Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-39017877

ABSTRACT

Solar thermal energy storage (TES) is an outstanding innovation that can help solar technology remain relevant during nighttime and cloudy days. TES using phase change material (PCM) is an avant-garde solution for a clean and renewable energy transition. The present study unveils the unique potential of MXene as a performance enhancer in lauric acid (LA), which functions as a base PCM. The addition of graphene nanoplatelet (GNP) into the LA-MXene composite is prepared to comprehend and evaluate the benefits and detriments of adding carbon-based nanomaterial into the PCM via a two-step homogenizing method. A similar weight percentage of MXene and GNP at 0.75 was used for composite synthesis. The study found that the enthalpy of LA-MXene is comparable to LA at 169.87 J/kg and greater than LA-MXene/GNP, which has 137.53 J/kg. Regarding thermal storage performance, LA-MXene exhibited outstanding performance compared to LA-MXene/GNP in terms of enthalpy efficiency (λ) and relative enthalpy efficiency (η), achieving 95.4% and 96.1%, respectively. This is supported by the XPS spectra, which show that the crosslinking structure acted as a barrier, reinforcing the material and preventing further thermal degradation. This has resulted in robust and denser shells that significantly improved light absorption, enhancing both the photothermal conversion and thermal energy storage efficiency of LA/MXene. The present study reveals that LA-MXene is a promising and optimal candidate for the feasibility and reliability of TES in solar renewable energy applications. It was observed that the incorporation of exclusive MXene may effectively address the limitations of LA as a conventional PCM and surpass the traditional role of GNP. This study offers valuable insights into the superior performance of MXene alone, eliminating the need for doping with various nanomaterials and thereby reducing the complexity in synthesizing the PCM.

2.
Carbohydr Polym ; 339: 122232, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823905

ABSTRACT

In this study, new types of hybrid double-network (DN) hydrogels composed of polyvinyl alcohol (PVA), chitosan (CH), and sodium alginate (SA) are introduced, with the hypothesis that this combination and incorporating multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) will enhance osteogenetic differentiation and the structural and mechanical properties of scaffolds for bone tissue engineering applications. Initially, the impact of varying mass ratios of the PVA/CH/SA mixture on mechanical properties, swelling ratio, and degradability was examined. Based on this investigation, a mass ratio of 4:6:6 was determined to be optimal. At this ratio, the hydrogel demonstrated a Young's modulus of 47.5 ± 5 kPa, a swelling ratio of 680 ± 6 % after 3 h, and a degradation rate of 46.5 ± 5 % after 40 days. In the next phase, following the determination of the optimal mass ratio, CNTs and GNPs were incorporated into the 4:6:6 composite resulting in a significant enhancement in the electrical conductivity and stiffness of the scaffolds. The introduction of CNTs led to a notable increase of 36 % in the viability of MG63 osteoblast cells. Additionally, the inhibition zone test revealed that GNPs and CNTs increased the diameter of the inhibition zone by 49.6 % and 52.6 %, respectively.


Subject(s)
Alginates , Bone Regeneration , Chitosan , Hydrogels , Polyvinyl Alcohol , Tissue Engineering , Tissue Scaffolds , Chitosan/chemistry , Alginates/chemistry , Alginates/pharmacology , Polyvinyl Alcohol/chemistry , Tissue Scaffolds/chemistry , Humans , Bone Regeneration/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Engineering/methods , Nanotubes, Carbon/chemistry , Osteoblasts/drug effects , Osteoblasts/cytology , Graphite/chemistry , Graphite/pharmacology , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Survival/drug effects , Cell Line
3.
Angew Chem Int Ed Engl ; 63(32): e202405964, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38702293

ABSTRACT

Highly ordered assembly of two-dimensional (2D) nanoplatelets plays a key role in enhancing the mechanical properties of layered nanocomposites. Layer-by-layer (LbL) assembly, vacuum-assisted filtration, and blade coating have been used to fabricate layered nanocomposites. However, the intrinsic wrinkles of 2D nanoplatelets and defects derived from assembling approaches make it difficult to align 2D nanoplatelets. Recently, the team of Prof. Qunfeng Cheng at Beihang University and their collaborator, Prof. Ray H. Baughman at the University of Texas at Dallas developed a novel approach for aligning graphene and Ti3C2Tx MXene nanoplatelets by nanoconfined assembly through continuous vacuum-assisted filtration. The resultant MXene-bridged sheet has ultrastrong mechanical properties and low porosity, providing a new concept for assembling 2D nanoplatelets into aligned and compact high-performance layered nanocomposites.

4.
ACS Nano ; 18(18): 11921-11932, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38651695

ABSTRACT

Chirality is a structural metric that connects biological and abiological forms of matter. Although much progress has been made in understanding the chemistry and physics of chiral inorganic nanoparticles over the past decade, almost nothing is known about chiral two-dimensional (2D) borophene nanoplatelets and their influence on complex biological networks. Borophene's polymorphic nature, derived from the bonding configurations among boron atoms, distinguishes it from other 2D materials and allows for further customization of its material properties. In this study, we describe a synthetic methodology for producing chiral 2D borophene nanoplatelets applicable to a variety of structural polymorphs. Using this methodology, we demonstrate feasibility of top-down synthesis of chiral χ3 and ß12 phases of borophene nanoplatelets via interaction with chiral amino acids. The chiral nanoplatelets were physicochemically characterized extensively by various techniques. Results indicated that the thiol presenting amino acids, i.e., cysteine, coordinates with borophene in a site-selective manner, depending on its handedness through boron-sulfur conjugation. The observation has been validated by circular dichroism, X-ray photoelectron spectroscopy, and 11B NMR studies. To understand how chiral nanoplatelets interact with biological systems, mammalian cell lines were exposed to them. Results showed that the achiral as well as the left- and right-handed biomimetic χ3 and ß12 borophene nanoplatelets have distinct interaction with the cellular membrane, and their internalization pathway differs with their chirality. By engineering optical, physical, and chemical properties, these chiral 2D nanomaterials could be applied successfully to tuning complex biological events and find applications in photonics, sensing, catalysis, and biomedicine.

5.
ACS Nano ; 18(11): 8248-8258, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38428021

ABSTRACT

Imposing quantum confinement has the potential to significantly modulate both the structural and optical parameters of interest in many material systems. In this work, we investigate strongly confined ultrathin perovskite nanoplatelets APbBr3. We compare the all-inorganic and hybrid compositions with the A-sites cesium and formamidinium, respectively. Compared to each other and their bulk counterparts, the materials show significant differences in variable-temperature structural and optical evolution. We quantify and correlate structural asymmetry with the excitonic transition energy, spectral purity, and emission rate. Negative thermal expansion, structural and photoluminescence asymmetry, photoluminescence full width at half-maximum, and splitting between bright and dark excitonic levels are found to be reduced in the hybrid composition. This work provides composition- and structure-based mechanisms for engineering of the excitons in these materials.

6.
Small ; : e2309494, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441357

ABSTRACT

Semiconductor colloidal quantum wells (CQWs) have emerged as a promising class of gain materials to be used in colloidal lasers. Although low gain thresholds are achieved, the required high gain coefficient levels are barely met for the applications of electrically-driven lasers which entails a very thin gain matrix to avoid charge injection limitations. Here, "giant" CdSe@CdS colloidal quantum well heterostructures of 9.5 to 17.5 monolayers (ML) in total with corresponding vertical thickness from 3.0 to 5.8 nm that enable record optical gain is shown. These CQWs achieve ultra-high material gain coefficients up to ≈140 000 cm-1 , obtained by systematic variable stripe length (VSL) measurements and independently validated by transient absorption (TA) measurements, owing to their high number of states. This exceptional gain capacity is an order of magnitude higher than the best levels reported for the colloidal quantum dots. From the dispersion of these quantum wells, low threshold amplified spontaneous emission in water providing an excellent platform for optofluidic lasers is demonstrated. Also, employing these giant quantum wells, whispering gallery mode (WGM) lasing with an ultra-low threshold of 8 µJ cm-2 is demonstrated. These findings indicate that giant CQWs offer an exceptional platform for colloidal thin-film lasers and in-solution lasing applications.

7.
Molecules ; 28(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067551

ABSTRACT

Waste wood, which has a large amount of cellulose fibers, should be transformed into useful materials for addressing environmental and resource problems. Thus, this study analyzed the application of waste wood as supercapacitor electrode material. First, cellulose fibers were extracted from waste wood and mixed with different contents of graphene nanoplatelets (GnPs) in water. Using a facile filtration method, cellulose papers with GnPs were prepared and converted into carbon papers through carbonization and then to porous activated carbon papers containing GnPs (ACP-GnP) through chemical activation processes. For the morphology of ACP-GnP, activated carbon fibers with abundant pores were formed. The increase in the amount of GnPs attached to the fiber surfaces decreased the number of pores. The Brunauer-Emmett-Teller surface areas and specific capacitance of the ACP-GnP electrodes decreased with an increase in the GnP content. However, the galvanostatic charge-discharge curves of ACPs with higher GnP contents gradually changed into triangular and linear shapes, which are associated with the capacitive performance. For example, ACP with 15 wt% GnP had a low mass transfer resistance and high charge delivery of ions, resulting in the specific capacitance value of 267 Fg-1 owing to micropore and mesopore formation during the activation of carbon paper.

8.
Heliyon ; 9(8): e19228, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37654458

ABSTRACT

This research aimed to evaluate and compare the efficacy of three distinct methods for forecasting the thermal conductivity of GNP-Alumina hybrid nanofluids. The methods under consideration were artificial neural network (ANN), response surface methodology (RSM), and linear regression (LR). The predictive performance of the ANN model was investigated in relation to the number of neurons in the hidden layer. The findings revealed that the optimal number of neurons was 7, which produced the best performance with an overall mean square error (MSE) of 1.08E-06. The correlation coefficient was also high at 0.99799. The RSM approach involved testing linear, quadratic, cubic, and quartic models, with the quadratic model showing the highest predicted R2 (0.9721) values, indicating that it provided the best fit to the data. Finally, the LR model was developed using a backward elimination approach, with temperature and volume fraction being the significant variables in the final model. Overall, the ANN model produced the most accurate predictions, followed by the RSM and LR models. These findings suggest that the ANN and RSM techniques can be effective tools for forecasting the thermal conductivity of nanofluids, and highlight the importance of selecting appropriate model parameters for optimal performance.

9.
Biofabrication ; 15(4)2023 07 20.
Article in English | MEDLINE | ID: mdl-37348491

ABSTRACT

Three-dimensional (3D)in vitrotumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions. Here, we developed a nanoengineered ion-covalent cross-linkable bioink to construct 3D bioprinted organotypic tumor models. The bioink was designed to implement the tumor ECM by creating an interpenetrating network composed of gelatin methacryloyl (GelMA), a light cross-linkable polymer, and synthetic nanosilicate (Laponite) that exhibits a unique ionic charge to improve retention of biological factors released by the encapsulated cells and assist in paracrine signals. The physical properties related to printability were evaluated to analyze the effect of Laponite hydrogel on bioink. Low GelMA (5%) with high Laponite (2.5%-3.5%) composite hydrogels and high GelMA (10%) with low Laponite (1.0%-2.0%) composite hydrogels showed acceptable mechanical properties for 3D printing. However, a low GelMA composite hydrogel with a high Laponite content could not provide acceptable cell viability. Fluorescent cell labeling studies showed that as the proportion of Laponite increased, the cells became more aggregated to form larger 3D tumor structures. Reverse transcription-polymerase chain reaction (RT-qPCR) and western blot experiments showed that an increase in the Laponite ratio induces upregulation of growth factor and tissue remodeling-related genes and proteins in tumor cells. In contrast, cell cycle and proliferation-related genes were downregulated. On the other hand, concerning fibroblasts, the increase in the Laponite ratio indicated an overall upregulation of the mesenchymal phenotype-related genes and proteins. Our study may provide a rationale for using Laponite-based hydrogels in 3D cancer modeling.


Subject(s)
Bioprinting , Neoplasms , Humans , Tissue Scaffolds/chemistry , Bioprinting/methods , Tissue Engineering/methods , Gelatin/chemistry , Printing, Three-Dimensional , Hydrogels/pharmacology , Hydrogels/chemistry , Biological Factors , Tumor Microenvironment
10.
Polymers (Basel) ; 15(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37299259

ABSTRACT

Natural lignocellulosic fibers (NLFs) have been used as a reinforcement for polymer matrix composites in the past couple of decades. Their biodegradability, renewability, and abundance make them appealing for sustainable materials. However, synthetic fibers surpass NLFs in mechanical and thermal properties. Combining these fibers as a hybrid reinforcement in polymeric materials shows promise for multifunctional materials and structures. Functionalizing these composites with graphene-based materials could lead to superior properties. This research optimized the tensile and impact resistance of a jute/aramid/HDPE hybrid nanocomposite by the addition of graphene nanoplatelets (GNP). The hybrid structure with 10 jute/10 aramid layers and 0.10 wt.% GNP exhibited a 2433% increase in mechanical toughness, a 591% increase in tensile strength, and a 462% reduction in ductility compared to neat jute/HDPE composites. A SEM analysis revealed the influence of GNP nano-functionalization on the failure mechanisms of these hybrid nanocomposites.

11.
Polymers (Basel) ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299347

ABSTRACT

The craving for controllable assembly of geometrical nanostructures from artificial building motifs, which is routinely achieved in naturally occurring systems, has been a perpetual and outstanding challenge in the field of chemistry and materials science. In particular, the assembly of nanostructures with different geometries and controllable dimensions is crucial for their functionalities and is usually achieved with distinct assembling subunits via convoluted assembly strategies. Herein, we report that with the same building subunits of α-cyclodextrin (α-CD)/block copolymer inclusion complex (IC), geometrical nanoplatelets with hexagonal, square, and circular shapes could be produced by simply controlling the solvent conditions via one-step assembly procedure, driven by the crystallization of IC. Interestingly, these nanoplatelets with different shapes shared the same crystalline lattice and could therefore be interconverted to each other by merely tuning the solvent compositions. Moreover, the dimensions of these platelets could be decently controlled by tuning the overall concentrations.

12.
Cellulose (Lond) ; 30(7): 4499-4509, 2023.
Article in English | MEDLINE | ID: mdl-37113142

ABSTRACT

With the increased concern over environment protection, cellulose acetate (CA) has drawn great interests as an alternative for packaging material due to its biodegradability and abundant resources; whereas, the poor antistatic property and thermal conductivity restrict its application in packaging. In this work, we proposed a simple but effective strategy to produce high performance graphene nanoplatelet (GNP)/CA composite films via the consecutive homogenization and solvent casting processes. Relying on the spontaneous absorption of CA during homogenization, the GNP/CA produced shows an excellent dispersibility in the N,N-Dimethylformamide (DMF) solution and many fewer structural defects compared with GNPs alone. As a result, the composite films obtained exhibit simultaneously and significantly enhanced antistatic, heat dissipative and mechanical properties compared with CA. Specifically, the GNP/CA composite with the optimal formula has promising overall performances (namely, surface resistivity of 3.33 × 107 Ω/sq, in-plane thermal conductivity of 5.359 W ( m · K ) , out-of-plane thermal conductivity of 0.785 W ( m · K ) , and tensile strength of 37.1 MPa). Featured by its promising overall properties, simple production processes and biodegradability, the as-prepared GNP/CA composite film shows a great potential for application in packaging. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-023-05155-2.

13.
Anal Chim Acta ; 1249: 340897, 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-36868777

ABSTRACT

Benzaldehyde and 4-methyl benzaldehyde constitute a major part of the harmful volatile organic compounds (VOCs) found in the environment. Hence, rapid and selective detection of benzaldehyde derivatives are required to minimize the environmental degradation as well as the potential hazards on human health. In this study, the surface of the graphene nanoplatelets were functionalized with CuI nanoparticles for specific and selective detection of benzaldehyde derivatives by fluorescence spectroscopy. CuI-Gr nanoparticles exhibited higher efficiency towards the detection of benzaldehyde derivatives as compared to pristine CuI nanoparticles with detection limit (LOD) 2 ppm and 6 ppm for benzaldehyde and 4-methyl benzaldehyde respectively in aqueous medium. The LOD values for the detection of benzaldehyde and 4-methyl benzaldehyde by pristine CuI nanoparticles were poor and found to be 11 ppm and 15 ppm respectively. Fluorescence intensity of CuI-Gr nanoparticles were found to be quenched with increasing concentration (0-0.01 mg/mL) of the benzaldehyde and 4-methyl benzaldehyde. This novel graphene-based sensor was also found to be highly selective for the benzaldehyde derivatives as no changes in signal were detected in presence of other VOCs like formaldehyde and acetaldehyde.

14.
Nano Lett ; 23(6): 2148-2157, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36884029

ABSTRACT

Quantum confined lead halide perovskite nanoplatelets are anisotropic materials displaying strongly bound excitons with spectrally pure photoluminescence. We report the controlled assembly of CsPbBr3 nanoplatelets through varying the evaporation rate of the dispersion solvent. We confirm the assembly of superlattices in the face-down and edge-up configurations by electron microscopy, as well as X-ray scattering and diffraction. Polarization-resolved spectroscopy shows that superlattices in the edge-up configuration display significantly polarized emission compared to face-down counterparts. Variable-temperature X-ray diffraction of both face-down and edge-up superlattices uncovers a uniaxial negative thermal expansion in ultrathin nanoplatelets, which reconciles the anomalous temperature dependence of the emission energy. Additional structural aspects are investigated by multilayer diffraction fitting, revealing a significant decrease in superlattice order with decreasing temperature, with a concomitant expansion of the organic sublattice and increase of lead halide octahedral tilt.

15.
Nanotechnology ; 34(26)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36963104

ABSTRACT

Carbon nanoparticle-reinforced adhesive films have been explored as surface sensors for the detection of small strains. It has been observed that graphene nanoplatelets, GNPs, promote a significant increase of the gauge factor when compared to carbon nanotubes, CNTs (5.6 to 0.6, respectively, at low strains), due to their intrinsic 2D nature. The application as surface sensors for the monitoring of the strain field in an aluminum plate has been proven to be successful, with a repeatable signal under consecutive cycles despite some irreversibility in the first one for GNPs. Furthermore, the electrical response given by the sensors under plastic deformation of the aluminum plate was in total agreement with the mechanical response validated by numerical analysis, proving the high potential of the proposed adhesive film for sensing purposes.

16.
Polymers (Basel) ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36772029

ABSTRACT

The purpose of this research was to promote the recycling of pellet asphalt with Crumb Rubber Modifier (CRM) and Graphite Nanoplatelet (GNP) in pothole restoration. In this study, several laboratory tests were carried out on mixes containing CRM content ratios of 5%, 10%, and 20% and GNP content of 3% and 6% in order to identify the ideal mixing ratio of pellet-type asphalt paving materials. The Marshall stability test, the Hamburg wheel tracking test, and the dynamic modulus test were all performed to compare the effectiveness of the proposed method and heated asphalt combinations. Afterward, the full-scale testbed was conducted to verify the practical application between the proposed method and popular pothole-repairing materials. Both laboratory and field test findings confirmed that the asphalt pavement using 5% CRM and 6% GNP improved the resistance to plastic deformation and anti-stripping compared to the generally heated asphalt paving material, thereby extending road life. However, the resistance to fatigue cracking can be slightly reduced by incorporating these additives. Overall, the CRM and GNP asphalt pellet approach is a feasible solution for sustainable pavement maintenance and rehabilitation, particularly in small-scale damage areas such as potholes.

17.
Acta Biomater ; 157: 701-719, 2023 02.
Article in English | MEDLINE | ID: mdl-36476647

ABSTRACT

Zinc (Zn)-based alloys and composites are gaining increasing interest as promising biodegradable implant materials due to their appropriate biodegradation rates and biological functionalities. However, the inadequate mechanical strength and ductility of pure Zn have restricted its application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) fabricated via powder metallurgy were investigated as potential biodegradable implant materials. The microstructures, mechanical properties, and corrosion behaviors of the GNP-reinforced ZMCs were characterized using optical microscopy, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, Raman spectroscopy, compression testing, and electrochemical and immersion testing in Hanks' balanced salt solution (HBSS). The microstructural study revealed that the GNP was uniformly dispersed in the ZMCs after ball milling and sintering at 420°C for 6 h. The microhardness, compressive yield strength, ultimate compressive strength, and compressive strain of the ZMC-0.2GNP were 69 HV, 123 MPa, 247 MPa, and 23 %, respectively, improvements of ∼ 18 %, 50%, ∼ 28%, and ∼ 15% compared to pure Zn. The corrosion rate of the ZMCs were lower than that of the pure Zn in HBSS, and the ZMC-0.2GNP composite exhibited the lowest corrosion rate of 0.09 mm/y as measured by electrochemical testing. Biocompatibility assessment indicated that the diluted extracts of pure Zn and GNP-reinforced ZMCs with concentrations of 12.5% and 6.25% exhibited no cytotoxicity after cell culturing for up to 5 days, and the diluted extracts of ZMC-0.2 GNP composite revealed more than 90% cell viability after cell culturing of 3 days, showing the satisfying cytocompatibility. STATEMENT OF SIGNIFICANCE: Biodegradable Zn is a promising candidate material for orthopedic implant applications. Nonetheless, the inadequate mechanical strength and ductility of pure Zn limited its clinical application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) were developed via powder metallurgy, and the reinforcing efficacy of GNP on their mechanical properties was investigated. The addition of GNP significantly improved the compressive properties of ZMCs, with the Zn-0.2GNP composite exhibiting the best compressive properties, including 123 MPa compressive yield strength, 247 MPa ultimate compressive strength, and 22.9% compressive strain. Further, the 12.5% concentration extract of the ZMCs exhibited no cytotoxicity after cell culturing for 5 d toward SaOS2 cells.


Subject(s)
Biocompatible Materials , Graphite , Biocompatible Materials/chemistry , Materials Testing , Graphite/pharmacology , Corrosion , Zinc/pharmacology , Zinc/chemistry , Powders , Absorbable Implants , Alloys/chemistry
18.
Macromol Biosci ; 23(1): e2200333, 2023 01.
Article in English | MEDLINE | ID: mdl-36287084

ABSTRACT

Shear-thinning biomaterials (STBs) based on gelatin-silicate nanoplatelets (SNs) are emerging as an alternative to conventional coiling and clipping techniques in the treatment of vascular anomalies. Improvements in the cohesion of STB hydrogels pave the way toward their translational application in minimally invasive therapies such as endovascular embolization repair. In the present study, sodium phytate (Phyt) additives are used to tune the electrostatic network of SNs-gelatin STBs, thereby promoting their mechanical integrity and facilitating injectability through standard catheters. We show that an optimized amount of Phyt enhances storage modulus by approximately one order of magnitude and reduces injection force by ≈58% without compromising biocompatibility and hydrogel wet stability. The Phyt additives are found to decrease the immune responses induced by SNs. In vitro embolization experiments suggest a significantly lower rate of failure in Phyt-incorporated STBs than in control groups. Furthermore, the addition of Phyt leads to accelerated blood coagulation (reduces clotting time by ≈45% compared to controls) due to the contributions of negatively charged phosphate groups, which aid in the prolonged durability of STB in coagulopathic patients. Therefore, the proposed approach is an effective method for the design of robust and injectable STBs for minimally invasive treatment of vascular malformations.


Subject(s)
Biocompatible Materials , Hemostatics , Humans , Biocompatible Materials/pharmacology , Gelatin/pharmacology , Phytic Acid , Silicates/pharmacology , Hydrogels/pharmacology
19.
ACS Catal ; 13(13): 9018-9024, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-38283073

ABSTRACT

Semiconductor quantum dots (QDs) offer many advantages as photocatalysts for synthetic photoredox catalysis, but no reports have explored the use of QDs with nickel catalysts for C-C bond formation. We show here that 5.7 nm CdS QDs are robust photocatalysts for photoredox-promoted cross-electrophile coupling (40 000 TON). These conditions can be utilized on small scale (96-well plate) or adapted to flow. NMR studies show that triethanolamine (TEOA) capped QDs are the active catalyst and that TEOA can displace native phosphonate and carboxylate ligands, demonstrating the importance of QD surface chemistry.

20.
Adv Funct Mater ; 33(51)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38558868

ABSTRACT

Sac embolization of abdominal aortic aneurysms (AAAs) remains clinically limited by endoleak recurrences. These recurrences are correlated with recanalization due to the presence of endothelial lining and matrix metalloproteinases (MMPs)-mediated aneurysm progression. This study incorporated doxycycline (DOX), a well-known sclerosant and MMPs inhibitor, into a shear-thinning biomaterial (STB)-based vascular embolizing hydrogel. The addition of DOX was expected to improve embolizing efficacy while preventing endoleaks by inhibiting MMP activity and promoting endothelial removal. The results showed that STBs containing 4.5% w/w silicate nanoplatelet and 0.3% w/v of DOX were injectable and had a 2-fold increase in storage modulus compared to those without DOX. STB-DOX hydrogels also reduced clotting time by 33% compared to untreated blood. The burst release of DOX from the hydrogels showed sclerosing effects after 6 h in an ex vivo pig aorta model. Sustained release of DOX from hydrogels on endothelial cells showed MMP inhibition (ca. an order of magnitude larger than control groups) after 7 days. The hydrogels successfully occluded a patient-derived abdominal aneurysm model at physiological blood pressures and flow rates. The sclerosing and MMP inhibition characteristics in the engineered multifunctional STB-DOX hydrogels may provide promising opportunities for the efficient embolization of aneurysms in blood vessels.

SELECTION OF CITATIONS
SEARCH DETAIL