Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.324
Filter
1.
Nano Lett ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250914

ABSTRACT

Fluorescent nanodiamonds (FNDs) with nitrogen-vacancy centers are pivotal for advancing quantum photonics and imaging through deterministic quantum state manipulation. However, deterministic integration of quantum emitters into photonic devices remains a challenge due to the need for high coupling efficiency and Purcell enhancement. We report a deterministic FND-integrated nanofocusing device achieved by assembling FNDs at a plasmonic waveguide tip through plasmonic-enhanced optical trapping. This technique not only increases the emission rate by 58.6 times compared to isolated FNDs but also preferentially directs radiation into the waveguide at a rate 5.3 times higher than that into free space, achieving an exceptional figure-of-merit of ∼3000 for efficient energy transfer. Our findings represent a significant step toward deterministic integration in quantum imaging and communication, opening new avenues for quantum technology advancements.

2.
Chemphyschem ; : e202400738, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258742

ABSTRACT

The electrochemical nitrate reduction reaction (NO3-RR) is a novel green method for ammonia synthesis. The development of outstanding NO3-RR performance is based on reasonable catalyst. Metal oxides have garnered significant attention due to their exceptional electrical conductivity and catalytic properties. Doping serves as an effective strategy for enhancing catalyst performance due to its ability to change the electron cloud distribution and energy levels. In this study, we develop a heterojunction catalyst Fe doped copper oxide nanosheet and cobalt tetroxide nanowire growing on carbon cloth simultaneously (Fe-CuO@Co3O4/CC) via hydrothermal method. The well-designed Fe-CuO@Co3O4/CC has excellent NH3 yield (470.9 µmol h-1 cm-2) and Faraday efficiency (FE: 84.4%) at -1.2 V versus reversible hydrogen electrode (vs. RHE). The heterostructure increases the specific surface area of the catalyst, and the possibility of contact between the catalyst and NO3- ions, enhances the catalytic efficiency. In addition, the catalyst has excellent stability and can stably carry out the electrocatalytic nitrate reduction reaction (NO3-RR), which provides a way for further research on the high-efficiency reduction of nitrate.

3.
ACS Sens ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259026

ABSTRACT

In this work, the gas sensing properties of a single ZnO nanowire (NW) are investigated, simultaneously in terms of photoluminescence (PL) and photocurrent (PC) response to NO2 gas, with the purpose of giving new insights on the gas sensing mechanism of a single 1D ZnO nanostructure. A single ZnO NW sensing device was fabricated, characterized, and compared with a sample made of bundles of ZnO NWs. UV near-band-edge PL emission spectroscopy was carried out at room temperature and by lowering the temperature down to 77 K, which allows detection of resolved PL peaks related to different excitonic transition regions. Surface effects were observed in PL maps, considering different nano and microstructures. Electrical and optical measurements were acquired at the same time during the NO2 gas exposure, allowing for the comparison of PL and PC response times and signal recovery. During NO2 gas desorption, irreversible behavior in the surface-related and donor-acceptor pair (DAP) regions is interpreted as the effect of an initial transient when electronic transfer from the gas molecules to the bulk occurs through the ZnO NW surface which acts as a channel. To the best of our knowledge, this is the first work which investigates the simultaneous PL optical and PC electrical response signals of a single ZnO NW to gas exposure.

4.
J Colloid Interface Sci ; 677(Pt A): 150-157, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39089123

ABSTRACT

The development of core-shelled heterostructures with the unique morphology can improve the electrochemical properties of hybrid supercapacitors (HSC). Here, CuCo2S4 nanowire arrays (NWAs) are vertically grown on nickel foam (NF) utilizing hydrothermal synthesis. Then, CoMo-LDH nanosheets are uniformly deposited on the CuCo2S4 NWAs by electrodeposition to obtain the CoMo-LDH@CuCo2S4 NWAs/NF electrode. Due to the superior conductivity of CuCo2S4 (core) and good redox activity of CoMo-LDH (shell), the electrode shows excellent electrochemical properties. The electrode's specific capacity is 1271.4 C g-1 at 1 A g-1, and after 10, 000 cycles, its capacity retention ratio is 92.2 % at 10 A g-1. At a power density of 983.9 W kg-1, the CoMo-LDH@CuCo2S4 NWAs/NF//AC/NF device has an energy density of 52.2 Wh kg-1. This indicates that CoMo-LDH@CuCo2S4/NF has a great potential for supercapacitors.

5.
Sci Rep ; 14(1): 18260, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107383

ABSTRACT

The Boerdijk-Coxeter helix (BC helix or tetrahelix) is a linear stacking of regular tetrahedra. Although the BC helix exhibits an aperiodic nature, structures resembling the BC helix with periodicity are found in materials. To understand such structures, we considered a modification of the BC helix to introduce periodicity. By adjusting the relative rotation of adjacent tetrahedra, we demonstrated that periodic arrangements consisting of 8, 11, and 14 tetrahedra have appearances similar to that of the BC helix.

6.
Appl Spectrosc ; : 37028241267892, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39091019

ABSTRACT

Raman spectroscopy is among the top analytical techniques for ultra-low-dense organic matter, crucial to the search for life and analysis of celestial body surfaces in space exploration missions. Achieving the ultimate sensitivity of in-situ Raman spectroscopy necessitates a breakthrough in detecting inelastically scattered light. Single-photon detectors (SPDs) operating in photon counting mode, which can differentiate between Raman and luminescence responses, are promising candidates for the challenging scientific requirements. Since large SPD arrays are not yet commercially available, a dispersive element can be adapted to a single-pixel detector. By exploiting chromatic dispersion in optical fibers and picosecond-pulsed excitation, we delay the arrivals of different spectral components onto a single-pixel SPD. This method also separates weak Raman signals from stronger luminescence through correlated time-domain measurements. We study the impact of fiber properties and the excitation wavelength of a pulsed laser on the spectral resolution of the fiber-dispersive Raman spectrometer (FDRS). Additionally, we demonstrate the FDRS's potential for studying biomarkers and discuss its feasibility for analyzing inclusions in ice matrices.

7.
Int J Biol Macromol ; 278(Pt 2): 134770, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151862

ABSTRACT

Lightweight, flexible, efficient and easy-to-manufacture electromagnetic interference (EMI) shielding materials are in urgent demand in the communications industry, artificial intelligence and wearable electronics. Based on the large size difference between one-dimensional carboxymethyl cellulose nanofibers (CMC) and large-diameter silver nanowires (AgNWs), layered AgNWs/CMC nanocomposite films with large effective thickness, and high conductivity were first prepared by a simple one-step vacuum filtration self-assembly technique. The unique layered structure of the AgNWs/CMC nanocomposite film significantly enhances the conductive pathways within the film, endowing it excellent EMI shielding performance. The results show that the conductivity of the ultra-thin film with a thickness of 20 µm is 3.72 × 106 S/m, and the EMI SE in the X-band is 87.7 dB, which can effectively shield electromagnetic signals in mobile communications. Furthermore, the AgNWs/CMCs nanocomposite films exhibit excellent thermal management performance, which can be heated to 100-180 °C within 10 s at a low voltage of 1.5 V. In particular, this nanocomposite film with a new layered structure provides a noval preparation idea for future EMI shielding materials and wearable heating devices.

8.
ACS Nano ; 18(33): 21873-21885, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39115266

ABSTRACT

The silicon nanowire field-effect transistor (SiNW FET) has been developed for over two decades as an ultrasensitive, label-free biosensor for biodetection. However, inconsistencies in manufacturing and surface functionalization at the nanoscale have led to poor sensor-to-sensor consistency in performance. Despite extensive efforts to address this issue through process improvements and calibration methods, the outcomes have not been satisfactory. Herein, based on the strong correlation between the saturation response of SiNW FET biosensors and both their feature size and surface functionalization, we propose a calibration strategy that combines the sensing principles of SiNW FET with the Langmuir-Freundlich model. By normalizing the response of the SiNW FET biosensors (ΔI/I0) with their saturation response (ΔI/I0)max, this strategy fundamentally overcomes the issues mentioned above. It has enabled label-free detection of nucleic acids, proteins, and exosomes within 5 min, achieving detection limits as low as attomoles and demonstrating a significant reduction in the coefficient of variation. Notably, the nucleic acid test results exhibit a strong correlation with the ultraviolet-visible (UV-vis) spectrophotometer measurements, with a correlation coefficient reaching 0.933. The proposed saturation response calibration strategy exhibits good universality and practicability in biological detection applications, providing theoretical and experimental support for the transition of mass-manufactured nanosensors from theoretical research to practical application.


Subject(s)
Biosensing Techniques , Nanowires , Silicon , Transistors, Electronic , Silicon/chemistry , Biosensing Techniques/instrumentation , Nanowires/chemistry , Calibration , Nucleic Acids/analysis
9.
Proc Natl Acad Sci U S A ; 121(35): e2408183121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172778

ABSTRACT

The conversion of CO2 into liquid fuels, using only sunlight and water, offers a promising path to carbon neutrality. An outstanding challenge is to achieve high efficiency and product selectivity. Here, we introduce a wireless photocatalytic architecture for conversion of CO2 and water into methanol and oxygen. The catalytic material consists of semiconducting nanowires decorated with core-shell nanoparticles, with a copper-rhodium core and a chromium oxide shell. The Rh/CrOOH interface provides a unidirectional channel for proton reduction, enabling hydrogen spillover at the core-shell interface. The vectorial transfer of protons, electrons, and hydrogen atoms allows for switching the mechanism of CO2 reduction from a proton-coupled electron transfer pathway in aqueous solution to hydrogenation of CO2 with a solar-to-methanol efficiency of 0.22%. The reported findings demonstrate a highly efficient, stable, and scalable wireless system for synthesis of methanol from CO2 that could provide a viable path toward carbon neutrality and environmental sustainability.

10.
ACS Appl Mater Interfaces ; 16(33): 44026-44032, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39133654

ABSTRACT

Aggregation-induced emission (AIE) molecules have great potential to enhance the performance of micronano lasers due to their excellent aggregated luminescence properties, so it is valuable to expand their applications in micronano lasers. In this work, a typical AIE active fluorescent dye motif 9,10-bis(2,2-diphenylvinyl) anthracene (BDPVA) was selected as the gain medium. First, drop-casting was used to fabricate BDPVA single-crystal nanowires, which can be used as Fabry-Perot (FP)-type resonators with a lasing threshold of 49.4 µJ/cm2. Furthermore, we innovatively doped BDPVA molecules as gain mediums into external polymer Whispering-Gallery-Mode (WGM)-type resonators via the emulsion self-assembly method. Fabricated BDPVA-doped polystyrene (PS) microspheres exhibit a much lower lasing threshold of 9.04 µJ/cm2. These results prove that the BDPVA molecules, in addition to realizing the reported AIE single-crystal lasers, can also be used as a guest-doped gain medium in the resonant cavity for obtaining better fluorescence gain. In addition, multimode tunability of two types of lasers has been successfully achieved by tuning the structure of the resonant cavity. This work further expands the application potential of AIE materials and will provide a useful reference for the rational design and fabrication of photonic micronano laser components using AIE materials.

11.
Nanomaterials (Basel) ; 14(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39120377

ABSTRACT

This brief review covers the thermoelectric properties of one-dimensional materials, such as nanowires and nanotubes. The highly localised peaks of the electronic density of states near the Fermi levels of these nanostructured materials improve the Seebeck coefficient. Moreover, quantum confinement leads to discrete energy levels and a modified density of states, potentially enhancing electrical conductivity. These electronic effects, coupled with the dominance of Umklapp phonon scattering, which reduces thermal conductivity in one-dimensional materials, can achieve unprecedented thermoelectric efficiency not seen in two-dimensional or bulk materials. Notable advancements include carbon and silicon nanotubes and Bi3Te2, Bi, ZnO, SiC, and Si1-xGex nanowires with significantly reduced thermal conductivity and increased ZT. In all these nanowires and nanotubes, efficiency is explored as a function of the diameter. Among these nanomaterials, carbon nanotubes offer mechanical flexibility and improved thermoelectric performance. Although carbon nanotubes theoretically have high thermal conductivity, the improvement of their Seebeck coefficient due to their low-dimensional structure can compensate for it. Regarding flexibility, economic criteria, ease of fabrication, and weight, carbon nanotubes could be a promising candidate for thermoelectric power generation.

12.
Small ; : e2404808, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136428

ABSTRACT

The construction of crystalline metal-organic frameworks with regular architectures supportive of enhanced mass transport and bubble diffusion is imperative for electrocatalytic applications; however, this poses a formidable challenge. Here, a method is presented that confines the growth of nano-architectures to the liquid-liquid interface. Using this method, vertically oriented single crystalline nanowire arrays of an Ag-benzenehexathiol (BHT) conductive metal-organic framework (MOF) are fabricated via an "in-plane self-limiting and out-of-plane epitaxial growth" mechanism. This material has excellent electrocatalytic features, including highly exposed active sites, intrinsically high electrical conductivity, and superhydrophilic and superaerophobic properties. Leveraging these advantages, the carefully designed material demonstrates superior electrocatalytic hydrogen evolution activity, resulting in a low Tafel slope of 66 mV dec-1 and a low overpotential of 275 mV at a high current density of 1 A cm-2. Finite element analysis (FEA) and in situ microscopic verification indicates that the nanowire array structure significantly enhances the electrolyte transport kinetics and promotes the rapid release of gas bubbles. The findings highlight the potential of using MOF-based ordered nanoarray structures for advanced electrocatalytic applications.

13.
ChemSusChem ; : e202401607, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212323

ABSTRACT

Electrochemical nitrate reduction to ammonia (NRA) is a promising sustainable way to synthesize ammonia (NH3) from nitrate (NO3-) contaminants. Cu-based electrocatalysts are frequently utilized for NRA due to their strong NO3- adsorption and de-oxygenation ability. However, this kind of catalyst usually possesses the weak water dissociation ability, resulting in insufficient proton supply in alkaline media to retard the following hydrogenation step of O-containing intermediates (*NOx, typically NO2-) to target NH3. Herein, NiO-incorporated Cu/Cu2O nanowires grown on nickel foam (p-CuNi@NF, p refers to plasma treatment) were synthesized via hydrothermal growth and subsequent O2 plasma treatment for efficient NRA electrocatalysis. On this p-CuNi@NF catalyst, NiO is able to accelerate the hydrogenation step by promoting the water dissociation to provide protons, ultimately facilitating efficient NRA. p-CuNi@NF exhibits excellent NH3 selectivity and yield in a wide potential range and reaches a high Faradaic efficiency (FENH3) of 97.5% and a yield (YNH3) of 470 µmol h-1 cm-2 at -0.6 V, both of which largely surpass the Cu/Cu2O catalyst.

14.
Materials (Basel) ; 17(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39203237

ABSTRACT

The potential applications of stretchable strain sensors in wearable electronics have garnered significant attention. However, developing susceptible stretchable strain sensors for practical applications still poses a considerable challenge. The present study introduces a stretchable strain sensor that utilizes silver nanowires (AgNWs) embedded into a polydimethylsiloxane (PDMS) substrate. The AgNWs have high flexibility and electrical conductivity. A stretchable AgNW/Pat-PDMS conductive film was prepared by arranging nanowires on the surface of PDMS using a simple rod coating method. Depending on the orientation angle, the overlap area between nanowires varies, resulting in different levels of separation under a given strain. Due to the separation of the nanowire and the change in current path geometry, the variation in strain resistance of the sensor can be primarily attributed to these factors. Therefore, precision in strain regulation can be adjusted by altering the angle θ (0°, 60°, or 90°) of the nanowire. At the same time, the stability of the AgNW/Pattern-PDMS (AgNW/Pat-PDMS) conductive film application was verified by preparing a sandwich structure PDMS/AgNW/Pat-PDMS stretchable strain sensor. The sensor exhibited high sensitivity within the operating sensing range (gauge factor (GF) of 15 within ~120% strain), superior durability (20,000 bending cycles and 5000 stretching cycles), and excellent response toward bending.

15.
Biomedicines ; 12(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39200207

ABSTRACT

Functional electrical stimulation (FES) is a vital method in neurorehabilitation used to reanimate paralyzed muscles, enhance the size and strength of atrophied muscles, and reduce spasticity. FES often leads to increased muscle fatigue, necessitating careful monitoring of the patient's response. Ultrasound (US) imaging has been utilized to provide valuable insights into FES-induced fatigue by assessing changes in muscle thickness, stiffness, and strain. Current commercial FES electrodes lack sufficient US transparency, hindering the observation of muscle activity beneath the skin where the electrodes are placed. US-compatible electrodes are essential for accurate imaging and optimal FES performance, especially given the spatial constraints of conventional US probes and the need to monitor muscle areas directly beneath the electrodes. This study introduces specially designed body-conforming US-compatible FES (US-FES) electrodes constructed with a silver nanowire/polydimethylsiloxane (AgNW/PDMS) composite. We compared the performance of our body-conforming US-FES electrode with a commercial hydrogel electrode. The findings revealed that our US-FES electrode exhibited comparable conductivity and performance to the commercial one. Furthermore, US compatibility was investigated through phantom and in vivo tests, showing significant compatibility even during FES, unlike the commercial electrode. The results indicated that US-FES electrodes hold significant promise for the real-time monitoring of muscle activity during FES in clinical rehabilitative applications.

16.
Nano Lett ; 24(33): 10313-10321, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39115248

ABSTRACT

Lightweight porous ceramics with a unique combination of superior mechanical strength and damage tolerance are in significant demand in many fields such as energy absorption, aerospace vehicles, and chemical engineering; however, it is difficult to meet these mechanical requirements with conventional porous ceramics. Here, we report a graded structure design strategy to fabricate porous ceramic nanowire networks that simultaneously possess excellent mechanical strength and energy absorption capacity. Our optimized graded nanowire networks show a compressive strength of up to 35.6 MPa at a low density of 540 mg·cm-3, giving rise to a high specific compressive strength of 65.7 kN·m·kg-1 and a high energy absorption capacity of 17.1 kJ·kg-1, owing to a homogeneous distribution of stress upon loading. These values are top performance compared to other porous ceramics, giving our materials significant potential in various engineering fields.

17.
ACS Nano ; 18(34): 22855-22863, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39133557

ABSTRACT

Bottom-up growth offers precise control over the structure and geometry of semiconductor nanowires (NWs), enabling a wide range of possible shapes and seamless heterostructures for applications in nanophotonics and electronics. The most common vapor-liquid-solid (VLS) growth method features a complex interaction between the liquid metal catalyst droplet and the anisotropic structure of the crystalline NW, and the growth is mainly orchestrated by the triple-phase line (TPL). Despite the intrinsic mismatch between the droplet and the NW symmetries, its discussion has been largely avoided because of its complexity, which has led to the situation when multiple observed phenomena such as NW axial asymmetry or the oscillating truncation at the TPL still lack detailed explanation. The introduction of an electric field control of the droplet has opened even more questions, which cannot be answered without properly addressing three-dimensional (3D) structure and morphology of the NW and the droplet. This work describes the details of electric-field-controlled VLS growth of germanium (Ge) NWs using environmental transmission electron microscopy (ETEM). We perform TEM tomography of the droplet-NW system during an unperturbed growth, then track its evolution while modulating the bias potential. Using 3D finite element method (FEM) modeling and crystallographic considerations, we provide a detailed and consistent mechanism for VLS growth, which naturally explains the observed asymmetries and features of a growing NW based on its crystal structure. Our findings provide a solid framework for the fabrication of complex 3D semiconductor nanostructures with ultimate control over their morphology.

18.
Adv Mater ; : e2408963, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194384

ABSTRACT

1D layered nanowires (NWs) are expected to be excellent electrode materials due to their efficient electron/ion transport and strain/stress relaxation. However, it is a great challenge to synthesize layered NWs by a top-down synthetic route. Herein, ultralong 1D layered K0.5Mn0.75PS3 NWs (length: >100 µm; diameter: ≈300 nm) are synthesized for the first time using "K-ion chemical scissors", whose excellent sodium storage performance originates from the bifunctional structural unit, ingeniously combining the alloying energy storage functional unit (P-P dimer) with the quasi-intercalated functional unit ([MnS3]4- framework). Stress-driven K-ion scissors achieve the rapid transformation of MnPS3 bulk to K0.5Mn0.75PS3 NWs with directed tailoring. Compared to MnPS3, the NWs exhibit enlarged interlayer spacing (9.32 Å), enhanced electronic conductivity (8.17 × 10-5 S m-1 vs 4.47 × 10-10 S m-1), and high ionic conductivity (2.14 mS cm-1). As expected, the NWs demonstrate high capacity (709 mAh g-1 at 0.5 A g-1) and excellent cycling performance (≈100% capacity retention after 2500 cycles at 10 A g-1), ranking among metal thiophosphates. A quasi-topological intercalation mechanism of the NWs is revealed through further characterizations. This work expands the top-down synthesis approach and offers innovative insights for the cost-effective and large-scale fabrication of NWs with outstanding electrochemical performance.

19.
ACS Appl Mater Interfaces ; 16(30): 40199-40209, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39029113

ABSTRACT

Silver nanowires (NWs) (AgNWs) have emerged as the most promising conductive materials in flexible optoelectronic devices owing to their excellent photoelectric properties and mechanical flexibility. It is widely acknowledged that the practical application of AgNW networks faces challenges, such as high surface roughness, poor substrate adhesion, and limited stability. Encapsulating AgNW networks with graphene has been recognized as a viable strategy to tackle these issues. However, conventional methods like self-assembly reduction-oxidation or chemical vapor deposition often yield graphene protective layers with inherent defects. Here, we propose a novel one-step hot-pressing method containing ethanol solution that combines the spontaneous transfer and encapsulation process of rGO films onto the surface of the AgNWs network, enabling the preparation of flexible rGO/AgNWs/PET (reduced graphene oxide/silver NWs/polyethylene terephthalate) electrodes. The composite electrode exhibits outstanding photoelectric properties (T ≈ 88%, R ≈ 6 Ω sq-1) and possesses a smooth surface, primarily attributed to the capillary force generated by ethanol evaporation, ensuring the integrity of the rGO delamination process on the original substrate. The capillary force simultaneously promotes the tight encapsulation of rGO and AgNWs, as well as the welding of the AgNWs junction, thereby enhancing the mechanical stability (20,000 bending cycles and 100 cycles of taping tests), thermal stability (∼30 °C and ∼25% humidity for 150 days), and environmental adaptability (100 days of chemical attack) of the electrode. The electrode's practical feasibility has been validated by its exceptional flexibility and cycle stability (95 and 98% retention after 5000 bending cycles and 12,000 s long-term cycles) in flexible electrochromic devices.

20.
Nano Lett ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083658

ABSTRACT

The high operating voltage of conventional nanoelectromechanical switches, typically tens of volts, is much higher than the driving voltage of the complementary metal oxide semiconductor integrated circuit (∼1 V). Though the operating voltage can be reduced by adopting a narrow air gap, down to several nanometers, this leads to formidable manufacturing challenges and occasionally irreversible switch failures due to the surface adhesive force. Here, we demonstrate a new nanowire-morphed nanoelectromechanical (NW-NEM) switch structure with ultralow operation voltages. In contrast to conventional nanoelectromechanical switches actuated by unidirectional electrostatic attraction, the NW-NEM switch is bidirectionally driven by Lorentz force to allow the use of a large air gap for excellent electrical isolation, while achieving a record-low driving voltage of <0.2 V. Furthermore, the introduction of the Lorentz force allows the NW-NEM switch to effectively overcome the adhesion force to recover to the turn-off state.

SELECTION OF CITATIONS
SEARCH DETAIL