Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Article in English | MEDLINE | ID: mdl-38958108

ABSTRACT

This study investigated the effects of negative energy balance (NEB) on perinatal ewes, with a focus on changes in growth performance, serum biochemical parameters, rumen fermentation, ruminal bacteria composition, placental phenotype-related indicators, and expression levels of genes related to placental function. Twenty ewes at 130 days of gestation were randomly allocated to either the positive energy balance (PEB) or NEB groups. In the experiment, ewes in the PEB group were fed the same amount as their intake during the pre-feeding baseline period, while ewes in the NEB group were restricted to 70% of their individual baseline feed intake. The experiment was conducted until 42 days postpartum, and five double-lamb ewes per group were selected for slaughter. The results demonstrated that NEB led to a significant decrease in body weight, carcass weight, and the birth and weaning weights of lambs (P < 0.05). Additionally, NEB caused alterations in serum biochemical parameters, such as increased non-esterified fatty acids and ß-hydroxybutyrate levels and decreased cholesterol and albumin levels (P < 0.05). Rumen fermentation and epithelial parameters were also affected, with a reduction in the concentrations of acetic acid, butyric acid, total acid and a decrease in the length of the rumen papilla (P < 0.05). Moreover, NEB induced changes in the structure and composition of ruminal bacteria, with significant differences in α-diversity indices and rumen microbial community composition (P < 0.05). Gene expression in rumen papilla and ewe placenta was also affected, impacting genes associated with glucose and amino acid transport, proliferation, apoptosis, and angiogenesis (P < 0.05). These findings screened the key microbiota in the rumen of ewes following NEB and highlighted the critical genes associated with rumen function. Furthermore, this study revealed the impact of NEB on placental function in ewes, providing a foundation for investigating how nutrition in ewes influences reproductive performance. This research demonstrates how nutrition regulates reproductive performance by considering the combined perspectives of rumen microbiota and placental function.

2.
J Dairy Sci ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969001

ABSTRACT

The early lactation period in dairy cows is characterized by complex interactions among energy balance (EB), disease, and alterations in metabolic and inflammatory status. The objective of this study was to cluster cows based on EB time profiles in early lactation and investigate the association between EB clusters and inflammatory status, metabolic status, oxidative stress, and disease. Holstein-Friesian dairy cows (n = 153) were selected and monitored for disease treatments during wk 1 to 6 in lactation. Weekly EB was calculated based on energy intake and energy requirements for maintenance and milk yield in wk 1 to 6 in lactation. Weekly plasma samples were analyzed for metabolic variables in wk 1 to 6, and inflammatory and oxidative stress variables in wk 1, 2, and 4 in lactation. Liver activity index (LAI) was computed from plasma albumin, cholesterol, and retino-binding protein concentration. First, cows were clustered based on time profiles of EB, resulting in 4 clusters (SP: stable positive; MN: mild negative; IN: intermediate negative; SN: severe negative). Cows in the SN cluster had higher plasma nonesterified fatty acids and ß-hydroxybutyrate concentrations, compared with cows in the SP cluster, with the MN and IN cluster being intermediate. Cows in the SN cluster had a higher milk yield, lower dry matter intake in wk 1, lower insulin concentration compared with cows in the SP cluster, and lower glucose and IGF-1 concentration compared with cows in the SP and MN clusters. Energy balance clusters were not related with plasma haptoglobin, cholesterol, albumin, paraoxonase, and liver activity index (LAI). Second, cows were grouped based on health status [IHP: cows with treatment for inflammatory health problem (endometritis, fever, clinical mastitis, vaginal discharge or retained placenta); OHP: cows with no IHP but treatment for other health problem (milk fever, cystic ovaries, claw, and leg problems, rumen and intestine problems or other diseases); NHP: cows with no treatments, in the first 6 weeks after calving]. Energy balance was not different among health status groups. The IHP cows had lower nonesterified fatty acids and greater insulin concentration in plasma compared with OHP. The IHP cows had lower plasma albumin concentration, lower LAI and higher haptoglobin concentration compared with OHP and NHP. Overall, EB time profiles were associated with the metabolic status of dairy cows in early lactation, but were only limitedly related with markers of inflammation and oxidative stress status. Inflammatory and metabolic status were related to disease events in early lactation and caused prolonged effects on liver metabolism.

3.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825131

ABSTRACT

Early lactation is a critical period for dairy cows as energy requirements rapidly increase with the onset of lactation, however, early lactation dry matter intakes (DMI) in pasture-based systems are under-measured. The objectives of this study were 1) to measure and profile total DMI (TDMI) and animal performance of dairy cows during early lactation in a pasture-based system 2) to investigate early lactation energy balance in pasture-based systems and 3) to examine production efficiencies including TDMI and milk solids production per 100 kg bodyweight. Eighty spring-calving dairy cows were allocated to a grazing group as they calved over a 2 year period (2021 and 2022). Cows were offered a daily herbage allowance to achieve a post-grazing sward height of 4 cm with silage supplementation when necessary due to inclement weather. Total DMI was measured using the n-alkane technique over a 12 week period from 1st of February to the 23rd of April. Total DMI and daily milk yield were significantly affected by parity with both variables being greatest for third parity animals (17.7 kg DM and 26.3 kg/cow/day, respectively), lowest for first parity (13.2 kg DM and 19.6 kg/cow/day, respectively) and intermediate for second parity animals (16.8 kg DM and 24.1 kg/cow/day, respectively). Peak TDMI was reached on wk 10 for first parity animals (14.6 kg DM), wk 11 for second parity animals (19.3 kg DM) and wk 12 for third parity animals (19.9 kg DM). Parity also had a significant effect on UFL (feed units for milk) feed balance as first parity animals experienced a greater degree of negative energy balance (-3.2 UFL) compared with second and third parity animals (-2.3 UFL). Breed and parity had an effect on production efficiencies during the first 12 weeks of lactation as Jersey x Holstein Friesian cows had greater TDMI/100 kg bodyweight and milk solids/100 kg bodyweight compared with Holstein Friesian cows.

4.
Front Pharmacol ; 15: 1349139, 2024.
Article in English | MEDLINE | ID: mdl-38633614

ABSTRACT

Introduction: According to traditional Chinese veterinary medicine, endometritis is caused by a combination of Qi deficiency, blood stasis, and external evil invasion. Salvia miltiorrhiza is a traditional Chinese medicine that counteracts blood stasis and has additional demonstrated effects in boosting energy and restraining inflammation. Salvia miltiorrhiza has been employed in many traditional Chinese prescriptions that have proven effective in healing clinical dairy cow endometritis. Methods: the in vivo effect of Salvia miltiorrhiza in treating endometritis was evaluated in dairy cows. In addition, bovine endometrial epithelium cell inflammation and rat blood stasis models were employed to demonstrate the crosstalk between energy, blood circulation and inflammation. Network analysis, western blotting, qRT-PCR and ELISA were performed to investigate the molecular mechanism of Salvia miltiorrhiza in endometritis treatment. Results: The results demonstrate that treatment with Salvia miltiorrhiza relieves uterine inflammation, increases blood ATP concentrations, and prolongs blood clotting times. Four of the six Salvia miltiorrhiza main components (SMMCs) (tanshinone IIA, cryptotanshinone, salvianolic acid A and salvianolic acid B) were effective in reversing decreased ATP and increased IL-1ß, IL-6, and IL-8 levels in an in vitro endometritis model, indicating their abilities to ameliorate the negative energy balance and external evil invasion effects of endometritis. Furthermore, in a blood stasis rat model, inflammatory responses were induced in the absence of external infection; and all six SMMCs inhibited thrombin-induced platelet aggregation. Network analysis of SMMC targets predicted that Salvia miltiorrhiza may mediate anti-inflammation via the Toll-like receptor signaling pathway; anti-aggregation via the Platelet activation pathway; and energy balance via the Thermogenesis and AMPK signaling pathways. Multiple molecular targets within these pathways were verified to be inhibited by SMMCs, including P38/ERK-AP1, a key molecular signal that may mediate the crosstalk between inflammation, energy deficiency and blood stasis. Conclusion: These results provide mechanistic understanding of the therapeutic effect of Salvia miltiorrhiza for endometritis achieved through Qi deficiency, blood stasis, and external evil invasion.

5.
Animals (Basel) ; 14(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612319

ABSTRACT

High levels of non-esterified fatty acids (NEFAs) during the transition period lead to increased oxidative stress and immunosuppression in cows. Feeding them a vitamin-E-supplemented diet reduces reactive oxygen species (ROS) levels in the blood and diminishes immunosuppression in the transition period. However, whether the restoration of immune cell function occurs through the direct action of vitamin E in cells is still a topic that requires further discussion. Therefore, in this experiment, we aimed to investigate the effect of NEFAs on peripheral blood leukocytes (PBLs) and whether vitamin E mitigates the impact of NEFAs. We employed three groups: (1) blank, (2) NEFA only, and (3) pre-culturing with vitamin E before NEFA treatment (VENEFA). In peripheral blood mononuclear cells (PBMCs), there were no differences in vitamin E content among the three groups. However, in the vitamin E pre-treatment group, the vitamin E levels of polymorphonuclear neutrophils (PMNs) were significantly higher than those in the other two groups. NEFA levels increased malondialdehyde (MDA) levels in PBMCs, but pre-treatment with vitamin E reduced accumulation of MDA levels. Regarding the expression of proinflammatory genes, NEFAs increased the expression of interleukin-1ß in PBMCs and colony-stimulating factor 2 in PMNs. Vitamin E pre-treatment restored the increase in interleukin-1ß levels caused by NEFAs in PBMCs. None of the groups affected the phagocytosis of PMNs. Few studies have confirmed that NEFAs cause oxidative stress in bovine PBLs. In summary, this study found that NEFAs induce oxidative stress in PBLs and alter the expression of inflammation-related genes; meanwhile, vitamin E can reduce some of the effects caused by NEFAs. This result may suggest that vitamin E can assist bovine PBLs in resisting the immune suppression caused by an NEB during the transition period.

6.
J Dairy Sci ; 107(7): 5041-5053, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38428490

ABSTRACT

Several studies have described variations in lactose content (LC) in dairy cows during udder quarter health disorder or negative energy balance (NEB). However, their joint effects on LC have never been described. This was the aim of a longitudinal observational study performed on 5 Quebec dairy farms using automatic milking systems. Quarter milk samples were collected every 14 d from 5 to 300 DIM. Quarter health status was described by combining SCC level (SCC- or SCC+: < or ≥100,000 cells/mL, respectively) and infectious status (Patho- or Patho+: absence or presence of pathogens on a milk culture, respectively). Cows with NEB in early lactation (DIM <70) were identified using milk BHB content: <0.15 mM = BHB-; 0.15 to 0.19 mM = BHB+; >0.19 mM = BHB++. A total of 14,505 quarter cisternal milk samples were collected from 380 lactating cows. The quarter LC was analyzed using a mixed linear regression model with the following fixed effects: quarter health status, parity, time interval between last milking and sampling, quarter milk yield (in kg/d), DIM, and herd. A random quarter intercept with a repeated measures correlation structure and a cow random intercept were also specified. The LC of SCC+ quarters was lower (-0.17 ± 0.013 percentage points) compared with LC of SCC- quarters for both primiparous and multiparous cows. Of the 162 bacterial species identified, only 8 species had a prevalence greater than 4.0%, and just 5 of them were associated with a reduction in LC: Staphylococcus aureus, Staphylococcus chromogenes, Streptococcus dysgalactiae, Staphylococcus epidermidis, and Staphylococcus simulans. Cows identified as BHB+ and BHB++ in early lactation had a lower LC (-0.05 ± 0.019 and -0.13 ± 0.020 percentage points, respectively) compared with BHB- cows. For BHB++ cows, in both parity groups the decrease in LC (-0.20 ± 0.025 percentage points) was higher in SCC+ quarters compared with SCC- quarters. Moreover, the additive effect of the quarter health status and NEB on milk LC was greater with larger increases in BHB. Our findings highlight the necessity to jointly take into consideration both quarter health status and milk BHB concentration when using LC as a biomarker for NEB.


Subject(s)
Lactation , Lactose , Milk , Animals , Cattle , Female , Milk/chemistry , Lactose/analysis , Mastitis, Bovine/microbiology , Mammary Glands, Animal , Longitudinal Studies , Dairying , Energy Metabolism , Cattle Diseases/microbiology
7.
Cell Rep ; 43(3): 113951, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38508192

ABSTRACT

Plasticity in daily timing of activity has been observed in many species, yet the underlying mechanisms driving nocturnality and diurnality are unknown. By regulating how much wheel-running activity will be rewarded with a food pellet, we can manipulate energy balance and switch mice to be nocturnal or diurnal. Here, we present the rhythmic transcriptome of 21 tissues, including 17 brain regions, sampled every 4 h over a 24-h period from nocturnal and diurnal male CBA/CaJ mice. Rhythmic gene expression across tissues comprised different sets of genes with minimal overlap between nocturnal and diurnal mice. We show that non-clock genes in the suprachiasmatic nucleus (SCN) change, and the habenula was most affected. Our results indicate that adaptive flexibility in daily timing of behavior is supported by gene expression dynamics in many tissues and brain regions, especially in the habenula, which suggests a crucial role for the observed nocturnal-diurnal switch.


Subject(s)
Circadian Rhythm , Transcriptome , Mice , Male , Animals , Circadian Rhythm/genetics , Transcriptome/genetics , Mice, Inbred CBA , Brain , Suprachiasmatic Nucleus/metabolism
8.
J Dairy Sci ; 107(5): 3047-3061, 2024 May.
Article in English | MEDLINE | ID: mdl-38056571

ABSTRACT

Milk citrate is regarded as an early biomarker of negative energy balance in dairy cows during early lactation and serves as a suitable candidate phenotype for genomic selection due to its wide availability across a large number of cows through milk mid-infrared spectra prediction. However, its genetic background is not well known. Therefore, the objectives of this study were to (1) analyze the genetic parameters of milk citrate; (2) identify genomic regions associated with milk citrate; and (3) analyze the functional annotation of candidate genes and quantitative trait loci (QTL) related to milk citrate in Walloon Holstein cows. In total, 134,517 test-day milk-citrate phenotypes (mmol/L) collected within the first 50 d in milk on 52,198 Holstein cows were used. These milk-citrate phenotypes, predicted by milk mid-infrared spectra, were divided into 3 traits according to the first (citrate1), second (citrate2), and third to fifth parity (citrate3+). Genomic information for 566,170 SNPs was available for 4,479 animals. A multiple-trait repeatability model was used to estimate genetic parameters. A single-step GWAS was used to identify candidate genes for citrate and post-GWAS analysis was done to investigate the relationship and function of the identified candidate genes. The heritabilities estimated for citrate1, citrate2, and citrate3+ were 0.40, 0.37, and 0.35, respectively. The genetic correlations among the 3 traits ranged from 0.98 to 0.99. The genomic correlations among the 3 traits were also close to 1.00 across the genomic regions (1 Mb) in the whole genome, which means that citrate can be considered as a single trait in the first 5 parities. In total, 603 significant SNPs located on 3 genomic regions (chromosome 7, 68.569-68.575 Mb; chromosome 14, 0.15-1.90 Mb; and chromosome 20, 54.00-64.28 Mb), were identified to be associated with milk citrate. We identified 89 candidate genes including GPT, ANKH, PPP1R16A, and 32 QTL reported in the literature related to the identified significant SNPs. These identified QTL were mainly reported associated with milk fatty acids and metabolic diseases in dairy cows. This study suggests that milk citrate in Holstein cows is highly heritable and has the potential to be used as an early proxy for the negative energy balance of Holstein cows in a breeding objective.

9.
J Dairy Sci ; 107(3): 1669-1684, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37863287

ABSTRACT

At the individual cow level, suboptimum fertility, mastitis, negative energy balance, and ketosis are major issues in dairy farming. These problems are widespread on dairy farms and have an important economic impact. The objectives of this study were (1) to assess the potential of milk mid-infrared (MIR) spectra to predict key biomarkers of energy deficit (citrate, isocitrate, glucose-6 phosphate [glucose-6P], free glucose), ketosis (ß-hydroxybutyrate [BHB] and acetone), mastitis (N-acetyl-ß-d-glucosaminidase activity [NAGase] and lactate dehydrogenase), and fertility (progesterone); (2) to test alternative methodologies to partial least squares (PLS) regression to better account for the specific asymmetric distribution of the biomarkers; and (3) to create robust models by merging large datasets from 5 international or national projects. Benefiting from this international collaboration, the dataset comprised a total of 9,143 milk samples from 3,758 cows located in 589 herds across 10 countries and represented 7 breeds. The samples were analyzed by reference chemistry for biomarker contents, whereas the MIR analyses were performed on 30 instruments from different models and brands, with spectra harmonized into a common format. Four quantitative methodologies were evaluated to address the strongly skewed distribution of some biomarkers. Partial least squares regression was used as the reference basis, and compared with a random modification of distribution associated with PLS (random-downsampling-PLS), an optimized modification of distribution associated with PLS (KennardStone-downsampling-PLS), and support vector machine (SVM). When the ability of MIR to predict biomarkers was too low for quantification, different qualitative methodologies were tested to discriminate low versus high values of biomarkers. For each biomarker, 20% of the herds were randomly removed within all countries to be used as the validation dataset. The remaining 80% of herds were used as the calibration dataset. In calibration, the 3 alternative methodologies outperform the PLS performances for the majority of biomarkers. However, in the external herd validation, PLS provided the best results for isocitrate, glucose-6P, free glucose, and lactate dehydrogenase (coefficient of determination in external herd validation [R2v] = 0.48, 0.58, 0.28, and 0.24, respectively). For other molecules, PLS-random-downsampling and PLS-KennardStone-downsampling outperformed PLS in the majority of cases, but the best results were provided by SVM for citrate, BHB, acetone, NAGase, and progesterone (R2v = 0.94, 0.58, 0.76, 0.68, and 0.15, respectively). Hence, PLS and SVM based on the entire dataset provided the best results for normal and skewed distributions, respectively. Complementary to the quantitative methods, the qualitative discriminant models enabled the discrimination of high and low values for BHB, acetone, and NAGase with a global accuracy around 90%, and glucose-6P with an accuracy of 83%. In conclusion, MIR spectra of milk can enable quantitative screening of citrate as a biomarker of energy deficit and discrimination of low and high values of BHB, acetone, and NAGase, as biomarkers of ketosis and mastitis. Finally, progesterone could not be predicted with sufficient accuracy from milk MIR spectra to be further considered. Consequently, MIR spectrometry can bring valuable information regarding the occurrence of energy deficit, ketosis, and mastitis in dairy cows, which in turn have major influences on their fertility and survival.


Subject(s)
Cattle Diseases , Ketosis , Mastitis , Female , Cattle , Animals , Milk , Isocitrates , Acetone , Acetylglucosaminidase , Progesterone , Citrates , Citric Acid , 3-Hydroxybutyric Acid , Biomarkers , Glucose , Ketosis/diagnosis , Ketosis/veterinary , L-Lactate Dehydrogenase , Mastitis/veterinary
10.
Animals (Basel) ; 13(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37835703

ABSTRACT

The continued increase in milk production during the last century has not been accompanied by an adequate dry matter intake (DMI) by cows, which therefore experience a negative energy balance (NEB). NEB is low and of minor importance at low milk yield (MY), such as for the nutrition of one calf, and under these circumstances is considered "natural". MY and low DMI around parturition are correlated and are the reason for the genetic correlation between increasing MY and increasing NEB up to 2000 MJ or more for 2-3 months postpartum in high-genetic-merit dairy cows. The extension and duration of NEB in high-producing cows cannot be judged as "natural" and are compensated by the mobilization of nutrients, particularly of fat. The released non-esterified fatty acids (NEFAs) overwhelm the metabolic capacity of the cow and lead to the ectopic deposition of NEFAs as triglycerides (TGs) in the liver. The subsequent lipidosis and the concomitant hampered liver functions cause subclinical and clinical ketosis, both of which are associated with "production diseases", including oxidative and endoplasmatic stress, inflammation and immunosuppression. These metabolic alterations are regulated by homeorhesis, with the priority of the physiological function of milk production. The prioritization of one function, namely, milk yield, possibly results in restrictions in other physiological (health) functions under conditions of limited resources (NEB). The hormonal framework for this metabolic environment is the high concentration of growth hormone (GH), the low concentration of insulin in connection with GH-dependent insulin resistance and the low concentration of IGF-1, the so-called GH-IGF-1 axis. The fine tuning of the GH-IGF-1 axis is uncoupled because the expression of the growth hormone receptor (GHR-1A) in the liver is reduced with increasing MY. The uncoupled GH-IGF-1 axis is a serious impairment for the GH-dependent stimulation of gluconeogenesis in the liver with continued increased lipolysis in fat tissue. It facilitates the pathogenesis of lipidosis with ketosis and, secondarily, "production diseases". Unfortunately, MY is still increasing at inadequate DMI with increasing NEB and elevated NEFA and beta-hydroxybutyric acid concentrations under conditions of low glucose, thereby adding health risks. The high incidences of diseases and of early culling and mortality in dairy cows are well documented and cause severe economic problems with a waste of resources and a challenge to the environment. Moreover, the growing public concerns about such production conditions in agriculture can no longer be ignored.

11.
Placenta ; 142: 98-105, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37683337

ABSTRACT

INTRODUCTION: After calving, dairy cows are commonly affected by negative energy balance (NEB), indicated by high ß-Hydroxybutyrate (BHBA) blood levels. These are associated with subfertility frequently related to uterine inflammation. Since this could compromise functionality of endometrial glands that are essential for proper embryo implantation in sheep, we investigated effects of BHBA on bovine endometrial gland cells (BEGC) in vitro. MATERIAL AND METHODS: BEGC were stimulated with different concentrations of BHBA over different periods. Cell metabolism and motility were examined by MTT-assay and Live-cell-imaging. The mRNA expression of the receptors for estrogen (ESR1, ESR2), progesterone (PR) and IFNτ (IFNAR1, IFNAR2), and the inflammatory cytokines TNFα and IL-6 was determined by RT-qPCR. Protein expression for PR and ESR1 was analyzed by semiquantitative Western Blot. RESULTS: BEGC metabolism was significantly decreased after stimulation with 1.2, 1.8 and 2.4 mM BHBA over 24 and 36 h. Cell motility was significantly reduced by 1.8 and 2.4 mM BHBA already after 11 h. After 24 h stimulation, the ESR1 mRNA expression was significantly increased in BEGC stimulated with 0.6 mM BHBA. PR and TNFα mRNA expressions were increased in cells stimulated with 2.4 mM BHBA. Protein expression of ESR1 and PR was not altered. DISCUSSION: Treatment with BHBA leads to restriction of BEGC metabolism and motility, and increased expression of TNFα, ESR1 and PR in vitro. This could explain how increased BHBA blood levels might compromise functionality of uterine glands in vivo and thus could contribute to compromised reproductive success of cows suffering from NEB.

12.
Animals (Basel) ; 13(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37627367

ABSTRACT

With this study, we investigated the relationship between a cow's and calf's metabolic state, and its effect on health status. To achieve this, 20 calves of primiparous and 20 calves of multiparous cows were selected. The calves were monitored for 30 days and scored for signs of disease, as described in McQuirk (2008); according to score, they were divided into healthier calves; the Low calf score group (LCS, 5-8), Medium calf score group (MCS, 9-12) and High calf score group (HCS, 14-17); or calves most prone to disease. Their mothers were monitored for the same period with a Lely Astronaut 3 herd management system (Lely, Maassluis, The Netherlands) for rumination time, milk yield, milk fat, protein, lactose concentrations and milk fat to protein ratio. Both cows and calves were sampled for blood, and concentrations of glucose with ß-hydroxybutyrate were registered. The results indicate that primiparous cows had a 16% higher blood glucose concentration (3.03 mmol/L SE = 0.093) compared with multiparous cows (2.61 mmol/L, SE = 0.102) (p < 0.01), but no difference in calf glucose was recorded. Β-hydroxybutyrate levels did not differ significantly between cows and calves by parity group. Rumination time was longest in the HCS group at 550.79 min/d. and was 16% longer compared with the LCS group (461.94 min/d.; p < 0.001) and 8% longer compared with the MCS group (505.56 min/d.; p < 0.001). The MCS group rumination time mean was statistically significantly higher compared with the LCS group by 8% (p < 0.001). Milk yield was also highest in the HCS group (44.8 kg/d.): 19% higher compared with the MCS group (36.31 kg/d., p < 0.001) and 13% higher than the LCS group (38.83 kg/d., p < 0.001). There was also a significant difference between the MCS and LCS groups of 6% (p < 0.001). The HCS group had the highest milk fat concentration (4.47%): it was 4% higher compared with the LCS group (4.28%, p < 0.001) and 5% higher than the MCS group (4.25%, p < 0.001). Milk fat to protein ratio was highest in the HCS group (1.21) and was 7% higher than in the MCS group (1.12, p < 0.001) and 8% higher than in the LCS group (1.11, p < 0.001). The LCS group was determined to have the highest concentration of milk lactose (4.66%). It was 1% higher compared with the MCS group (4.62%, p < 0.001) and 1.07% higher than the HCS group (4.61%, p < 0.001). We can conclude that parity did not affect calf health status and that cows of the HCS group showed symptoms of negative energy balance expressed through higher milk yield, higher milk fat concentration and higher milk fat to protein ratio, with lower milk lactose concentration. Further and more thorough research is needed to evaluate the relationship between pregnant cows and calves.

13.
J Dairy Sci ; 106(9): 6577-6591, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37479573

ABSTRACT

The causes of variation in the milk mineral profile of dairy cattle during the first phase of lactation were studied under the hypothesis that the milk mineral profile partially reflects the animals' metabolic status. Correlations between the minerals and the main milk constituents (i.e., protein, fat, and lactose percentages), and their associations with the cows' metabolic status indicators were explored. The metabolic status indicators (MET) that we used were blood energy-protein metabolites [nonesterified fatty acids, ß-hydroxybutyrate (BHB), glucose, cholesterol, creatinine, and urea], and liver ultrasound measurements (predicted triacylglycerol liver content, portal vein area, portal vein diameter and liver depth). Milk and blood samples, and ultrasound measurements were taken from 295 Holstein cows belonging to 2 herds and in the first 120 d in milk (DIM). Milk mineral contents were determined by ICP-OES; these were considered the response variable and analyzed through a mixed model which included DIM, parity, milk yield, and MET as fixed effects, and the herd/date as a random effect. The MET traits were divided in tertiles. The results showed that milk protein was positively associated with body condition score (BCS) and glucose, and negatively associated with BHB blood content; milk fat was positively associated with BHB content; milk lactose was positively associated with BCS; and Ca, P, K and S were the minerals with the greatest number of associations with the cows' energy indicators, particularly BCS, predicted triacylglycerol liver content, glucose, BHB and urea. We conclude that the protein, fat, lactose, and mineral contents of milk partially reflect the metabolic adaptation of cows during lactation and within 120 DIM. Variations in the milk mineral profile were consistent with changes in the major milk constituents and the metabolic status of cows.


Subject(s)
Lactose , Milk , Female , Pregnancy , Cattle , Animals , Lactation , 3-Hydroxybutyric Acid , Glucose , Minerals
14.
Animals (Basel) ; 13(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37508110

ABSTRACT

Cell function and energy redistribution are influenced by lipid classes (phospholipids (PLs), free fatty acids (FFAs), triglycerides (TGs), and cholesterol esters (CEs)). The aim of this study was to investigate metabolic alterations that are related to changes in lipid classes according to different levels of energy deficits in early lactating Mediterranean buffaloes (MBs). Sixty-three MBs were enrolled at the beginning of lactation using an observational study with a cross-sectional experimental design. Serum ß-hydroxybutyrate (BHB) levels were used to group the animals into a healthy group (Group H; n = 38; BHB < 0.70 mmol/L) and hyperketonemia risk group (Group K; n = 25; BHB ≥ 0.70 mmol/L). Statistical analysis was performed using a linear model that included the effect of the group and body condition score to assess differences in fatty acid (FA) concentrations. A total of 40 plasma FAs were assessed in each lipid class. Among the FAs, eight PLs, seven FFAs, four TGs, and four CEs increased according to BHB levels, while three FFAs, three TGs, and one CE decreased. The changes among lipid class profiles suggested the influence of inflammatory response, liver metabolism, and the state of body lipid reserves. In addition, the possible similarities of buffaloes at risk of hyperketonemia with ketotic cows suggest the necessity of further investigations in these ruminants.

15.
Animal ; 17(6): 100845, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37263135

ABSTRACT

In situations of negative energy balance (NEB) due to feed scarcity or high physiological demands, body energy reserves (BRs), mainly stored in adipose tissues, become the main sources of energy for ruminants. The capacity to mobilise and restore such BRs in response to different challenges is of major concern in the current context of breeding for resilience. Body condition score (BCS) is a common, practical indicator of BR variations throughout successive productive cycles, and quantitative tools for characterising such dynamics at the individual level are still lacking. The main objective of this work was to characterise body condition dynamics in terms of BR mobilisation and accretion capacities of meat sheep during their productive lifespan through a modelling approach, using BCS measurements. The animal model used in this work was the reproductive meat ewe (n = 1 478) reared in extensive rangeland. Regular measurements of BCS for each productive cycle were used as the indicator of BR variations. A hybrid mathematical model and a web interface, called PhenoBR, were developed to characterise ewes' BCS variations through four synthetic and biologically meaningful parameters for each productive cycle i: BR accretion rate (kbi), BR mobilisation rate (kpi), plus the time of onset and the duration of the BR mobilisation, tbi and ΔTi, respectively. The model PhenoBR converged for all the ewes included in the analysis. Estimation of the parameters indicated the inter-individual variability for BR accretion and mobilisation rates, and the length of the mobilisation period. The present study is a proof of concept that the combination of data-driven and concept-driven models is required for the estimation of biologically meaningful parameters that describe body reserve dynamics through consecutive productive cycles. Individual characterisation of animals by these parameters makes it possible to rank them for their efficiency in the use of body reserves when facing NEB challenges. Such parameters could contribute to better management and decision-making by farmers and advisors, e.g. by adapting feeding systems to the individual characteristics of BR dynamics, or by geneticists as criteria to develop future animal breeding programmes including BR dynamics for more robust and resilient animals.


Subject(s)
Adipose Tissue , Reproduction , Sheep , Animals , Female , Body Weight , Reproduction/physiology , Phenotype , Meat
16.
Res Vet Sci ; 158: 134-140, 2023 May.
Article in English | MEDLINE | ID: mdl-37004427

ABSTRACT

Hair cortisol concentration (HCC) might represent a promising marker for retrospective welfare assessment of dairy cows. The objective of the study was to explore the dynamics of HCC in diseased and healthy cows from eight-week ante partum (AP) to eight-week post partum (PP). Twenty-four pregnant cows were followed from drying off to week eight PP. Tail hair was used to measure cortisol at five different time points. The occurrence of peripartum diseases, lameness and the body condition score (BCS) were monitored on a weekly basis. Blood ß-hydroxybutyric acid, non-esterified fatty acids, calcium and insulin-like growth factor-1 (IGF-1) concentrations were measured. The temperature-humidity index (THI) was continuously recorded. The median values of HCC in all cows were 0.4, 0.3, 0.6, 0.8 and 0.5 pg/mg at weeks eight, four AP, calving, weeks four, eight PP, respectively. There was no association between HCC and the occurrence of peripartum diseases (P ≥ 0.05). A positive correlation between HCC and BCS loss (P < 0.01) and THI (P < 0.05) was observed. The occurrence of peripartum diseases was associated with low IGF-1 during the study period but no relationship was found between cortisol and IGF-1 levels (P ≥ 0.05). Brown Swiss cows showed higher HCC (P < 0.01) at weeks eight, four AP, and week four PP and lower average milk yield (P < 0.05) than Holstein-Friesian cows. In conclusion, HCC was not a suitable marker for peripartum diseases but it could reflect a stress response, which is linked to BCS loss, heat stress and breed.


Subject(s)
Cattle Diseases , Metabolic Diseases , Pregnancy , Female , Cattle , Animals , Lactation/physiology , Insulin-Like Growth Factor I/metabolism , Hydrocortisone/metabolism , Retrospective Studies , Postpartum Period/metabolism , Milk/metabolism , Metabolic Diseases/metabolism , Metabolic Diseases/veterinary , Fatty Acids, Nonesterified , Cattle Diseases/metabolism
17.
Res Vet Sci ; 159: 26-34, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37062229

ABSTRACT

Lactating cows can react to changes in nutrient availability with a range of behavioural and physiological mechanisms, which may differ among lactation stages. We investigated the effects of short feed restriction and refeeding periods on beef cows' performance and metabolic status in different months of lactation. For this, Parda de Montaña beef cows [n = 31; 626 ± 47.7 kg body weight (BW)] were subjected to short nutritional restriction and refeeding cycles, which were repeated in months 2, 3 and 4 of lactation. Each month, cows were consecutively fed a diet to meet 100% of their energy and protein requirements during a 4-day basal period, 55% during a 4-day restriction period, and again 100% during a 4-day refeeding period. The performance (energy balance, BW, milk yield and composition) and plasma metabolite concentrations (glucose, non-esterified fatty acids (NEFA), ß-hydroxybutyrate (BHB), urea and malondialdehyde) were measured daily. Most of the traits were significantly affected by the interaction between feeding period and lactation month. Feed restriction induced milk yield loss, decreased milk protein and increased milk urea contents to different extents. The plasma NEFA concentrations rose with restriction in months 2, 3 and 4 but BHB and urea concentrations increased only in month 4. Most of these metabolites lowered to basal values during refeeding. These results suggest that beef cows use different adaptation strategies to cope with nutritional challenges as lactation advances, body fat mobilisation predominates in early lactation and protein catabolism prevails at later stages.


Subject(s)
Fatty Acids, Nonesterified , Lactation , Female , Cattle , Animals , Lactation/physiology , Milk/metabolism , Diet/veterinary , Body Weight , Urea , Energy Metabolism/physiology , Animal Feed/analysis , 3-Hydroxybutyric Acid
18.
J Dairy Sci ; 106(5): 3465-3476, 2023 May.
Article in English | MEDLINE | ID: mdl-36935234

ABSTRACT

Metabolic disorders as ketosis are manifestations of the animal's inability to manage the increase in energy requirement during early lactation. Generally, buffaloes show a different response to higher metabolic demands than other ruminants with a lower incidence of metabolic problems, although ketosis is one of the major diseases that may decrease the productivity in buffaloes. The aim of this study was to characterize the metabolic profile of Mediterranean buffaloes (MB) associated with 2 different levels of ß-hydroxybutyrate (BHB). Sixty-two MB within 50 days in milk (DIM) were enrolled and divided into 2 groups according to serum BHB concentration: healthy group (37 MB; BHB <0.70 mmol/L; body condition score: 5.00; parity: 3.78; and DIM: 30.70) and group at risk of hyperketonemia (25 MB; BHB ≥0.70 mmol/L; body condition score: 4.50; parity: 3.76; and DIM: 33.20). The statistical analysis was conducted by one-way ANOVA and unpaired 2-sample Wilcoxon tests. Fifty-seven metabolites were identified and among them, 12 were significant or tended to be significant. These metabolites were related to different metabolic changes such as mobilization of body resources, ruminal fermentations, urea cycle, thyroid hormone synthesis, inflammation, and oxidative stress status. These findings are suggestive of metabolic changes related to subclinical ketosis status that should be further investigated to better characterize this disease in the MB.


Subject(s)
Cattle Diseases , Ketosis , Pregnancy , Female , Animals , Cattle , Buffaloes/metabolism , Lactation , Milk/metabolism , 3-Hydroxybutyric Acid , Ketosis/veterinary , Metabolomics , Cattle Diseases/metabolism
19.
Vet Sci ; 10(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36851411

ABSTRACT

Negative energy balance (NEB) during the perinatal period leads to metabolic and immunological disorders in dairy cows, resulting in systemic responses and inflammation. The innate immune system is crucial for the host's protection and inflammatory response. However, systematic research is still lacking on how NEB affects the innate immune system to alter the 'host defense capability and inflammatory response. In this investigation, raw transcriptome data of adipose, blood, endometrial, hypothalamus, and liver tissues were downloaded from a public database, cleaned, aligned, quantified, and batch-corrected. The innate immune gene list was retrieved from innateDB, followed by the expression matrix of innate immune genes in various tissues for differential expression analysis, principle component analysis (PCA), and gene set enrichment analysis (GSEA). Under the effect of NEB, adipose tissue had the most differentially expressed genes, which were predominantly up-regulated, whereas blood GSEA had the most enriched biological processes, which were predominantly down-regulated. The gene sets shared by different tissues, which are predominantly involved in biological processes associated with defense responses and inflammation, were dramatically down-regulated in endometrial tissues and highly up-regulated in other tissues. Under the impact of NEB, LBP, PTX3, S100A12, and LCN2 play essential roles in metabolism and immunological control. In conclusion, NEB can downregulate the defensive response of innate immune genes in endometrial, upregulate the immune and inflammatory response of other tissues, activate the host defense response, and increase the systemic inflammatory response. The analysis of the effects of NEB on innate immune genes from the multiple tissues analysis provides new insights into the crosstalk between metabolism and immunity and also provides potential molecular targets for disease diagnosis and disease resistance breeding in dairy cows.

20.
Front Microbiol ; 13: 1053503, 2022.
Article in English | MEDLINE | ID: mdl-36478854

ABSTRACT

The primary product of rumen fermentation is acetic acid, and its sodium salt is an excellent energy source for post-partum cows to manage negative energy balance (NEB). However, it is unknown how adding sodium acetate (NAc) may affect the rumen bacterial population of post-partum cows. Using the identical nutritional total mixed ration (TMR), this research sought to characterize the impact of NAc supplementation on rumen fermentation and the composition of bacterial communities in post-partum cows. After calving, 24 cows were randomly assigned to two groups of 12 cows each: a control group (CON) and a NAc group (ACE). All cows were fed the same basal TMR with 468 g/d NaCl added to the TMR for the CON group and 656 g/d NAc added to the TMR for the ACE group for 21 days after calving. Ruminal fluid was collected before morning feeding on the last day of the feeding period and analyzed for rumen bacterial community composition by 16S rRNA gene sequencing. Under the identical TMR diet conditions, NAc supplementation did not change rumen pH but increased ammonia nitrogen (NH3-N) levels and microbial crude protein (MCP) concentrations. The administration of NAc to the feed upregulated rumen concentrations of total volatile fatty acids (TVFA), acetic, propionic, isovaleric and isobutyric acids without affecting the molar ratio of VFAs. In the two experimental groups, the Bacteroidota, Firmicutes, Patescibacteria and Proteobacteria were the dominant rumen phylum, and Prevotella was the dominant rumen genus. The administration of NAc had no significant influence on the α-diversity of the rumen bacterial community but upregulated the relative abundance of Prevotella and downregulated the relative abundance of RF39 and Clostridia_UCG_014. In conclusion, the NAc supplementation in the post-peripartum period altered rumen flora structure and thus improved rumen fermentation in dairy cows. Our findings provide a reference for the addition of sodium acetate to alleviate NEB in cows during the late perinatal period.

SELECTION OF CITATIONS
SEARCH DETAIL