Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.484
Filter
1.
Expert Rev Clin Immunol ; : 1-12, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365123

ABSTRACT

OBJECTIVE: To probe the involvement of long noncoding RNA zinc finger antisense 1 (ZFAS1)/microRNA (miR)-186-5p axis in inhibiting oxidative stress in myocardial ischemia-reperfusion injury (MIRI) by targeting B-cell translocation gene 2 (BTG2). METHODS: The MIRI mice model was established by ligating the left anterior descending branch of the left coronary artery in C57BL/6 mice. The in vitro MIRI model was constructed by hypoxia and reoxygenation of HL-1 cardiomyocytes. Cardiomyocyte apoptosis and the extent of myocardial injury in mice were detected. The apoptosis rates, malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in HL-1 cells were assessed. The relationship among ZFAS1, miR-186-5p, and BTG2 was verified. RESULTS: High ZFAS1 and BTG2 levels and low miR-186-5p levels were demonstrated in I/R-injured myocardial tissues and in H/R-treated cardiomyocytes. Interference with ZFAS1 or elevation of miR-186-5p inhibited apoptosis and oxidative stress in H/R model cardiomyocytes and I/R-injured myocardial tissues. Overexpressing BTG2 impaired the ameliorative effects of miR-186-5p on MIRI. ZFAS1 negatively regulated miR-186-5p expression by acting as a molecular sponge. miR-186-5p targeted to regulate BTG2 negatively. CONCLUSION: Interfering with ZFAS1 can upregulate miR-186-5p and thus inhibit BTG2 expression, thereby ameliorating MIRI.

2.
J Cardiothorac Surg ; 19(1): 553, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354539

ABSTRACT

OBJECTIVE: We aim to investigate the association between prognosis and outcomes following myocardial ischemia-reperfusion injury, as well as peripheral blood levels of NLRP3 and the triglyceride-glucose index (TyG). METHODS: A total of 100 patients who underwent emergency coronary intervention following myocardial infarction confirmed by coronary angiography at our hospital between October 2021 and May 2023 were included in this study. Patients were stratified into two groups based on their prognoses: the control group (n = 73), which did not experience new myocardial infarctions or require hospitalization for heart failure or suffer sudden cardiac death post-interventional treatment; and the observation group (n = 27), which experienced one or more cardiovascular events post-treatment. Patient demographics were obtained from clinical records while biochemical analyses assessed peripheral blood triglycerides, blood glucose levels, and TyG index. Additionally, ELISA measurements determined levels of NLRP3 as well as inflammatory factors IL-6, TNF-α, and CRP in peripheral blood samples. Cardiac function was evaluated according to NYHA standards. Univariable Cox regression analysis identified factors influencing patient prognosis while Pearson correlation analysis examined relationships among prognosis, outcomes following myocardial ischemia-reperfusion injury, TyG index, and peripheral blood NLRP3. RESULTS: No significant differences were observed in the general characteristics between the two patient groups (P > 0.05). However, the observation group exhibited higher levels of peripheral blood triglycerides, blood glucose, and TyG index compared to the control group (P < 0.05). Additionally, levels of NLRP3 and inflammatory factors IL-6, TNF-α, and CRP were elevated in the observation group compared to the control group (P < 0.05). Cardiac function impairment was more pronounced in the observation group (P < 0.05). Notably, TyG index and peripheral blood NLRP3 demonstrated higher risk ratios compared to other biomarkers (P < 0.05), indicating their significance in prognosis and outcomes. Elevated levels of NLRP3 and TyG index were associated with poorer recovery of cardiac function, increased rehospitalization rates, and higher mortality (P < 0.05). CONCLUSION: Elevated NLRP3 levels and an increased TyG index are strongly associated with impaired cardiac function and heightened risk of cardiovascular events. These findings suggest that these biomarkers may serve as crucial prognostic indicators following myocardial ischemia-reperfusion injury.


Subject(s)
Blood Glucose , Myocardial Reperfusion Injury , NLR Family, Pyrin Domain-Containing 3 Protein , Triglycerides , Humans , Male , Female , Prognosis , NLR Family, Pyrin Domain-Containing 3 Protein/blood , Middle Aged , Triglycerides/blood , Myocardial Reperfusion Injury/blood , Blood Glucose/analysis , Blood Glucose/metabolism , Aged , Biomarkers/blood
3.
ACS Nano ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373010

ABSTRACT

Myocardial ischemia-reperfusion (IR) injury is a severe rhythmic disease with a high prevalence in the early morning. IR injury has a significant circadian rhythm in reactive oxygen species (ROS) and inflammation levels. The development of rhythmic drugs has become a priority in myocardial IR injury. In this study, resveratrol (RES) and proanthocyanidins (OPC) were utilized to design nanoparticles (NPs), with hyaluronic acid (HA) as the core, grafted with MMP-targeting peptides to improve delivery to injured myocardial regions (HA-RES-OPC-MMP NPs). NPs significantly scavenged ROS, attenuated inflammation, and activated the rhythm gene. Notably, the difference in therapeutic effects on myocardial IR injury in mice at Zeitgeber time (ZT)1 and ZT13 confirms that NPs are rhythm-dependent drugs. At ZT13, echocardiographic and MRI confirm that IR injury in mice was not as severe as at ZT1, yet NPs were also less effective in treatment. Further, Per1/2 knockout mice confirmed the rhythm-dependent treatment of myocardial IR injury by NPs. Molecular studies have shown that rhythmic characteristics of inflammation and Sirt1 transcript levels are the main reasons for the different rhythmic therapeutic effects of NPs. Circadian rhythm-dependent treatment of HA-RES-OPC-MMP NPs has excellent potential for more precise treatment of myocardial IR injury in the future.

4.
J Adv Res ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357647

ABSTRACT

INTRODUCTION: Myocardial ischemia-reperfusion injury (MIRI) remains a prevalent clinical challenge globally, lacking an ideal therapeutic strategy. Macrophages play a pivotal role in MIRI pathophysiology, exhibiting dynamic inflammatory and resolutive functions. Macrophage polarization and metabolism are intricately linked to MIRI, presenting potential therapeutic targets. Pubescenoside C (PBC) from Ilex pubescens showed significantly anti-inflammatory effects, however, the effect of PBC on MIRI is unknown. OBJECTIVES: This study aimed to assess the cardioprotective effects of PBC against MIRI and elucidate the underlying mechanisms. METHODS: Sprague-Dawley rats, H9c2 and RAW264.7 macrophages were used to establish the in vitro and in vivo models of MIRI. TTC/Evans blue staining, immunohistochemical staining, metabonomics analysis, chemical probe, surface plasmon resonance (SPR), co-immunoprecipitation (CO-IP) assays were used for pharmacodynamic and mechanism study. RESULTS: PBC administration effectively reduced myocardial infarct size, decreased ST-segment elevation, and lowered CK-MB levels, concurrently promoting macrophage M2 polarization in MIRI. Furthermore, PBC-treated macrophages and their conditioned culture medium attenuated the apoptosis of H9c2 cells induced by oxygen-glucose deprivation/reoxygenation (OGD/R). Metabonomics analysis revealed that PBC increased the production of itaconic acid (ITA) and malic acid (MA) in macrophages, which conferred protection against OGD/R injury in H9c2 cells. Mechanistic investigations indicated that ITA exerted its effects by covalently modifying pyruvate kinase M2 (PKM2) at Cys474, Cys424, and Lys151, thereby facilitating PKM2's mitochondrial translocation and enhancing the PKM2/Bcl2 interaction, subsequently leading to decreased degradation of Bcl2. SPR assays further revealed that PBC bound to HSP90, facilitating the interaction between HSP90 and GSK3ß and resulting in the inactivation of GSK3ß activity and upregulation of key metabolic enzymes for ITA and MA production (Acod1 and Mdh2). CONCLUSION: PBC alleviates MIRI-induced cardiomyocyte apoptosis by modulating the HSP90/ITA/PKM2 axis. Furthermore, pharmacological upregulation of ITA emerges as a promising therapeutic approach for MIRI, hinting at PBC's potential as a candidate drug for MIRI therapy.

5.
Mol Med Rep ; 30(6)2024 12.
Article in English | MEDLINE | ID: mdl-39364741

ABSTRACT

The present study aimed to investigate the role of PI3K­mediated ferroptosis signaling induced by mild therapeutic hypothermia (MTH), which was defined as a temperature of 34˚C, in protecting against myocardial ischemia-reperfusion (I/R) injury (MIRI). To meet this aim, H9C2 cells underwent hypoxia­reperfusion (H/R) and/or MTH. The MTT assay was used to assess cell viability, cytotoxicity was measured using a lactate dehydrogenase cytotoxicity assay, and Annexin V­FITC/PI flow cytometric analysis was used to analyze early and late cell apoptosis. In addition, 84 healthy adult male Sprague­Dawley rats were randomly divided into seven groups (n=12), and underwent I/R and various treatments. Hemodynamics were monitored, and the levels of myocardial injury marker enzymes and oxidative stress markers in myocardial tissue were measured using ELISA. The expression levels of PI3K, AKT, transient receptor potential cation channel subfamily M member 7 (TRPM7), glutathione peroxidase 4 (GPX4) and acyl­CoA synthetase long chain family member 4 (ACSL4) in animals and cells were measured using western blot analysis. These experiments revealed that MTH could effectively reduce myocardial infarct size, improve hemodynamic performance following MIRI and suppress myocardial apoptosis, thereby contributing to the recovery from H/R injury. Mechanistically, MTH was revealed to be able to activate the PI3K/AKT signaling pathway in cells, upregulating GPX4, and downregulating the expression levels of TRPM7 and ACSL4. Treatment with 2­aminoethoxydiphenyl borate (an inhibitor of TRPM7) could further strengthen the myocardial protective effects of MTH, whereas treatment with erastin (promoter of ferroptosis) and wortmannin (inhibitor of PI3K) led to the effective elimination of the myocardial protective effects of MTH. Compared with in the I/R group, the PI3K/AKT activation level and the expression levels of GPX4 were both significantly increased, whereas the expression levels of TRPM7 and ACSL4 were significantly decreased in the I/R + MTH group. Taken together, the results of the present study indicated that MTH may activate the PI3K/AKT signaling pathway to inhibit TRPM7 and suppress ferroptosis induced by MIRI.


Subject(s)
Ferroptosis , Myocardial Reperfusion Injury , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , TRPM Cation Channels , Animals , Ferroptosis/drug effects , TRPM Cation Channels/metabolism , TRPM Cation Channels/antagonists & inhibitors , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Male , Rats , Hypothermia, Induced/methods , Protein Serine-Threonine Kinases/metabolism , Cell Line , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Apoptosis/drug effects , Cell Survival/drug effects , Oxidative Stress/drug effects
6.
BMC Cardiovasc Disord ; 24(1): 531, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354361

ABSTRACT

BACKGROUND: Myocardial ischemia-reperfusion injury (MI/RI) is an unavoidable risk event for acute myocardial infarction, with ferroptosis showing close involvement. We investigated the mechanism of MI/RI inducing myocardial injury by inhibiting the ferroptosis-related SLC7A11/glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathway and activating mitophagy. METHODS: A rat MI/RI model was established, with myocardial infarction area and injury assessed by TTC and H&E staining. Rat cardiomyocytes H9C2 were cultured in vitro, followed by hypoxia/reoxygenation (H/R) modeling and the ferroptosis inhibitor lipoxstatin-1 (Lip-1) treatment, or 3-Methyladenine or rapamycin treatment and overexpression plasmid (oe-SLC7A11) transfection during modeling. Cell viability and death were evaluated by CCK-8 and LDH assays. Mitochondrial morphology was observed by transmission electron microscopy. Mitochondrial membrane potential was detected by fluorescence dye JC-1. Levels of inflammatory factors, reactive oxygen species (ROS), Fe2+, malondialdehyde, lipid peroxidation, GPX4 enzyme activity, glutathione reductase, GSH and glutathione disulfide, and SLC7A11, GPX4, LC3II/I and p62 proteins were determined by ELISA kit, related indicator detection kits and Western blot. RESULTS: The ferroptosis-related SLC7A11/GSH/GPX4 pathway was repressed in MI/RI rat myocardial tissues, inducing myocardial injury. H/R affected GSH synthesis and inhibited GPX4 enzyme activity by down-regulating SLC7A11, thus promoting ferroptosis in cardiomyocytes, which was averted by Lip-1. SLC7A11 overexpression improved H/R-induced cardiomyocyte ferroptosis via the GSH/GPX4 pathway. H/R activated mitophagy in cardiomyocytes. Mitophagy inhibition reversed H/R-induced cellular ferroptosis. Mitophagy activation partially averted SLC7A11 overexpression-improved H/R-induced cardiomyocyte ferroptosis. H/R suppressed the ferroptosis-related SLC7A11/GSH/GPX4 pathway by inducing mitophagy, leading to cardiomyocyte injury. CONCLUSIONS: Increased ROS under H/R conditions triggered cardiomyocyte injury by inducing mitophagy to suppress the ferroptosis-related SLC7A11/GSH/GPX4 signaling pathway activation.


Subject(s)
Amino Acid Transport System y+ , Disease Models, Animal , Ferroptosis , Glutathione , Mitophagy , Myocardial Reperfusion Injury , Myocytes, Cardiac , Phospholipid Hydroperoxide Glutathione Peroxidase , Rats, Sprague-Dawley , Signal Transduction , Animals , Male , Rats , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Cell Line , Ferroptosis/drug effects , Glutathione/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/drug effects , Mitophagy/drug effects , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Oxidative Stress , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Reactive Oxygen Species/metabolism
7.
Life Sci ; 358: 123110, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374772

ABSTRACT

Gut microflora plays an important role in relieving myocardial no-reflow (NR), formononetin (FMN) has potential effects on NR, however, the relationship between this effect and gut microflora remains unclear. This study aimed to evaluate the role of FMN in alleviating NR by regulating gut microflora. We used a myocardial NR rat model to confirm the effect and mechanism of action of FMN in alleviating NR. The rats were randomly divided into sham operation group (Sham), NR group, FMN group and sodium nitroprusside (SNP) group. Thioflavin S staining, Hematoxylin Eosin (HE), myocardial enzyme activity, ultrasonic cardiogram and RT-PCR detection showed that FMN could effectively reduce inflammatory cell infiltration, NR and ischemic area, improve cardiac structure and function and reduce TNF-α and NF-κB gene expression in NR rats. The results of 16S rRNA high-throughput sequencing showed that FMN could increase the abundance of anti-inflammatory bacteria such as Ligilactobacillus, Coprococcus, Blautia and Muribaculaceae and decrease the abundance of pro-inflammatory bacteria such as Treponema in Spirochaetota and Campylobacterota. The correlation between the differential bacteria in the gut microflora(anti-inflammatory bacteria and pro-inflammatory bacteria) and TNF-α and NF-κB, showed that they had a strong correlation. Therefore, the anti-NR mechanism of FMN may be related to increasing the abundance of anti-inflammatory bacteria and reducing the abundance of pro-inflammatory bacteria to inhibit inflammation. This study provides innovative mechanistic insights into the relationship between gut microbiota and myocardial protection, suggesting potential strategy for future treatment of NR.

8.
Phytother Res ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225191

ABSTRACT

Reperfusion therapy is the primary treatment strategy for acute myocardial infarction (AMI). Paradoxically, it can lead to myocardial damage, namely myocardial ischemia/reperfusion injury (MIRI). This study explored whether oroxylin A (OA) protects the myocardium after MIRI by inhibiting ferroptosis and the underlying mechanism. In vivo, we established an MIRI model to investigate the protective effect of OA. In vitro, H9C2 cells were used to explore the regulation of ferroptosis by OA through immunofluorescence staining, western blotting, assay kits, etc. Additionally, RNA sequencing analysis (RNA-seq) and network pharmacology analyses were conducted to elucidate the molecular mechanisms. Our results showed that MIRI caused cardiac structural and functional damage in rats. MIRI promoted ferroptosis, which was consistently observed in vitro. However, pretreatment with OA reversed these effects. The mitogen-activated protein kinases (MAPK) signaling pathway participated in the MIRI process, with dual-specificity phosphatase 10 (DUSP10) found to regulate it. Further confirmation was provided by knocking down DUSP10 using small interfering RNA (siRNA), demonstrating the activation of the DUSP10/MAPK-Nrf2 pathway by OA to protect H9C2 cells from ferroptosis. Our research has demonstrated the mitigating effect of OA on MIRI and the improvement of myocardial function for the first time. The inhibition of ferroptosis has been identified as one of the mechanisms through which OA exerts its myocardial protective effects. Moreover, we have first unveiled that DUSP10 serves as an upstream target involved in mediating ferroptosis, and the regulation of the DUSP10/MAPK-Nrf2 pathway by OA is crucial in inhibiting ferroptosis to protect the myocardium.

9.
J Ethnopharmacol ; 337(Pt 1): 118738, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39222757

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dehydrocorydaline (DHC), an active component of Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae), exhibits protective and pain-relieving effects on coronary heart disease, but the underlying mechanism still remains unknown. AIM OF THE STUDY: Network pharmacology and experimental validation both in vivo and in vitro were applied to assess whether DHC can treat myocardial ischemia-reperfusion injury (MIRI) by regulating the forkhead box O (FoxO) signalling pathway to inhibit apoptosis. MATERIALS AND METHODS: DHC and MIRI targets were retrieved from various databases. Molecular docking and microscale thermophoresis (MST) determined potential binding affinity. An in vivo mouse model of MIRI was established by ligating the left anterior descending coronary artery. C57BL/6N mice were divided into sham, MIRI, and DHC (intraperitoneal injection of 5 mg/kg DHC) groups. Haematoxylin and eosin, Masson, and immunohistochemical stainings verified DHC treatment effects and the involved signalling pathways. In vitro, H9c2 cells were incubated with DHC and underwent hypoxia/reoxygenation. TUNEL, JC-1, and reactive oxygen species stainings and western blots were used to explore the protective effects of DHC and the underlying mechanisms. RESULTS: Venny analysis identified 120 common targets from 121 DHC and 23,354 MIRI targets. DHC exhibited high affinity for CCND1, CDK2, and MDM2 (<-7 kcal/mol). In vivo, DHC attenuated decreases in left ventricular ejection fraction and fractional shortening, reduced infarct sizes, and decreased cTnI and lactate dehydrogenase levels. In vitro, DHC alleviated apoptosis and oxidative stress in the hypoxia/reoxygenation model by attenuating ΔΨm disruption; reducing the production of reactive oxygen species; upregulating Bax and CCND1 via the FoxO signalling pathway, as well as cleaved-caspase 8; downregulating the apoptosis-associated proteins Bcl-2, Bid, cleaved-caspase 3, and cleaved-caspase 9; and promoting the phosphorylation of FOXO1A and MDM2. CONCLUSION: By upregulating the FoxO signaling pathway to inhibit apoptosis, DHC exerts a cardioprotective effect, which could serve as a potential therapeutic option for MIRI.

10.
J Ethnopharmacol ; 337(Pt 1): 118821, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39265794

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Positive evidence from clinical trials highlights the promising potential of traditional Chinese medication, Qili qiangxin capsule (QLQX), on chronic heart failure; however, limited data are available regarding its effects and mechanism in myocardial ischemia-reperfusion injury (MIRI). Herein, we aimed to explore cardioprotective effects and the underlying mechanism of QLQX in MIRI in vivo and in vitro. MATERIALS AND METHODS: Mice were subjected to left anterior descending coronary artery ligation for 30 min followed by 24 h of reperfusion with or without 7-day pretreatment with QLQX (0.234, 0.468, or 0.936 g/kg). Cardiac function, myocardial infarction, and morphological changes were evaluated. The mechanism underlying the cardio-protection of QLQX on MIRI was determined by network pharmacology based on the common genes of potential targets of QLQX and MIRI-related genes, further validated by H9c2 cardiomyocytes exposing hypoxia/reoxygenation (H/R). The viability, apoptosis, as well as autophagy and relevant signaling proteins in H9c2 were analyzed. RESULTS: QLQX pretreatment markedly improved cardiac function and decreased myocardium infarct size, apoptotic cardiomyocyte number, and LHD, CK-MB, and TnT levels in MIRI mice. QLQX could mitigate H/R-induced H9c2 cardiomyocyte injury, as evidenced by decreased cell apoptosis and LDH release and increased ATP production. QLQX effectively attenuates excessive autophagy in cardiomyocytes both in vivo and in vitro. Mechanically, network pharmacology analysis demonstrated the cardio-protection of QLQX on MIRI involving in PI3K/Akt signaling; the effects of QLQX on H/R-induced H9c2 cardiomyocytes were abolished by a specific PI3K inhibitor. CONCLUSION: QLQX protects against cardiomyocyte apoptosis and excessive autophagy via PI3K/Akt signaling during MIRI.

11.
Int J Biol Sci ; 20(11): 4458-4475, 2024.
Article in English | MEDLINE | ID: mdl-39247823

ABSTRACT

This study investigated the mechanism by which NR4A1 regulates mitochondrial fission factor (Mff)-related mitochondrial fission and FUN14 domain 1 (FUNDC1)-mediated mitophagy following cardiac ischemia-reperfusion injury(I/R). Our findings showed that the damage regulation was positively correlated with the pathological fission and pan-apoptosis of myocardial cell mitochondria. Compared with wild-type mice (WT), NR4A1-knockout mice exhibited resistance to myocardial ischemia-reperfusion injury and mitochondrial pathological fission, characterized by mitophagy activation. Results showed that ischemia-reperfusion injury increased NR4A1 expression level, activating mitochondrial fission mediated by Mff and restoring the mitophagy phenotype mediated by FUNDC1. The inactivation of FUNDC1 phosphorylation could not mediate the normalization of mitophagy in a timely manner, leading to an excessive stress response of unfolded mitochondrial proteins and an imbalance in mitochondrial homeostasis. This process disrupted the normalization of the mitochondrial quality control network, leading to accumulation of damaged mitochondria and the activation of pan-apoptotic programs. Our data indicate that NR4A1 is a novel and critical target in myocardial I/R injury that exertsand negative regulatory effects by activating Mff-mediated mito-fission and inhibiting FUNDC1-mediated mitophagy. Targeting the crosstalk balance between NR4A1-Mff-FUNDC1 is a potential approach for treating I/R.


Subject(s)
Mice, Knockout , Mitochondrial Dynamics , Mitochondrial Proteins , Mitophagy , Myocardial Reperfusion Injury , Nuclear Receptor Subfamily 4, Group A, Member 1 , Animals , Myocardial Reperfusion Injury/metabolism , Mice , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Male , Mice, Inbred C57BL , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Apoptosis , Mitochondria, Heart/metabolism
12.
Mol Med Rep ; 30(5)2024 Nov.
Article in English | MEDLINE | ID: mdl-39239748

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell apoptotic assay data shown in Fig. 1D on p. 3763 were strikingly similar to data that had already been submitted for publication in Fig. 3A in different form in another article written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been submitted for publication prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 18: 3760­3768, 2018; DOI: 10.3892/mmr.2018.9403].

13.
Chem Biol Drug Des ; 104(3): e14621, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39251393

ABSTRACT

Fucoxanthin (Fx), a xanthophyll carotenoid abundant in brown algae, possesses several biological functions, such as antioxidant, anti-inflammatory, and cardiac-protective activities. However, the role of Fx in myocardial ischemia/reperfusion (MI/R) is still unclear. Thus, the aim of this study was to investigate the effect of Fx on MI/R-induced injury and explore the underlying mechanisms. Our results showed that in vitro, Fx treatment significantly suppressed inflammatory response, oxidative stress, and apoptosis in rat cardiomyocytes exposed to hypoxia/reoxygenation (H/R). In addition, Fx led to increased phosphorylation of AMPK, AKT, and GSK-3ß, and enhanced activation of Nrf2 in cardiomyocytes under H/R conditions. Notably, pretreatment with Compound C (AMPK inhibitor), partially reduced the beneficial effects of Fx in cardiomyocytes exposed to H/R. In vivo, Fx ameliorated myocardial damage, inhibited inflammatory response, oxidative stress, and apoptosis, and activated the AMPK/GSK-3ß/Nrf2 signaling in myocardial tissues in MI/R rat model. Taken together, these findings indicated that Fx attenuates MI/R-induced injury by inhibiting oxidative stress, inflammatory response, and apoptosis. The AMPK/GSK-3ß/Nrf2 pathway is involved in the cardioprotective effect of Fx in MI/R injury. Thus, Fx may be a promising drug for the treatment of MI/R.


Subject(s)
AMP-Activated Protein Kinases , Apoptosis , Glycogen Synthase Kinase 3 beta , Myocardial Reperfusion Injury , Myocytes, Cardiac , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , Xanthophylls , Animals , Rats , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Apoptosis/drug effects , Glycogen Synthase Kinase 3 beta/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Signal Transduction/drug effects , Xanthophylls/pharmacology , Xanthophylls/chemistry
14.
Eur J Pharmacol ; 982: 176969, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39218342

ABSTRACT

Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.


Subject(s)
Nanomedicine , Regenerative Medicine , Humans , Regenerative Medicine/methods , Nanomedicine/methods , Animals , Nanoparticles , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/therapy , Drug Delivery Systems/methods , Regeneration/drug effects , Heart/drug effects , Heart/physiology
15.
Lab Anim Res ; 40(1): 32, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237965

ABSTRACT

Ischemic heart disease is the most prevalent cause of death worldwide affecting both the gender of all age groups. The high mortality rate is due to damage of myocardial tissue that emanates at the time of myocardial ischemia and re-oxygenation, thus averting reperfusion injury is recognized as a potential way to reduce acute cardiac injury and subsequent mortality. Flavonoids are polyphenol derivatives of plant origin and empirical shreds of evidence substantiate their numerous activities such as antioxidant, anti-inflammatory, anti-apoptotic, and anti-thrombotic activity, leading to their role in cardio protection. Recent investigations have unveiled the capacity of flavonoids to impede pivotal regulatory enzymes, signaling molecules, and transcription factors that orchestrate the mediators participating in the inflammatory cascade. The present comprehensive review, dwells on the preclinical studies on the effectiveness of flavonoids from the year 2007 to 2023, for the prevention and therapeutics for myocardial ischemia-reperfusion injury.

16.
Adv Sci (Weinh) ; : e2403542, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264262

ABSTRACT

Despite the widespread adoption of emergency coronary reperfusion therapy, reperfusion-induced myocardial injury remains a challenging issue in clinical practice. Following myocardial reperfusion, S100A8/A9 molecules are considered pivotal in initiating and regulating tissue inflammatory damage. Effectively reducing the S100A8/A9 level in ischemic myocardial tissue holds significant therapeutic value in salvaging damaged myocardium. In this study, HA (hemagglutinin)- and RAGE (receptor for advanced glycation end products)- comodified macrophage membrane-coated siRNA nanoparticles (MMM/RNA NPs) with siRNA targeting S100A9 (S100A9-siRNA) are successfully prepared. This nanocarrier system is able to target effectively the injured myocardium in an inflammatory environment while evading digestive damage by lysosomes. In vivo, migration of MMM/RNA NPs to myocardial injury lesions is confirmed in a myocardial ischemia-reperfusion injury (MIRI) mouse model. Intravenous injection of MMM/RNA NPs significantly reduced S100A9 levels in serum and myocardial tissues, further decreasing myocardial infarction area and improving cardiac function. Targeted reduction of S100A8/A9 by genetically modified macrophage membrane-coated nanoparticles may represent a new therapeutic intervention for MIRI.

17.
Adv Sci (Weinh) ; : e2406124, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264272

ABSTRACT

Myocardial ischemia/reperfusion injury (MI/RI) generates reactive oxygen species (ROS) and initiates inflammatory responses. Traditional therapies targeting specific cytokines or ROS often prove inadequate. An innovative drug delivery system (DDS) is developed using neutrophil decoys (NDs) that encapsulate 18ß-glycyrrhetinic acid (GA) within a hydrolyzable oxalate polymer (HOP) and neutrophil membrane vesicles (NMVs). These NDs are responsive to hydrogen peroxide (H2O2), enabling controlled GA release. Additionally, NDs adsorb inflammatory factors, thereby reducing inflammation. They exhibit enhanced adhesion to inflamed endothelial cells (ECs) and improved penetration. Once internalized by cardiomyocytes through clathrin-mediated endocytosis, NDs protect against ROS-induced damage and inhibit HMGB1 translocation. In vivo studies show that NDs preferentially accumulate in injured myocardium, reducing infarct size, mitigating adverse remodeling, and enhancing cardiac function, all while maintaining favorable biosafety profiles. This neutrophil-based system offers a promising targeted therapy for MI/RI by addressing both inflammation and ROS, holding potential for future clinical applications.

18.
Perfusion ; : 2676591241280371, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264884

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) most frequently happens in acute myocardial infarction (AMI) when rapid reperfusion is utilized to save the ischemia myocardium. MIRI is the main contributing of poor healing in AMI and is related to high mortality and disability rates around the worldwide. Currently, there is no effective precautionary measure for MIRI. Ferroptosis is a novel regulated cell death characterized by iron overload and reactive oxygen species (ROS) accumulation, which lead to death membrane lipid peroxidation. An increasing amount of studies indicates that ferroptosis plays a vital role in the occurrence and progression of MIRI. Given the crucial role of ferroptosis in MIRI, it is critical to understand the cardiomyocyte iron metabolism and investigate the molecular mechanisms of ferroptosis. In this review, we systematically summarize the molecular and metabolic pathways of ferroptosis in context of MIRI, which could provide novel understandings for the pathophysiological machine and new ideas for treatment.

19.
Front Bioeng Biotechnol ; 12: 1469393, 2024.
Article in English | MEDLINE | ID: mdl-39286345

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) is a critical issue that arises when restoring blood flow after an ischemic event in the heart. Excessive reactive oxygen species (ROS) production during this process exacerbates cellular damage and impairs cardiac function. Recent therapeutic strategies have focused on leveraging the ROS microenvironment to design targeted drug delivery systems. ROS-responsive biomaterials have emerged as promising candidates, offering enhanced therapeutic efficacy with reduced systemic adverse effects. This review examines the mechanisms of ROS overproduction during myocardial ischemia-reperfusion and summarizes significant advancements in ROS-responsive biomaterials for MIRI treatment. We discuss various chemical strategies to impart ROS sensitivity to these materials, emphasizing ROS-induced solubility switches and degradation mechanisms. Additionally, we highlight various ROS-responsive therapeutic platforms, such as nanoparticles and hydrogels, and their unique advantages in drug delivery for MIRI. Preclinical studies demonstrating the efficacy of these materials in mitigating MIRI in animal models are reviewed, alongside their mechanisms of action and potential clinical implications. We also address the challenges and future prospects of translating these state of the art biomaterial-based therapeutics into clinical practice to improve MIRI management and cardiac outcomes. This review will provide valuable insights for researchers and clinicians working on novel therapeutic strategies for MIRI intervention.

20.
Tissue Cell ; 91: 102555, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39276487

ABSTRACT

PURPOSE: The present study aims to investigate the biological function of Tyrobp in myocardial ischemia-reperfusion injury (MIRI) and to clarify its potential reaction mechanisms. METHODS: AC16 cells were induced by oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate the MIRI in vitro. The cell transfection technology was used to downregulate Tyrobp, followed by assessment of cell damage, apoptosis and cytokines production via Cell Counting Kit (CCK)-8 assay, lactate dehydrogenase (LDH) release assay, TUNEL and ELISA assays, respectively. Immunofluorescence assay was performed to assess GSDMD. Corresponding proteins were detected via western blotting, and Co-immunoprecipitation (Co-IP) assay was used to validate proteins interaction. RESULTS: Tyrobp was upregulated in OGD/R-exposed AC16 cells, and Tyrobp deficiency significantly alleviated OGD/R-caused cell viability loss, LDH release and cell apoptosis in AC16 cells. Meanwhile, Tyrobp deficiency inhibited the activation of NLRP3 inflammasome, reduced the production of cytokines and inhibited GSDMD intensity and GSDMD-N expression. Additionally, Tyrobp could interact with Syk and regulate Syk/NF-κB signaling. The rescue experiments showed that the above effects of Tyrobp deficiency on OGD/R-exposed AC16 cells were partly weakened by Syk overexpression. CONCLUSION: Tyrobp deficiency alleviated MIRI by inhibiting NLRP3-mediated inflammation and pyroptosis through regulating Syk, providing a novel target for the treatment of MIRI.

SELECTION OF CITATIONS
SEARCH DETAIL