Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36614002

ABSTRACT

Allopregnanolone (3α-THP) has been one of the most studied progesterone metabolites for decades. 3α-THP and its synthetic analogs have been evaluated as therapeutic agents for pathologies such as anxiety and depression. Enzymes involved in the metabolism of 3α-THP are expressed in classical and nonclassical steroidogenic tissues. Additionally, due to its chemical structure, 3α-THP presents high affinity and agonist activity for nuclear and membrane receptors of neuroactive steroids and neurotransmitters, such as the Pregnane X Receptor (PXR), membrane progesterone receptors (mPR) and the ionotropic GABAA receptor, among others. 3α-THP has immunomodulator and antiapoptotic properties. It also induces cell proliferation and migration, all of which are critical processes involved in cancer progression. Recently the study of 3α-THP has indicated that low physiological concentrations of this metabolite induce the progression of several types of cancer, such as breast, ovarian, and glioblastoma, while high concentrations inhibit it. In this review, we explore current knowledge on the metabolism and mechanisms of action of 3α-THP in normal and tumor cells.


Subject(s)
Neoplasms , Pregnanolone , Humans , Gonadal Steroid Hormones , Pregnanolone/pharmacology , Progesterone/metabolism , Receptors, Progesterone , Neoplasms/metabolism
2.
Cell Mol Neurobiol ; 39(4): 471-472, 2019 May.
Article in English | MEDLINE | ID: mdl-30941611

ABSTRACT

Steroids are complex molecules, exerting known and still unknown effects in the nervous system. Throughout this volume, the reader will find a wide spectrum of articles, giving an up-to-date account of the molecular, physiological, pharmacological, and clinical aspects of steroid action on the nervous system.


Subject(s)
Nervous System/drug effects , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Steroids/pharmacology , Animals , Humans , Mice , Neuroprotection/drug effects
3.
Cell Mol Neurobiol ; 39(4): 523-537, 2019 May.
Article in English | MEDLINE | ID: mdl-30187261

ABSTRACT

In the last decades, an active and stimulating area of research has been devoted to explore the role of neuroactive steroids in pain modulation. Despite challenges, these studies have clearly contributed to unravel the multiple and complex actions and potential mechanisms underlying steroid effects in several experimental conditions that mimic human chronic pain states. Based on the available data, this review focuses mainly on progesterone and its reduced derivative allopregnanolone (also called 3α,5α-tetrahydroprogesterone) which have been shown to prevent or even reverse the complex maladaptive changes and pain behaviors that arise in the nervous system after injury or disease. Because the characterization of new related molecules with improved specificity and enhanced pharmacological profiles may represent a crucial step to develop more efficient steroid-based therapies, we have also discussed the potential of novel synthetic analogs of allopregnanolone as valuable molecules for the treatment of neuropathic pain.


Subject(s)
Neuralgia/metabolism , Pregnanolone/metabolism , Progesterone/metabolism , Translational Research, Biomedical , Animals , Humans , Models, Biological , Neuralgia/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pregnanolone/biosynthesis , Progesterone/biosynthesis , Progesterone/chemistry
4.
J Neuroimmunol ; 292: 85-92, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26943964

ABSTRACT

Neuropathic pain is a frequent complication of spinal cord injury (SCI), still refractory to conventional treatment. Glial cell activation and cytokine production contribute to the pathology of central neuropathic syndromes. In this study we evaluated the effects of progesterone, a neuroactive steroid, on pain development and the spinal expression of IL-1ß, its receptors (IL-1RI and IL-1RII) and antagonist (IL-1ra), IL-6 and TNFα, and NR1 subunit of NMDAR. Our results show that progesterone, by modulating the expression of pro-inflammatory cytokines and neuronal IL-1RI/NR1 colocalization, emerges as a promising agent to prevent chronic pain after SCI.


Subject(s)
Cytokines/metabolism , Progesterone/therapeutic use , Progestins/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Animals , Cytokines/genetics , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Male , Neuralgia/etiology , Pain Threshold/drug effects , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Spinal Cord Injuries/complications , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL