Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mass Spectrom ; 59(7): e5059, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38894609

ABSTRACT

Broader adoption of native mass spectrometry (MS) and ion mobility-mass spectrometry (IM-MS) has propelled the development of several techniques which take advantage of the selectivity, sensitivity, and speed of MS to make measurements of complex biological molecules in the gas phase. One such method, collision induced unfolding (CIU), has risen to prominence in recent years, due to its well documented capability to detect shifts in structural stability of biological molecules in response to external stimuli (e.g., mutations, stress, non-covalent interactions, sample conditions etc.). This increase in reported CIU measurements is enabled partly due to advances in IM-MS instrumentation by vendors, and also innovative method development by researchers. This perspective highlights a few of these advances and concludes with a look forward toward the future of the gas phase unfolding field.

2.
Anal Sci Adv ; 3(11-12): 304-312, 2022 Dec.
Article in English | MEDLINE | ID: mdl-38715840

ABSTRACT

Hydrophobic interaction chromatography (HIC) is a chromatographic technique that mainly targets the separation of biomolecules (intact proteins, monoclonal antibodies, etc.) based on the difference in surface hydrophobicity while applying non-denaturing conditions. This protocol paper provides guidelines for setting-up robust HIC analysis and considers the instrument configuration, mobile-phase and sample preparation, as well as chromatographic conditions and settings. The separation of a mixture of intact proteins and monoclonal antibodies is demonstrated by applying conventional HIC conditions, that is, using a mildly hydrophobic (C4) stationary phase in combination with an inverse ammonium sulphate gradient dissolved in aqueous phosphate buffer. The effect of sample-preparation conditions on sample breakthroughs is presented. Finally, good run-to-run repeatability (relative standard deviation < 2%) is demonstrated for five different columns obtained from three different column lots, considering chromatographic retention, peak width, peak area and column pressure.

SELECTION OF CITATIONS
SEARCH DETAIL