Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37445828

ABSTRACT

Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease associated with toxic RNA containing expanded CUG repeats. The developing therapeutic approaches to DM1 target mutant RNA or correct early toxic events downstream of the mutant RNA. We have previously described the benefits of the correction of the GSK3ß-CUGBP1 pathway in DM1 mice (HSALR model) expressing 250 CUG repeats using the GSK3 inhibitor tideglusib (TG). Here, we show that TG treatments corrected the expression of ~17% of genes misregulated in DM1 mice, including genes involved in cell transport, development and differentiation. The expression of chloride channel 1 (Clcn1), the key trigger of myotonia in DM1, was also corrected by TG. We found that correction of the GSK3ß-CUGBP1 pathway in mice expressing long CUG repeats (DMSXL model) is beneficial not only at the prenatal and postnatal stages, but also during adulthood. Using a mouse model with dysregulated CUGBP1, which mimics alterations in DM1, we showed that the dysregulated CUGBP1 contributes to the toxicity of expanded CUG repeats by changing gene expression and causing CNS abnormalities. These data show the critical role of the GSK3ß-CUGBP1 pathway in DM1 muscle and in CNS pathologies, suggesting the benefits of GSK3 inhibitors in patients with different forms of DM1.


Subject(s)
Myotonic Dystrophy , Humans , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3/genetics , Muscles/metabolism , RNA/metabolism
2.
Front Pediatr ; 10: 910660, 2022.
Article in English | MEDLINE | ID: mdl-35757141

ABSTRACT

Myotonic dystrophy type 1 (DM1) is the most prevalent inherited neuromuscular dystrophy in adults. It is a multisystem disease with cardiac manifestations. Whilst these are well-defined in adults, there are scarce published data in the pediatric population. This study aimed to investigate the yield and progression of cardiac disease in pediatric DM1 patients, focusing on congenital DM1 (cDM1). Methods: A retrospective observational study of all pediatric DM1 patients referred to our center (December 2000-November 2020) was conducted. Patients were classified into DM1 forms according to age of symptom onset and disease severity. Patients underwent clinical and cardiac evaluation with 12-lead ECG, transthoracic echocardiography and 24-h ECG Holter monitoring. Results: 67 DM1 pediatric patients were included: 56 (83.6%) cDM1 and 11 (16.4%) non-cDM1. Median follow-up time of cDM1 patients was 8.0 [3.25-11.0] years. 49 (87.5%) cDM1 patients had baseline 12-lead ECG and 44 (78.6%) had a follow-up 12-lead-ECG, with a median follow-up time from diagnosis to baseline ECG of 2.8 [1.0-8.5] years and to follow-up ECG of 10.9 [5.7-14.2] years. Overall, 43 (87.8%) presented ECG abnormalities, most commonly in the form of asymptomatic conduction disease (n = 23, 46.9%), of which 21 (42.9%) had first degree atrioventricular block (1st AVB). There was an increase of prevalence from baseline to follow-up ECG in low QRS voltage (16.7%), poor R wave progression (13.9%), abnormal repolarisation (11.9%) and 1st AVB (7.6%). one patient (1.8%) underwent pacemaker implantation for syncope in the context of progressive conduction disease. No patients developed left ventricular systolic dysfunction. 4 (7.1%) cDM1 patients died during follow up, including three who died suddenly with no clear cause of death. Conclusions: This study is the first to analyse the prevalence and progression of ECG abnormalities in cDM1 pediatric patients. The high prevalence of abnormal findings, progressive changes and number of potentially associated events (1 pacemaker implantation and 3 unexplained sudden deaths) stresses the importance of systematic and continued cardiac evaluation of these patients.

3.
Muscle Nerve ; 63(4): 553-562, 2021 04.
Article in English | MEDLINE | ID: mdl-33462896

ABSTRACT

BACKGROUND: Quantitative muscle MRI as a sensitive marker of early muscle pathology and disease progression in adult-onset myotonic dystrophy type 1. The utility of muscle MRI as a marker of muscle pathology and disease progression in adult-onset myotonic dystrophy type 1 (DM1) was evaluated. METHODS: This prospective, longitudinal study included 67 observations from 36 DM1 patients (50% female), and 92 observations from 49 healthy adults (49% female). Lower-leg 3T magnetic resonance imaging (MRI) scans were acquired. Volume and fat fraction (FF) were estimated using a three-point Dixon method, and T2-relaxometry was determined using a multi-echo spin-echo sequence. Muscles were segmented automatically. Mixed linear models were conducted to determine group differences across muscles and image modality, accounting for age, sex, and repeated observations. Differences in rate of change in volume, T2-relaxometry, and FF were also determined with mixed linear regression that included a group by elapsed time interaction. RESULTS: Compared with healthy adults, DM1 patients exhibited reduced volume of the tibialis anterior, soleus, and gastrocnemius (GAS) (all, P < .05). T2-relaxometry and FF were increased across all calf muscles in DM1 compared to controls. (all, P < .01). Signs of muscle pathology, including reduced volume, and increased T2-relaxometry and FF were already noted in DM1 patients who did not exhibit clinical motor symptoms of DM1. As a group, DM1 patients exhibited a more rapid change than did controls in tibialis posterior volume (P = .05) and GAS T2-relaxometry (P = .03) and FF (P = .06). CONCLUSIONS: Muscle MRI renders sensitive, early markers of muscle pathology and disease progression in DM1. T2 relaxometry may be particularly sensitive to early muscle changes related to DM1.


Subject(s)
Leg/pathology , Magnetic Resonance Imaging , Muscle, Skeletal/pathology , Myotonic Dystrophy/pathology , Adolescent , Adult , Aged , Biomarkers/analysis , Female , Humans , Leg/physiopathology , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Middle Aged , Muscle, Skeletal/physiopathology , Myotonic Dystrophy/diagnosis , Myotonic Dystrophy/physiopathology , Prospective Studies , Young Adult
4.
BMC Neurol ; 20(1): 53, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32050933

ABSTRACT

BACKGROUND: Myotonic dystrophy type 1 (DM1) is the most common disease that can cause muscle weakness and atrophy among adults. Normal pressure hydrocephalus (NPH) is characterized by the triad of gait disturbance, cognitive impairment and urinary incontinence. The association between DM1 and NPH is extremely rare. We report a Chinese female patient with DM1 in association with NPH. CASE PRESENTATION: The patient presented with a history of 3-year of walking instability and cognitive impairment. Her brain MRI showed ventriculomegaly with normal cerebrospinal fluid (CSF) pressure and the CSF tap-test was positive, which indicated the diagnosis of probable NPH. DM1 was confirmed by genetic testing. CONCLUSIONS: Four patients with DM1-NPH association were found before. The association between NPH and DM1 may not be just a coincidence, NPH may occur in DM1 later in life and it is vital to recognize the association as a shunt surgery may improve patients' quality of life.


Subject(s)
Hydrocephalus, Normal Pressure/diagnosis , Myotonic Dystrophy/diagnosis , Aged , Female , Humans , Magnetic Resonance Imaging , Quality of Life , Urinary Incontinence/etiology
5.
Front Neurol ; 10: 1229, 2019.
Article in English | MEDLINE | ID: mdl-31849810

ABSTRACT

Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease characterized by multi-system involvement. Affected organ system includes skeletal muscle, heart, gastro-intestinal system and the brain. In this review, we evaluate the evidence for alterations in insulin signaling and their relation to clinical DM1 features. We start by summarizing the molecular pathophysiology of DM1. Next, an overview of normal insulin signaling physiology is given, and evidence for alterations herein in DM1 is presented. Clinically, evidence for involvement of insulin signaling pathways in DM1 is based on the increased incidence of insulin resistance seen in clinical practice and recent trial evidence of beneficial effects of metformin on muscle function. Indirectly, further support may be derived from certain CNS derived symptoms characteristic of DM1, such as obsessive-compulsive behavior features, for which links with altered insulin signaling has been demonstrated in other diseases. At the basic scientific level, several pathophysiological mechanisms that operate in DM1 may compromise normal insulin signaling physiology. The evidence presented here reflects the importance of insulin signaling in relation to clinical features of DM1 and justifies further basic scientific and clinical, therapeutically oriented research.

6.
J Neuromuscul Dis ; 3(3): 309-332, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27854224

ABSTRACT

Muscular dystrophies (MDs) are clinically and molecularly a highly heterogeneous group of single-gene disorders that primarily affect striated muscles. Cardiac disease is present in several MDs where it is an important contributor to morbidity and mortality. Careful monitoring of cardiac issues is necessary but current management of cardiac involvement does not effectively protect from disease progression and cardiac failure. There is a critical need to gain new knowledge on the diverse molecular underpinnings of cardiac disease in MDs in order to guide cardiac treatment development and assist in reaching a clearer consensus on cardiac disease management in the clinic. Animal models are available for the majority of MDs and have been invaluable tools in probing disease mechanisms and in pre-clinical screens. However, there are recognized genetic, physiological, and structural differences between human and animal hearts that impact disease progression, manifestation, and response to pharmacological interventions. Therefore, there is a need to develop parallel human systems to model cardiac disease in MDs. This review discusses the current status of cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSC) to model cardiac disease, with a focus on Duchenne muscular dystrophy (DMD) and myotonic dystrophy (DM1). We seek to provide a balanced view of opportunities and limitations offered by this system in elucidating disease mechanisms pertinent to human cardiac physiology and as a platform for treatment development or refinement.


Subject(s)
Heart Diseases/physiopathology , Induced Pluripotent Stem Cells , Muscular Dystrophy, Duchenne/physiopathology , Myocytes, Cardiac/cytology , Myotonic Dystrophy/physiopathology , Heart Diseases/etiology , Humans , Models, Cardiovascular , Muscular Dystrophies/etiology , Muscular Dystrophies/genetics , Muscular Dystrophies/physiopathology , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/genetics , Myotonic Dystrophy/complications , Myotonic Dystrophy/genetics , Pluripotent Stem Cells
7.
Acta Histochem Cytochem ; 43(6): 149-56, 2010 Dec 29.
Article in English | MEDLINE | ID: mdl-21245981

ABSTRACT

Myotonic dystrophy (DM1) is known to be an adult-onset muscular dystrophy caused by the expansion of CTG repeats within the 3' untranslated region of the dystrophin myotonin protein kinase (DMPK) gene. The clinical features of DM1 include CNS symptoms, such as cognitive impairment and personality changes, the pathogenesis of which remains to be elucidated. We hypothesized that the distribution of neuropathological changes might be correlated with the extent of the length of the CTG repeats in the DMPK genes in DM1 patients. We studied the neuropathological changes in the brains of subjects with DM1 and investigated the extent of somatic instability in terms of CTG repeat expansion in the different brain regions of the same individuals by Southern blot analysis. The neuropathological changes included état criblé in the cerebral deep white matter and neurofibrillary tangles immunoreactive for phosphorylated tau in the hippocampus and entorhinal cortex, both of which were compatible with the subcortical dementia in DM1 patients. However, the length of the CTG repeats did not correlate with the regional differences in the extent of neuropathological changes. Our data suggested that pathomechanisms of dementia in DM1 might be more multifactorial rather than a toxic gain-of-function due to mutant RNA.

SELECTION OF CITATIONS
SEARCH DETAIL