Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 781
Filter
1.
Brain Behav Immun Health ; 40: 100828, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39170798

ABSTRACT

Recently, the diagnosis of autism spectrum disorder (ASD) has increased from 1 in 150 to every 1 in 36 children in the United States, warranting a need for novel prevention and therapeutic strategies. Broad-spectrum cannabidiol oil, free from delta-9-tetrahydrocannabinol, the psychoactive component of cannabis, may be one such therapeutic. It has a high safety profile and is frequently used as a complementary and integrative intervention by persons experiencing symptoms of anxiety, stress, and inflammation. Using a neurodevelopmental rat model of ASD (based on neuroinflammation induced by stress and terbutaline exposure during pre- and postnatal development), we sought to prevent the development of ASD-like behaviors in male offspring by administering broad-spectrum cannabidiol oil to dams throughout pregnancy (10 mg/kg, i.p., daily, embryonic days 3-16). To assess an ASD-like phenotype in the offspring, we used three behavioral measures relevant to three core ASD symptoms: 1) social communication (time spent vocalizing when alone); 2) repetitive behavior (marbles buried during a marble burying test); and 3) social interaction (time spent interacting with a novel conspecific during the three-chamber social interaction test). Broad-spectrum cannabidiol oil given during pregnancy decreased scores for all three ASD-related behavioral responses, resulting in an overall significant prevention of the ASD-like phenotype. These findings highlight the potential of broad-spectrum cannabidiol oil as a complementary and integrative approach for prevention of stressor-induced sequelae relevant to development of an ASD-like phenotype.

2.
Breastfeed Med ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172719

ABSTRACT

Background: An exclusive human milk (EHM) diet has numerous benefits. Formula supplementation may be recommended for former preterm infants at the time of neonatal intensive care unit (NICU) discharge to meet perceived metabolic demands and caloric goals. Recommendations addressing postdischarge nutrition for very preterm infants (VPTIs) are controversial, as the benefits of human milk supplementation regarding long-term growth, neurodevelopment, and chronic conditions are mixed. Objective: To compare growth and neurodevelopment of former VPTI fed an EHM diet to a supplemented/formula diet at NICU discharge. Materials and Methods: A retrospective cohort study of VPTI was followed at the Regional Neonatal Follow-up Program. Patients were categorized by diet at NICU discharge: EHM diet; mixed diet (EHM and formula); and exclusive formula diet. Growth percentile ranks at the first neonatal follow-up visit and 3 years of age were compared by diet type at NICU discharge. Neurodevelopmental outcomes as measured by the Bayley Scales of Infant Development 3rd Edition at 3 years of age were also compared. Results: Among 835 VPTIs, weight percentiles at the first neonatal follow-up visit were similar between the three NICU discharge diet types. One hundred fifty-eight subjects received neurodevelopmental evaluations at 3 years of age; anthropometrics and neurodevelopment were similar irrespective of diet at NICU discharge. Conclusion: An EHM diet at NICU discharge is appropriate to support growth in infancy as well as growth and neurodevelopment through 3 years of age. Thus, this raises the question of whether routine nutritional supplementation is necessary for VPTIs at NICU discharge.

3.
Drug Metab Pharmacokinet ; 58: 101031, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39146603

ABSTRACT

Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding their neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUDs using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUDs in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.

4.
Front Genet ; 15: 1460228, 2024.
Article in English | MEDLINE | ID: mdl-39175754

ABSTRACT

Congenital heart disease (CHD) has, despite significant improvements in patient survival, increasingly become associated with neurological deficits during infancy that persist into adulthood. These impairments afflict a wide range of behavioral domains including executive function, motor learning and coordination, social interaction, and language acquisition, reflecting alterations in multiple brain areas. In the past few decades, it has become clear that CHD is highly genetically heterogeneous, with large chromosomal aneuploidies and copy number variants (CNVs) as well as single nucleotide polymorphisms (SNPs) being implicated in CHD pathogenesis. Intriguingly, many of the identified loss-of-function genetic variants occur in genes important for primary cilia integrity and function, hinting at a key role for primary cilia in CHD. Here we review the current evidence for CHD primary cilia associated genetic variants, their independent functions during cardiac and brain development and their influence on behavior. We also highlight the role of environmental exposures in CHD, including stressors such as surgical factors and anesthesia, and how they might interact with ciliary genetic predispositions to determine the final neurodevelopmental outcome. The multifactorial nature of CHD and neurological impairments linked with it will, on one hand, likely necessitate therapeutic targeting of molecular pathways and neurobehavioral deficits shared by disparate forms of CHD. On the other hand, strategies for better CHD patient stratification based on genomic data, gestational and surgical history, and CHD complexity would allow for more precise therapeutic targeting of comorbid neurological deficits.

5.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39131270

ABSTRACT

Docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, is a major building block of brain cell membranes. Offspring rely on maternal DHA transfer to meet their neurodevelopmental needs, but DHA sources are lacking in the American diet. Low DHA status is linked to altered immune responses, white matter defects, impaired vision, and an increased risk of psychiatric disorders during development. However, the underlying cellular mechanisms involved are largely unknown, and advancements in the field have been limited by the existing tools and animal models. Zebrafish are an excellent model for studying neurodevelopmental mechanisms. Embryos undergo rapid external development and are optically transparent, enabling direct observation of individual cells and dynamic cell-cell interactions in a way that is not possible in rodents. Here, we create a novel DHA-deficient zebrafish model by 1) disrupting elovl2, a key gene in the DHA biosynthesis pathway, via CRISPR-Cas9 genome editing, and 2) feeding mothers a DHA-deficient diet. We show that low DHA status during development is associated with a small eye morphological phenotype and demonstrate that even the morphologically normal siblings exhibit dysregulated gene pathways related to vision and stress response. Future work using our zebrafish model could reveal the cellular and molecular mechanisms by which low DHA status leads to neurodevelopmental abnormalities and provide insight into maternal nutritional strategies that optimize infant brain health.

6.
Mol Ther ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127888

ABSTRACT

Effective gene therapy for gain-of-function or dominant-negative disease mutations may require eliminating expression of the mutant copy together with wild-type replacement. We evaluated such a knockdown-replace strategy in a mouse model of DNM1 disease, a debilitating and intractable neurodevelopmental epilepsy. To challenge the approach robustly, we expressed a patient-based variant in GABAergic neurons-which resulted in growth delay and lethal seizures evident by postnatal week three-and delivered to newborn pups an AAV9-based vector encoding a ubiquitously expressed, Dnm1-specific interfering RNA (RNAi) bivalently in tail-to-tail configuration with a neuron-specific, RNAi-resistant, codon-optimized Dnm1 cDNA. Pups receiving RNAi or cDNA alone fared no better than untreated pups, whereas the vast majority of mutants receiving modest doses survived with almost full growth recovery. Synaptic recordings of cortical neurons derived from treated pups revealed that significant alterations in transmission from inhibitory to excitatory neurons were rectified by bivalent vector application. To examine the mutant transcriptome and impact of treatment, we used RNA sequencing and functional annotation clustering. Mutants displayed abnormal expression of more than 1,000 genes in highly significant and relevant functional clusters, clusters that were abrogated by treatment. Together these results suggest knockdown-replace as a potentially effective strategy for treating DNM1 and related genetic neurodevelopmental disease.

7.
bioRxiv ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39149321

ABSTRACT

Despite established exposure limits, arsenic remains the most significant environmental risk factor detrimental to human health and is associated with carcinogenesis and neurotoxicity. Arsenic compromises neurodevelopment, and it is associated with peripheral neuropathy in adults. Exposure to heavy metals, such as arsenic, may also increase the risk of neurodegenerative disorders. Nevertheless, the molecular mechanisms underlying arsenic-induced neurotoxicity remain poorly understood. Elucidating how arsenic contributes to neurotoxicity may mitigate some of the risks associated with chronic sublethal exposure and inform future interventions. In this study, we examine the effects of arsenic exposure on Drosophila larval neurodevelopment and adult neurologic function. Consistent with prior work, we identify significant developmental delays and heightened mortality in response to arsenic. Within the developing larval brain, we identify a dose-dependent increase in brain volume. This aberrant brain growth is coupled with impaired mitotic progression of the neural stem cells (NSCs), progenitors of the neurons and glia of the central nervous system. Live imaging of cycling NSCs reveals significant delays in cell cycle progression upon arsenic treatment, leading to genomic instability. In adults, chronic arsenic exposure reduces neurologic function, such as locomotion. Finally, we show arsenic selectively impairs circadian rhythms in a humanized tauopathy model. These findings inform mechanisms of arsenic neurotoxicity and reveal sex-specific and genetic vulnerabilities to sublethal exposure.

8.
Front Psychiatry ; 15: 1431693, 2024.
Article in English | MEDLINE | ID: mdl-39165504

ABSTRACT

Background: Macrocephaly is described in almost 15% of children with Autism Spectrum Disorder (ASD). Relationships between head growth trajectories and clinical findings in ASD children show a high degree of variability, highlighting the complex heterogeneity of the disorder. Objectives: The aim of this study was to measure differences of the early growth trajectory of head circumference (HC) in children with ASD and macrocephaly compared to ASD normocephalic children, examining clinical correlates in the two groups of patients. Methods: HC data were collected from birth to 5 years of age in a sample of children with a confirmed diagnosis of ASD. Participants were classified into two groups: ASD macrocephaly (ASD-M, Z-scores ≥1.88 in at least two consecutive HC measurements), and ASD non-macrocephaly (ASD-N). Based on the distribution of HC measurements (Z-scores), five age groups were identified for the longitudinal study. Developmental and behavioral characteristics of the ASD-M children compared to the ASD-N group were compared by using standardized scores. Results: 20,8% of the children sample met criteria for macrocephaly. HC values became indicative of macrocephaly in the ASD-M group at the age range from 1 to 6 months, and persisted thereafter throughout the first five years of age. ASD-M children showed significantly higher developmental quotients of Griffiths III B and D subscales compared to ASD-N group. No significant differences in the severity of ASD symptoms assessed by ADOS-2 were observed between ASD-M and ASD-N groups. Conclusion: In this study HC size from birth to 5 years links to accelerated HC growth rate as early as the first 6 months of age in children with ASD and macrocephaly, preceding the onset and diagnosis of ASD. We found that in early childhood, children with ASD-M may exhibit some advantages in language and social communication and emotional skills without differences in autism severity, when compared with age-matched normocephalic ASD children. Longitudinal analyses are required to catch-up prospectively possible relationships between head size as proxy measure of brain development and neuro-developmental and behavioral features in children with ASD.

9.
Brain Behav Immun ; 122: 27-43, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098436

ABSTRACT

Elevated interleukin (IL-)6 levels during prenatal development have been linked to increased risk for neurodevelopmental disorders (NDD) in the offspring, but the mechanism remains unclear. Human-induced pluripotent stem cell (hiPSC) models offer a valuable tool to study the effects of IL-6 on features relevant for human neurodevelopment in vitro. We previously reported that hiPSC-derived microglia-like cells (MGLs) respond to IL-6, but neural progenitor cells (NPCs) in monoculture do not. Therefore, we investigated whether co-culturing hiPSC-derived MGLs with NPCs would trigger a cellular response to IL-6 stimulation via secreted factors from the MGLs. Using N=4 donor lines without psychiatric diagnosis, we first confirmed that NPCs can respond to IL-6 through trans-signalling when recombinant IL-6Ra is present, and that this response is dose-dependent. MGLs secreted soluble IL-6R, but at lower levels than found in vivo and below that needed to activate trans-signalling in NPCs. Whilst transcriptomic and secretome analysis confirmed that MGLs undergo substantial transcriptomic changes after IL-6 exposure and subsequently secrete a cytokine milieu, NPCs in co-culture with MGLs exhibited a minimal transcriptional response. Furthermore, there were no significant cell fate-acquisition changes when differentiated into post-mitotic cultures, nor alterations in synaptic densities in mature neurons. These findings highlight the need to investigate if trans-IL-6 signalling to NPCs is a relevant disease mechanism linking prenatal IL-6 exposure to increased risk for psychiatric disorders. Moreover, our findings underscore the importance of establishing more complex in vitro human models with diverse cell types, which may show cell-specific responses to microglia-released cytokines to fully understand how IL-6 exposure may influence human neurodevelopment.

10.
Int J Environ Health Res ; : 1-14, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110000

ABSTRACT

Mismanagement of hazardous waste (HW) causes severe threats to ecosystems and human health. We conducted a systematic literature review and evaluated the evidence regarding the association between residential exposure to HW and childhood neurobehavioral effects. We consulted international agencies websites and conducted a search on MEDLINE and EMBASE databases by applying a "Population-Exposure-Comparator-Outcome" question. The evidence evaluation, based on the quality of the studies and their concordance, was graded in sufficient/limited/inadequate. Documents from international agencies were not found. Of the seventy-five studies screened, nine met the eligibility criteria. Studies agree on the association between residential exposure to HW sites and negative neurodevelopmental effects. The evidence of the association was attributed limited to cognitive and behavioral outcomes, and inadequate to Autism Spectrum Disorder. The evidence was evaluated sufficient for HW sites releasing lead and cognitive disorders. Residential exposure to unsafe HW sites may contribute to childhood neurobehavioral alterations. It is urgent to implement environmental remediation of contaminated sites and counteracting illegal and unsafe HW management practices.

11.
J Neurodev Disord ; 16(1): 46, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148034

ABSTRACT

BACKGROUND: SYNGAP1 variants are associated with varying degrees of intellectual disability (ID), developmental delay (DD), epilepsy, autism, and behavioural difficulties. These features may also be observed in other monogenic conditions. There is a need to systematically compare the characteristics of SYNGAP1 with other monogenic causes of ID and DD to identify features unique to the SYNAGP1 phenotype. We aimed to contrast the neurodevelopmental and behavioural phenotype of children with SYNGAP1-related ID (SYNGAP1-ID) to children with other monogenic conditions and a matched degree of ID. METHODS: Participants were identified from the IMAGINE-ID study, a UK-based, national cohort study of neuropsychiatric risk in children with ID of known genetic origin. Thirteen children with SYNGAP1 variants (age 4-16 years; 85% female) were matched (2:1) with 26 controls with other monogenic causes of ID for chronological and mental age, sex, socio-economic deprivation, adaptive behaviour, and physical health difficulties. Caregivers completed the Development and Wellbeing Assessment (DAWBA) and physical health questionnaires. RESULTS: Our results demonstrate that seizures affected children with SYNGAP1-ID (84.6%) more frequently than the ID-comparison group (7.6%; p = < 0.001). Fine-motor development was disproportionally impaired in SYNGAP1-ID, with 92.3% of children experiencing difficulties compared to 50% of ID-comparisons(p = 0.03). Gross motor and social development did not differ between the two groups. Children with SYNGAP1-ID were more likely to be non-verbal (61.5%) than ID-comparisons (23.1%; p = 0.01). Those children able to speak, spoke their first words at the same age as the ID-comparison group (mean = 3.25 years), yet achieved lower language competency (p = 0.04). Children with SYNGAP1-ID compared to the ID-comparison group were not more likely to meet criteria for autism (SYNGAP1-ID = 46.2%; ID-comparison = 30.7%; p = .35), attention-deficit hyperactivity disorder (15.4%;15.4%; p = 1), generalised anxiety (7.7%;15.4%; p = .49) or oppositional defiant disorder (7.7%;0%; p = .15). CONCLUSION: For the first time, we demonstrate that SYNGAP1-ID is associated with fine motor and language difficulties beyond those experienced by children with other genetic causes of DD and ID. Targeted occupational and speech and language therapies should be incorporated early into SYNGAP1-ID management.


Subject(s)
Intellectual Disability , ras GTPase-Activating Proteins , Humans , Female , ras GTPase-Activating Proteins/genetics , Male , Child , Adolescent , Child, Preschool , Intellectual Disability/genetics , Intellectual Disability/etiology , Developmental Disabilities/genetics , Developmental Disabilities/etiology , United Kingdom , Neurodevelopmental Disorders/genetics , Cohort Studies , Phenotype , Epilepsy/genetics , Seizures/genetics
12.
Behav Brain Res ; 474: 115176, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098400

ABSTRACT

Alcohol is the most consumed addictive substance worldwide that elicits multiple health problems. Consumption of alcoholic beverages by pregnant women is of great concern because pre-natal exposure can trigger fetal alcohol spectrum disorder (FASD). This disorder can significantly change the embryo's normal development, mainly by affecting the central nervous system (CNS), leading to neurobehavioral consequences that persist until adulthood. Among the harmful effects of FASD, the most reported consequences are cognitive and behavioral impairments. Alcohol interferes with multiple pathways in the brain, affecting memory by impairing neurotransmitter systems, increasing the rate of oxidative stress, or even activating neuroinflammation. Here, we aimed to evaluate the deleterious effects of alcohol on the cholinergic signaling and memory in a FASD zebrafish model, using inhibitory avoidance and novel object recognition tests. Four months after the embryonic exposure to ethanol, the behavioral tests indicated that ethanol impairs memory. While both ethanol concentrations tested (0.5 % and 1 %) disrupted memory acquisition in the inhibitory avoidance test, 1 % ethanol impaired memory in the object recognition test. Regarding the cholinergic system, 0.5 % ethanol decreased ChAT and AChE activities, but the relative gene expression did not change. Overall, we demonstrated that FASD model in zebrafish impairs memory in adult individuals, corroborating the memory impairment associated with embryonic exposure to ethanol. In addition, the cholinergic system was also affected, possibly showing a relation with the cognitive impairment observed.

13.
Aust N Z J Psychiatry ; : 48674241272018, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152569

ABSTRACT

BACKGROUND: Vitamin D status in pregnancy may affect offspring neurodevelopment. OBJECTIVE: The objective was to investigate the association between serum 25-hydroxyvitamin D in cord blood and pregnancy and symptoms of attention-deficit hyperactivity disorder in 5-year-old offspring. METHOD: In Odense Child Cohort, Denmark, 944 mother-child pairs had data on pregnancy or cord serum 25-hydroxyvitamin D and parent-rated attention-deficit hyperactivity disorder symptom score by Child Behavior Checklist for ages 1.5-5 years. Adjusted multiple linear regression and two-stage exposure analyses were performed for serum 25-hydroxyvitamin D associations to the attention-deficit hyperactivity disorder symptom score. RESULTS: The mean (standard deviation) serum 25-hydroxyvitamin D in cord blood was 48.0 (21.8) nmol/L; early pregnancy was 65.5 (20.2) nmol/L and late pregnancy was 79.3 (25.7) nmol/L. The median (interquartile range) age of child at examination was 5.2 (5.1-5.4) years and median (interquartile range) attention-deficit hyperactivity disorder symptom score was 2 (0-3) points. In adjusted analyses, serum 25-hydroxyvitamin D of <25 nmol/L and <32 nmol/L in cord blood and <25 nmol/L in early pregnancy was associated with 0.9 [95% confidence interval: 0.4, 1.3], 0.5 [0.1, 0.9] and 2.1 [0.8, 3.4] points higher attention-deficit hyperactivity disorder symptom score vs reference. In the two-stage exposure analysis, attention-deficit hyperactivity disorder symptom score decreased by 0.4 points per 25 nmol/L increase in serum 25-hydroxyvitamin D. Moreover, serum 25-hydroxyvitamin D of <25 nmol/L in early pregnancy and cord was associated with a five-fold and a two-fold risk of attention-deficit hyperactivity disorder symptom score ⩾90th percentile, adjusted odds ratio [95% confidence interval] = 4.9 [1.3, 19.0] and 2.2 [1.2, 3.9]. CONCLUSION: In this cohort, serum 25-hydroxyvitamin D <25 nmol/L in cord blood and early pregnancy were risk factors for higher attention-deficit hyperactivity disorder symptom score in 5-year-old children, suggesting a protective effect of vitamin D on attention-deficit hyperactivity disorder traits at preschool age.

14.
Dev Cogn Neurosci ; 69: 101438, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153422

ABSTRACT

This systematic review considered evidence of children's and adolescents' typical brain connectivity development studied through resting-state functional magnetic resonance imaging (rs-fMRI). With aim of understanding the state of the art, what has been researched thus far and what remains unknown, this paper reviews 58 studies from 2013 to 2023. Considering the results, rs-fMRI stands out as an appropriate technique for studying language and attention within cognitive domains, and personality traits such as impulsivity and empathy. The most used analyses encompass seed-based, independent component analysis (ICA), the amplitude of the low frequency fluctuations (ALFF), and fractional ALFF (fALFF). The findings highlight key themes, including age-related changes in intrinsic connectivity, sex-specific patterns, and the relevance of the Default Mode Network (DMN). Overall, there is a need for longitudinal approaches to trace the typical developmental trajectory of neural networks from childhood through adolescence with fMRI at rest.

15.
Brain Behav Immun Health ; 40: 100824, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39161875

ABSTRACT

An estimated 250 million children face adverse health outcomes from early life exposure to severe or chronic social, economic, and nutritional adversity, highlighting/emphasizing the pressing concern about the link between ELS and long-term implications on mental and physical health. There is significant overlap between populations experiencing high levels of chronic stress and those experiencing iron deficiency, spotlighting the potential role of iron as a key mediator in this association. Iron, an essential micronutrient for brain development and immune function, is often depleted in stress conditions. Iron deficiency among the most common nutrient deficiencies in the world. Fetal and infant iron status may thus serve as a crucial intermediary between early chronic psychological stress and subsequent immune system changes to impact neurodevelopment. The review presents a hypothesized pathway between early life stress (ELS), iron deficiency, and neurodevelopment through the hypothalamic-pituitary-adrenocortical (HPA) axis and the IL-6-hepcidin axis. This hypothesis is derived from (1) evidence that stress impacts iron status (2) long-term neurodevelopmental outcomes that are shared by ELS and iron deficiency exposure, and (3) possible mechanisms for how iron may mediate the relation between ELS and iron deficiency through alterations in the developing immune system. The article concludes by proposing future research directions, emphasizing the need for rigorous studies to elucidate how stress and iron metabolism interact to modify the developing immune system. Understanding these mechanisms could open new avenues for improving human health and neurodevelopment for women and children globally, making it a timely and vital area of study in psychoneuroimmunology research.

16.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125882

ABSTRACT

Neurotrophins and their receptors are distinctly expressed during brain development and play crucial roles in the formation, survival, and function of neurons in the nervous system. Among these molecules, brain-derived neurotrophic factor (BDNF) has garnered significant attention due to its involvement in regulating GABAergic system development and function. In this review, we summarize and compare the expression patterns and roles of neurotrophins and their receptors in both the developing and adult brains of rodents, macaques, and humans. Then, we focus on the implications of BDNF in the development and function of GABAergic neurons from the cortex and the striatum, as both the presence of BDNF single nucleotide polymorphisms and disruptions in BDNF levels alter the excitatory/inhibitory balance in the brain. This imbalance has different implications in the pathogenesis of neurodevelopmental diseases like autism spectrum disorder (ASD), Rett syndrome (RTT), and schizophrenia (SCZ). Altogether, evidence shows that neurotrophins, especially BDNF, are essential for the development, maintenance, and function of the brain, and disruptions in their expression or signaling are common mechanisms in the pathophysiology of brain diseases.


Subject(s)
Brain-Derived Neurotrophic Factor , GABAergic Neurons , Humans , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , GABAergic Neurons/metabolism , Receptors, Nerve Growth Factor/metabolism , Receptors, Nerve Growth Factor/genetics , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Brain/metabolism , Brain/growth & development
17.
Brain Commun ; 6(4): fcae248, 2024.
Article in English | MEDLINE | ID: mdl-39130516

ABSTRACT

Paediatric autoimmune encephalitis, including acute disseminated encephalomyelitis, are inflammatory brain diseases presenting with cognitive deficits, psychiatric symptoms, seizures, MRI and EEG abnormalities. Despite improvements in disease recognition and early immunotherapy, long-term outcomes in paediatric autoimmune encephalitis remain poor. Our aim was to understand functional connectivity changes that could be associated with negative developmental outcomes across different types of paediatric autoimmune encephalitis using magnetoencephalography. Participants were children diagnosed with paediatric autoimmune encephalitis at least 18 months before testing and typically developing children. All completed magnetoencephalography recording at rest, T1 MRI scans and neuropsychology testing. Brain connectivity (specifically in delta and theta) was estimated with amplitude envelope correlation, and network efficiency was measured using graph measures (global efficiency, local efficiency and modularity). Twelve children with paediatric autoimmune encephalitis (11.2 ± 3.5 years, interquartile range 9 years; 5M:7F) and 12 typically developing controls (10.6 ± 3.2 years, interquartile range 7 years; 8M:4F) participated. Children with paediatric autoimmune encephalitis did not differ from controls in working memory (t(21) = 1.449; P = 0.162; d = 0.605) but had significantly lower processing speed (t(21) = 2.463; P = 0.023; Cohen's d = 1.028). Groups did not differ in theta network topology measures. The paediatric autoimmune encephalitis group had a significantly lower delta local efficiency across all thresholds tested (d = -1.60 at network threshold 14%). Theta modularity was associated with lower working memory (ß = -0.781; t(8) = -2.588, P = 0.032); this effect did not survive correction for multiple comparisons (P(corr) = 0.224). Magnetoencephalography was able to capture specific network alterations in paediatric autoimmune encephalitis patients. This preliminary study demonstrates that magnetoencephalography is an appropriate tool for assessing children with paediatric autoimmune encephalitis and could be associated with cognitive outcomes.

18.
J Soc Cardiovasc Angiogr Interv ; 3(5): 101355, 2024 May.
Article in English | MEDLINE | ID: mdl-39132454

ABSTRACT

Background: Patent ductus arteriosus stenting (PDAS) is a nonsurgical alternative to Blalock-Taussig-Thomas shunt (BTTS) for infants with ductal-dependent congenital heart disease. In this single-center study, we aimed to compare neurodevelopmental outcomes in children who underwent BTTS as initial palliation versus PDAS. Methods: Bayley Scales of Infant and Toddler Development Screening Test (Bayley-III) reports and mode of feeding data were collected for any patient who underwent PDAS or BTTS at Rady Children's Hospital from 2013 to 2021. We also prospectively administered the Parents' Evaluation of Development Status questionnaire (PEDS) to parents of children aged 2-8 years in this patient population. Results: Of the 99 patients, 64 received a Bayley-III assessment and/or PEDS screen. Of the 35 who had a Bayley-III, there was a higher proportion of patients with PDAS who scored as developmentally appropriate compared with BTTS. PEDS screen showed that a higher proportion of patients with PDAS had no parental concern for delay than that of patients with BTTS (63% vs 30%). Patients with BTTS were more likely to undergo gastrostomy tube placement than patients with PDAS. Conclusions: Our study suggests that neurodevelopmental measures are feasible, clinically relevant, and should be included in comparative effectiveness studies of infant congenital interventions. Whether PDAS offers neurodevelopmental benefit over BTTS should be confirmed in a prospective powered randomized controlled clinical trial.

19.
Front Psychiatry ; 15: 1396837, 2024.
Article in English | MEDLINE | ID: mdl-39135989

ABSTRACT

Background: Epidemiological studies have linked low birth weight to psychiatric disorders, including substance use disorders. Genomic analyses suggest a role of placental physiology on psychiatric risk. We investigated whether this association is causally related to impaired trophoblast function. Methods: We conducted a two-sample summary-data Mendelian randomization study using as instrumental variables those genetic variants strongly associated with birth weight, whose effect is exerted through the fetal genome, and are located near genes with differential expression in trophoblasts. Eight psychiatric and substance use disorders with >10,000 samples were included as outcomes. The inverse variance weighted method was used as the main analysis and several sensitivity analyses were performed for those significant results. Results: The inverse variance weighted estimate, based on 14 instrumental variables, revealed an association, after correction for multiple tests, between birth weight and broadly defined depression (ß = -0.165, 95% CI = -0.282 to -0.047, P = 0.0059). Sensitivity analyses revealed the absence of heterogeneity in the effect of instrumental variables, confirmed by leave-one-out analysis, MR_Egger intercept, and MR_PRESSO. The effect was consistent using robust methods. Reverse causality was not detected. The effect was specifically linked to genetic variants near genes involved in trophoblast physiology instead of genes with fetal effect on birth weight or involved in placenta development. Conclusion: Impaired trophoblast functioning, probably leading to reduced fetal brain oxygen and nutrient supply, is causally related to broadly defined depression. Considering the therapeutic potential of some agents to treat fetal growth restriction, further research on the effect of trophoblast physiology on mental disorders may have future implications in prevention.

20.
Neurobiol Dis ; 200: 106628, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111703

ABSTRACT

Autism Spectrum Disorders (ASD) encompass a wide array of debilitating symptoms, including severe sensory deficits and abnormal language development. Sensory deficits early in development may lead to broader symptomatology in adolescents and adults. The mechanistic links between ASD risk genes, sensory processing and language impairment are unclear. There is also a sex bias in ASD diagnosis and symptomatology. The current study aims to identify the developmental trajectory and genotype- and sex-dependent differences in auditory sensitivity and temporal processing in a Pten-deletion (phosphatase and tensin homolog missing on chromosome 10) mouse model of ASD. Auditory temporal processing is crucial for speech recognition and language development and deficits will cause language impairments. However, very little is known about the development of temporal processing in ASD animal models, and if there are sex differences. To address this major gap, we recorded epidural electroencephalography (EEG) signals from the frontal (FC) and auditory (AC) cortex in developing and adult Nse-cre PTEN mice, in which Pten is deleted in specific cortical layers (layers III-V) (PTEN conditional knock-out (cKO). We quantified resting EEG spectral power distribution, auditory event related potentials (ERP) and temporal processing from awake and freely moving male and female mice. Temporal processing is measured using a gap-in-noise-ASSR (auditory steady state response) stimulus paradigm. The experimental manipulation of gap duration and modulation depth allows us to measure cortical entrainment to rapid gaps in sounds. Temporal processing was quantified using inter-trial phase clustering (ITPC) values that account for phase consistency across trials. The results show genotype differences in resting power distribution in PTEN cKO mice throughout development. Male and female cKO mice have significantly increased beta power but decreased high frequency oscillations in the AC and FC. Both male and female PTEN cKO mice show diminished ITPC in their gap-ASSR responses in the AC and FC compared to control mice. Overall, deficits become more prominent in adult (p60) mice, with cKO mice having significantly increased sound evoked power and decreased ITPC compared to controls. While both male and female cKO mice demonstrated severe temporal processing deficits across development, female cKO mice showed increased hypersensitivity compared to males, reflected as increased N1 and P2 amplitudes. These data identify a number of novel sensory processing deficits in a PTEN-ASD mouse model that are present from an early age. Abnormal temporal processing and hypersensitive responses may contribute to abnormal development of language function in ASD.

SELECTION OF CITATIONS
SEARCH DETAIL