors that regulate the cancer immune microenvironment is important for understanding the mechanism of tumor progression and establishing an effective treatment strategy. Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is a large transmembrane protein that is highly expressed in immune cells; however, its association with tumor progression remains unclear. Here, we systematically analyzed the clinical relevance of PKHD1L1 in the tumor microenvironment in multiple cancer types using various bioinformatic tools. We found that the PKHD1L1 mRNA expression levels were significantly lower in skin cutaneous melanoma (SKCM) and lung adenocarcinoma (LUAD) than in normal tissues. The decreased expression of PKHD1L1 was significantly associated with unfavorable overall survival (OS) in SKCM and LUAD. Additionally, PKHD1L1 expression was positively correlated with the levels of infiltrating B cells, cluster of differentiation (CD)-8+ T cells, and natural killer (NK) cells, suggesting that the infiltration of immune cells could be associated with a good prognosis due to increased PKHD1L1 expression. Gene ontology (GO) analysis also revealed the relationship between PKHD1L1-co-altered genes and the activation of lymphocytes, including B and T cells. Collectively, this study shows that PKHD1L1 expression is positively correlated with a good prognosis via the induction of immune infiltration, suggesting that PKHD1L1 has potential prognostic value in SKCM and LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Melanoma , Skin Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Biomarkers , Gene Expression , Lung Neoplasms/genetics , Melanoma/genetics , Multiomics , Skin Neoplasms/genetics , Tumor Microenvironment/genetics
13.
Microbiome ; 10(1): 211, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36461096

ABSTRACT

BACKGROUND: The immature neonatal fecal microbiota substantially impacts the development of gut health and greatly increases the risk of disease. Developing effective strategies to modulate the development of neonatal fecal microbiota has great significance. Herein, we investigated whether the maternal dietary supplementation and oral administration of Lactobacillus reuteri could effectively promote the development and maturation of the fecal microbiome in piglets from birth to weaning. RESULTS: Metagenomic analysis of colostrum showed that maternal dietary L. reuteri supplementation influenced the overall microbiota composition, decreased the abundance of the phylum Proteobacteria and increased that of the species Bifidobacterium choerinum. KEGG pathway analysis revealed that maternal L. reuteri supplementation enriched the lysine biosynthesis and glycolysis/gluconeogenesis pathways and downregulated the bacterial invasion of epithelial cells in the colostrum. In addition, L. reuteri supplementation significantly altered the metabolite features and modules in umbilical cord blood serum based on metabolomics. Further, a significant covariation was observed between these differential metabolites and the species in colostrum. Maternal dietary L. reuteri supplementation also significantly influenced the microbiota composition and increased the meconium abundance of beneficial bacteria (such as Romboutsia, Lactobacillus, Blautia, Butyricicoccus, and Ruminococcus), some of which were markedly associated with several differential metabolites in umbilical cord blood serum between two groups. Notably, both the maternal dietary supplementation and oral intake of L. reuteri had strong impacts on the overall microbial composition and maturation of fecal microbiota in piglets during early life, and these effects were dependent on the growth stage. Oral administration of L. reuteri promoted diarrhea resistance in neonates, while maternal supplementation of L. reuteri enhanced the abilities of antioxidants and decreased inflammation. Moreover, the administration of L. reuteri via both methods in combination improved the growth performances of piglets. CONCLUSION: Overall, our data demonstrated that L. reuteri had the ability to modulate the composition of fecal microbiota in newborn piglets by influencing the microbial community and functional composition in the colostrum and by altering several key metabolites in the umbilical cord blood serum. Also, both the maternal dietary supplementation and oral administration of L. reuteri effectively promoted the development and maturation of the fecal microbiome in piglets during early life. Both the maternal dietary supplementation and oral administration of L. reuteri in combination optimized the growth performances of piglets. Video Abstract.


Subject(s)
Body Fluids , Limosilactobacillus reuteri , Microbiota , Animals , Swine , Female , Pregnancy , Humans , Mothers , Feces , Clostridiaceae
14.
J Microbiol ; 60(8): 832-842, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35622225

ABSTRACT

Tryptophol (TOL) is a metabolic derivative of tryptophan (Trp) and shows pleiotropic effects in humans, plants and microbes. In this study, the effect of Trp and phenylalanine (Phe) on TOL production in Saccharomyces cerevisiae was determined, and a systematic interpretation of TOL accumulation was offered by transcriptomic and metabolomic analyses. Trp significantly promoted TOL production, but the output plateaued (231.02-266.31 mg/L) at Trp concentrations ≥ 0.6 g/L. In contrast, Phe reduced the stimulatory effect of Trp, which was strongly dependent on the Phe concentration. An integrated genomic, transcriptomic, and metabolomic analysis revealed that the effect of Trp and Phe on TOL production was mainly related to the transamination and decarboxylation of the Ehrlich pathway. Additionally, other genes, including thiamine regulon genes (this), the allantoin catabolic genes dal1, dal2, dal4, and the transcriptional activator gene aro80, may play important roles. These findings were partly supported by the fact that the thi4 gene was involved in TOL production, as shown by heterologous expression analysis. To the best of our knowledge, this novel biological function of thi4 in S. cerevisiae is reported here for the first time. Overall, our findings provide insights into the mechanism of TOL production, which will contribute to TOL production using metabolic engineering strategies.


Subject(s)
Alcohols , Indoles , Phenylalanine , Saccharomyces cerevisiae , Tryptophan , Alcohols/metabolism , Indoles/metabolism , Phenylalanine/pharmacology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcriptome , Tryptophan/pharmacology
15.
J Clin Transl Hepatol ; 10(2): 363-373, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35528975

ABSTRACT

Omics data address key issues in liver transplantation (LT) as the most effective therapeutic means for end-stage liver disease. The purpose of this study was to review the current application and future direction for omics in LT. We reviewed the use of multiomics to elucidate the pathogenesis leading to LT and prognostication. Future directions with respect to the use of omics in LT are also described based on perspectives of surgeons with experience in omics. Significant molecules were identified and summarized based on omics, with a focus on post-transplant liver fibrosis, early allograft dysfunction, tumor recurrence, and graft failure. We emphasized the importance omics for clinicians who perform LTs and prioritized the directions that should be established. We also outlined the ideal workflow for omics in LT. In step with advances in technology, the quality of omics data can be guaranteed using an improved algorithm at a lower price. Concerns should be addressed on the translational value of omics for better therapeutic effects in patients undergoing LT.

16.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34864851

ABSTRACT

Although high-throughput data allow researchers to interrogate thousands of variables simultaneously, it can also introduce a significant number of spurious results. Here we demonstrate that correlation analysis of large datasets can yield numerous false positives due to the presence of outliers that canonical methods fail to identify. We present Correlations Under The InfluencE (CUTIE), an open-source jackknifing-based method to detect such cases with both parametric and non-parametric correlation measures, and which can also uniquely rescue correlations not originally deemed significant or with incorrect sign. Our approach can additionally be used to identify variables or samples that induce these false correlations in high proportion. A meta-analysis of various omics datasets using CUTIE reveals that this issue is pervasive across different domains, although microbiome data are particularly susceptible to it. Although the significance of a correlation eventually depends on the thresholds used, our approach provides an efficient way to automatically identify those that warrant closer examination in very large datasets.


Subject(s)
Microbiota
17.
J Agric Food Chem ; 70(1): 415-426, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34951540

ABSTRACT

Steroidal glycoalkaloids (SGAs) present in germinated potato tubers are toxic; however, the mechanisms underlying SGA metabolism are poorly understood. Therefore, integrated transcriptome, metabolome, and hormone analyses were performed in this study to identify and characterize the key regulatory genes, metabolites, and phytohormones related to glycoalkaloid regulation. Based on transcriptome sequencing of bud eyes of germinated and dormant potato tubers, a total of 6260 differentially expressed genes were identified, which were mainly responsible for phytohormone signal transduction, carbohydrate metabolism, and secondary metabolite biosynthesis. Two TCP14 genes were identified as the core transcription factors that potentially regulate SGA synthesis. Metabolite analysis indicated that 149 significantly different metabolites were detected, and they were enriched in metabolic and biosynthetic pathways of secondary metabolites. In these pathways, the α-solanine content was increased and the expression of genes related to glycoalkaloid biosynthesis was upregulated. Levels of gibberellin and jasmonic acid were increased, whereas that of abscisic acid was decreased. This study lays a foundation for investigating the biosynthesis and regulation of SGAs and provides the reference for the production and consumption of potato tubers.


Subject(s)
Solanum tuberosum , Biosynthetic Pathways , Plant Tubers/genetics , Secondary Metabolism , Solanum tuberosum/genetics , Transcriptome
18.
Article in English | MEDLINE | ID: mdl-37200864

ABSTRACT

The human malaria parasite, Plasmodium falciparum, is a unicellular protozoan responsible for over half a million deaths annually. With a complex life cycle alternating between human and invertebrate hosts, this apicomplexan is notoriously adept at evading host immune responses and developing resistance to all clinically administered treatments. Advances in omics-based technologies, increased sensitivity of sequencing platforms and enhanced CRISPR based gene editing tools, have given researchers access to more in-depth and untapped information about this enigmatic micro-organism, a feat thought to be infeasible in the past decade. Here we discuss some of the most important scientific achievements made over the past few years with a focus on novel technologies and platforms that set the stage for subsequent discoveries. We also describe some of the systems-based methods applied to uncover gaps of knowledge left through single-omics applications with the hope that we will soon be able to overcome the spread of this life-threatening disease.

19.
Article in English | MEDLINE | ID: mdl-37034481

ABSTRACT

Human odontogenic aberrations such as abnormal tooth number and delayed tooth eruption can occur as a symptom of rare syndromes or, more commonly, as nonsyndromic phenotypes. These phenotypes can require extensive and expensive dental treatment, posing a significant burden. While many dental phenotypes are heritable, most nonsyndromic cases have not been linked to causal genes. We demonstrate the novel finding that common sequence variants associated with human odontogenic phenotypes are enriched in developmental craniofacial enhancers conserved between human and mouse. However, the bulk nature of these samples obscures if this finding is due to the tooth itself or the surrounding tissues. We therefore sought to identify enhancers specifically active in the tooth anlagen and quantify their contribution to the observed genetic enrichments. We systematically identified 22,001 conserved enhancers active in E13.5 mouse incisors using ChIP-seq and machine learning pipelines and demonstrated biologically relevant enrichments in putative target genes, transcription factor binding motifs, and in vivo activity. Multi-tissue comparisons of human and mouse enhancers revealed that these putative tooth enhancers had the strongest enrichment of odontogenic phenotype-associated variants, suggesting a role for dysregulation of tooth developmental enhancers in human dental phenotypes. The large number of these regions genome-wide necessitated prioritization of enhancer loci for future investigations. As enhancers modulate gene expression, we prioritized regions based on enhancers' putative target genes. We predicted these target genes and prioritized loci by integrating chromatin state, bulk gene expression and coexpression, GWAS variants, and cell type resolved gene expression to generate a prioritized list of putative odontogenic phenotype-driving loci active in the developing tooth. These genomic regions are of particular interest for downstream experiments determining the role of specific dental enhancer:gene pairs in odontogenesis.

20.
J Clin Med ; 10(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34682815

ABSTRACT

Interleukin-32 (IL-32) is well known as a proinflammatory cytokine that is expressed in various immune cells and cancers. However, the clinical relevance of IL-32 expression in cutaneous melanoma has not been comprehensively studied. Here, we identified the prognostic value of IL32 expression using various systematic multiomic analyses. The IL32 expressions were significantly higher in cutaneous melanoma than in normal tissue, and Kaplan-Meier survival analysis showed a correlation between IL32 expression and good prognosis in cutaneous melanoma patients. In addition, we analyzed the correlation between IL32 expression and the infiltration of natural killer (NK) cells to identify a relevant mechanism between IL32 expression and prognosis in cutaneous melanoma (p = 0.00031). In the relationship between IL32 expression and the infiltration of NK cells, a negative correlation was found in resting NK cells (rho = -0.38, p = 3.95 × 10-17) whereas a strong positive correlation was observed only in active NK cells (rho = 0.374, p = 1.23 × 10-16). Moreover, IL32 expression was markedly positively correlated with the cytolytic molecules, such as granzyme and perforin. These data suggest that IL32 expression may increase patient survival through the infiltration and activation of NK cells, representative anticancer effector cells, in cutaneous melanoma. Collectively, this study provides the prognostic value of IL32 expression and its potential role as an effective predictive biomarker for NK cell infiltration in cutaneous melanoma.

SELECTION OF CITATIONS
SEARCH DETAIL