Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.057
Filter
1.
Adv Healthc Mater ; : e2400364, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221662

ABSTRACT

Central nervous system (CNS) injuries and neurodegenerative diseases have markedly poor prognoses and can result in permanent dysfunction due to the general inability of CNS neurons to regenerate. Differentiation of transplanted stem cells has emerged as a therapeutic avenue to regenerate tissue architecture in damaged areas. Electrical stimulation is a promising approach for directing the differentiation outcomes and pattern of outgrowth of transplanted stem cells, however traditional inorganic bio-electrodes can induce adverse effects such as inflammation. This study demonstrates the implementation of two organic thin films, a polymer/reduced graphene oxide nanocomposite (P(rGO)) and PEDOT:PSS, that have favorable properties for implementation as conductive materials for electrical stimulation, as well as an inorganic indium tin oxide (ITO) conductive film. Transcriptomic analysis reveals that electrical stimulation improves neuronal differentiation of SH-SY5Y cells on all three films, with the greatest effect for P(rGO). Unique material- and electrical stimuli-mediated effects are observed, associated with differentiation, cell-substrate adhesion, and translation. The work demonstrates that P(rGO) and PEDOT:PSS are highly promising organic materials for the development of biocompatible, conductive scaffolds that will enhance electrically-aided stem cell therapeutics for CNS injuries and neurodegenerative diseases.

2.
Methods Mol Biol ; 2831: 97-111, 2024.
Article in English | MEDLINE | ID: mdl-39134846

ABSTRACT

To investigate the cell behavior underlying neuronal differentiation in a physiologically relevant context, differentiating neurons must be studied in their native tissue environment. Here, we describe an accessible protocol for fluorescent live imaging of differentiating neurons within ex vivo embryonic chicken spinal cord slice cultures, which facilitates long-term observation of individual cells within developing tissue.


Subject(s)
Cell Differentiation , Electroporation , Neurons , Spinal Cord , Animals , Electroporation/methods , Spinal Cord/cytology , Spinal Cord/embryology , Chick Embryo , Neurons/cytology , Neurons/metabolism , Chickens , Neurogenesis
3.
Biotechnol J ; 19(7): e2400068, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987218

ABSTRACT

SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation. We report on the testing of human platelet lysate (hPL) as a culture medium supplement to support SH-SY5Y cell culture. Both standard hPL and a fibrinogen-depleted hPL (FD-hPL) formulation, which does not require the addition of anticoagulants to culture media, promoted an increase in SH-SY5Y cell proliferation in comparison to FBS, without compromising metabolic activity. SH-SY5Y cells cultured in hPL or FD-hPL also displayed a higher number of neurite extensions and stained positive for MAP2 and synaptophysin, in the absence of differentiation stimuli; reducing hPL or FD-hPL concentration to 1% v/v did not affect cell proliferation or metabolic activity. Furthermore, following treatment with retinoic acid (RA) and further stimulation with brain-derived neurotrophic factor (BDNF) and nerve growth factor beta (NGF-ß), the percentage of SH-SY5Y cells stained positive for dopaminergic neuronal differentiation markers (tyrosine hydroxylase [TH] and Dopamine Transporter [DAT]) was higher in hPL or FD-hPL than in FBS, and gene expression of dopaminergic markers TH, DAT, and DR2 was also detected. Overall, the data herein presented supports the use of hPL to differentiate SH-SY5Y cells into a neuronal phenotype with dopaminergic features, and the adoption of FD-hPL as a fully xenogeneic free alternative to FBS to support the use of SH-SY5Y cells as a neurodegeneration model.


Subject(s)
Blood Platelets , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Dopaminergic Neurons , Neuroblastoma , Humans , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Neuroblastoma/metabolism , Neuroblastoma/pathology , Cell Line, Tumor , Blood Platelets/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/cytology , Cell Culture Techniques/methods , Culture Media/chemistry , Culture Media/pharmacology , Tretinoin/pharmacology , Phenotype
4.
J Neurophysiol ; 132(3): 653-665, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38988287

ABSTRACT

Generation of human induced pluripotent stem cells (iPSCs) through reprogramming was a transformational change in the field of regenerative medicine that led to new possibilities for drug discovery and cell replacement therapy. Several protocols have been established to differentiate hiPSCs into neuronal lineages. However, low differentiation efficiency is one of the major drawbacks of these approaches. Here, we compared the efficiency of two methods of neuronal differentiation from iPSCs cultured in two different culture media, StemFlex Medium (SFM) and Essential 8 Medium (E8M). The results indicated that iPSCs cultured in E8M efficiently generated different types of neurons in a shorter time and without the growth of undifferentiated nonneuronal cells in the culture as compared with those generated from iPSCs in SFM. Furthermore, these neurons were validated as functional units immunocytochemically by confirming the expression of mature neuronal markers (i.e., NeuN, ß tubulin, and Synapsin I) and whole cell patch-clamp recordings. Long-read single-cell RNA sequencing confirms the presence of upper and deep layer cortical layer excitatory and inhibitory neuronal subtypes in addition to small populations of GABAergic neurons in day 30 neuronal cultures. Pathway analysis indicated that our protocol triggers the signaling transcriptional networks important for the process of neuronal differentiation in vivo.NEW & NOTEWORTHY Low differentiation efficiency is one of the major drawbacks of the existing protocols to differentiate iPSCs into neuronal lineages. Here, we present time-efficient and robust approach of neuronal differentiation leading to the generation of functional brain units, cortical layer neurons. We found iPSCs cultured in Essential 8 media (E8M) resulted in neuronal differentiation without the signs of growth of spontaneously differentiated cells in culture at any point in 35 days compared with Stemflex media (SFM).


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Neurons , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Humans , Neurons/physiology , Neurons/cytology , Cell Differentiation/physiology , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Neurogenesis/physiology , Protein Isoforms/metabolism , Culture Media
5.
Stem Cells Dev ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39028018

ABSTRACT

Neural stem/progenitor cells (NSPCs) persist in the mammalian subventricular zone (SVZ) throughout life, responding to various pathophysiological stimuli and playing a crucial role in central nervous system repair. Although numerous studies have elucidated the role of stanniocalcin 2 (STC2) in regulating cell differentiation processes, its specific function in NSPCs differentiation remains poorly understood. Clarifying the role of STC2 in NSPCs is essential for devising novel strategies to enhance the intrinsic potential for brain regeneration postinjury. Our study revealed the expression of STC2 in NSPCs derived from the SVZ of the C57BL/6N mouse. In cultured SVZ-derived NSPCs, STC2 treatment significantly increased the number of Tuj1 and DCX-positive cells. Furthermore, STC2 injection into the lateral ventricle promoted the neuronal differentiation of NSPCs and migration to the olfactory bulb. Conversely, the STC2 knockdown produced the opposite effect. Further investigation showed that STC2 treatment enhanced AKT phosphorylation in cultured NSPCs, whereas STC2 inhibition hindered AKT activation. Notably, the neuronal differentiation induced by STC2 was blocked by the AKT inhibitor GSK690693, whereas the AKT activator SC79 reversed the impact of STC2 knockdown on neuronal differentiation. Our findings indicate that enhancing STC2 expression in SVZ-derived NSPCs facilitates neuronal differentiation, with AKT regulation potentially serving as a key intracellular target of STC2 signaling.

6.
J Neurosci Methods ; 410: 110225, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39053772

ABSTRACT

BACKGROUND: The study of neurons is fundamental to unraveling the complexities of the nervous system. Primary neuronal cultures from rodents have long been a cornerstone of experimental studies, yet limitations related to their non-human nature and ethical concerns have prompted the development of alternatives. In recent years, the derivation of neurons from human-induced pluripotent stem cells (hiPSCs) has emerged as a powerful option, offering a scalable source of cells for diverse applications. Neural progenitor cells (NPCs) derived from hiPSCs can be efficiently differentiated into functional neurons, providing a platform to study human neural physiology and pathology in vitro. However, challenges persist in achieving consistent and reproducible outcomes across experimental settings. COMPARISON WITH EXISTING METHODS: Our aim is to provide a step-by-step methodological protocol, augmenting existing procedures with additional instructions and parameters, to guide researchers in achieving reproducible results. METHODS AND RESULTS: We outline procedures for the differentiation of hiPSC-derived NPCs into electrically competent neurons, encompassing initial cell density, morphology, maintenance, and differentiation. We also describe the analysis of specific markers for assessing neuronal phenotype, along with electrophysiological analysis to evaluate biophysical properties of neuronal excitability. Additionally, we conduct a comparative analysis of three different chemical methods-KCl, N-methyl-D-aspartate (NMDA), and bicuculline-to induce neuronal depolarization and assess their effects on the induction of both fast and slow post-translational, transcriptional, and post-transcriptional responses. CONCLUSION: Our protocol provides clear instructions for generating reliable human neuronal cultures with defined electrophysiological properties to investigate neuronal differentiation and model diseases in vitro.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Neural Stem Cells , Neurons , Humans , Neurons/physiology , Neurons/cytology , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Cells, Cultured , Cell Culture Techniques/methods , Electrophysiological Phenomena/physiology
7.
Toxics ; 12(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39058101

ABSTRACT

Glyoxalase 1 (Glo1) is an essential enzyme to detoxify methylglyoxal (MGO), a cytotoxic byproduct of glycolysis. Accumulating studies have shown an important role of Glo1 in regulating cortical development and neurogenesis, potentially contributing to the pathogenesis of autism spectrum disorder (ASD) when impaired. We have previously shown that prenatal exposure to non-apoptotic low-dose methylmercury (MeHg), an environmental pollutant, induces premature cortical neurogenesis and ASD-like behaviors in a rodent model. In this study, we aimed to determine the underlying molecular mechanisms that mediate prenatal MeHg-induced premature neuronal differentiation and abnormal neurodevelopment. Using single-cell RNA sequencing (scRNA-seq) and real-time quantitative PCR (RT-qPCR), we found that prenatal MeHg exposure at a non-apoptotic dose significantly reduced Glo1 gene expression in embryonic cultured radial glia precursors (RGPs). In cultured RGPs, the knockdown of Glo1 expression increased neuronal production at the expense of the cultured RGPs population, while overexpression of Glo1 restored MeHg-induced neuronal differentiation back to normal levels. Furthermore, we found that co-treatment with both MeHg and multiple MGO scavengers or a CREB inhibitor (iCREB) mitigated MeHg-induced premature neuronal differentiation, reinforcing the role of Glo1 and CREB in mediating MeHg-induced neuronal differentiation. Our findings demonstrate a direct link between MeHg exposure and expression of an ASD risk gene Glo1 in cortical development, supporting the important role of gene-environment interaction in contributing to the etiology of neural developmental disorders, such as ASD.

8.
Biomedicines ; 12(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062139

ABSTRACT

Stem cell therapy has the potential to meet unsolved problems in tissue repair and regeneration, particularly in the neural tissues. However, an optimal source has not yet been found. Growing evidence indicates that positive effects produced in vivo by mesenchymal stem cells (MSCs) can be due not only to their plasticity but also to secreted molecules including extracellular vesicles (EVs) and the extracellular matrix (ECM). Trophic effects produced by MSCs may reveal the key to developing effective tissue-repair strategies, including approaches based on brain implants or other implantable neural electrodes. In this sense, MSCs will become increasingly valuable and needed in the future. The placenta is a temporary organ devoted to protecting and supporting the fetus. At the same time, the placenta represents an abundant and extremely convenient source of MSCs. Nonetheless, placenta-derived MSCs (P-MSCs) remain understudied as compared to MSCs isolated from other sources. This review outlines the limited literature describing the neuroregenerative effects of P-MSC-derived biomaterials and advocates for exploiting the potential of this untapped source for human regenerative therapies.

9.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38838666

ABSTRACT

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Subject(s)
Active Transport, Cell Nucleus , Adenosine , Cell Nucleus , Neurogenesis , Neurons , Poly(A)-Binding Protein I , RNA, Circular , RNA , RNA, Circular/metabolism , RNA, Circular/genetics , Neurons/metabolism , Adenosine/metabolism , Cell Nucleus/metabolism , Humans , Poly(A)-Binding Protein I/metabolism , Poly(A)-Binding Protein I/genetics , Animals , RNA/metabolism , RNA/genetics , Cell Line , Cell Differentiation , Cytoplasm/metabolism , Prosencephalon/metabolism
10.
ACS Appl Bio Mater ; 7(6): 3915-3931, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38836645

ABSTRACT

One of the crucial requirements of quantum dots for biological applications is their surface modification for very specific and enhanced biological recognition and uptake. Toward this end, we present the green synthesis of bright, red-emitting carbon quantum dots derived from mango leaf extract (mQDs). These mQDs are conjugated electrostatically with dopamine to form mQDs-dopamine (mQDs:DOPA) bioconjugates. Bright-red fluorescence of mQDs was used for bioimaging and uptake in cancerous and noncancerous cell lines, tissues, and in vivo models like zebrafish. mQDs exhibited the highest uptake in brain tissue compared to the heart, kidney, and liver. mQD:DOPA conjugates killed breast cancer cells and increased uptake in epithelial RPE-1 cells and zebrafish. Additionally, mQDs:DOPA promoted neuronal differentiation of SH-SY5Y cells to differentiated neurons. Both mQDs and mQDs:DOPA exhibited the potential for higher collective cell migrations, implicating their future potential as next-generation tools for advanced biological and biomedical applications.


Subject(s)
Carbon , Cell Differentiation , Dopamine , Quantum Dots , Zebrafish , Quantum Dots/chemistry , Humans , Carbon/chemistry , Carbon/pharmacology , Dopamine/metabolism , Dopamine/chemistry , Animals , Cell Differentiation/drug effects , Neurons/drug effects , Neurons/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Particle Size , Materials Testing , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Optical Imaging , Cell Survival/drug effects , Cell Line, Tumor
11.
Mol Neurobiol ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795301

ABSTRACT

Spinal cord injury (SCI) is a severe neurological condition that can lead to paralysis or even death. This study explored the potential benefits of bone marrow mesenchymal stem cell (BMSC) transplantation for repairing SCI. BMSCs also differentiate into astrocytes within damaged spinal cord tissues hindering the cell transplantation efficacy, therefore it is crucial to enhance their neuronal differentiation rate to facilitate spinal cord repair. Wnt5a, an upstream protein in the non-classical Wnt signaling pathway, has been implicated in stem cell migration, differentiation, and neurite formation but its role in the neuronal differentiation of BMSCs remains unclear. Thus, this study investigated the role and underlying mechanisms of Wnt5a in promoting neuronal differentiation of BMSCs both in vivo and in vitro. Wnt5a enhanced neuronal differentiation of BMSCs in vitro while reducing astrocyte differentiation. Additionally, high-throughput RNA sequencing revealed a correlation between Wnt5a and phosphoinositide 3-kinase (PI3K)/protein kinase B(AKT) signaling, which was confirmed by the use of the PI3K inhibitor LY294002 to reverse the effects of Wnt5a on BMSC neuronal differentiation. Furthermore, transplantation of Wnt5a-modified BMSCs into SCI rats effectively improved the histomorphology (Hematoxylin and eosin [H&E], Nissl and Luxol Fast Blue [LFB] staining), motor function scores (Footprint test and Basso-Beattie-Bresnahan [BBB]scores)and promoted neuron production, axonal formation, and remodeling of myelin sheaths (microtubule associated protein-2 [MAP-2], growth-associated protein 43 [GAP43], myelin basic protein [MBP]), while reducing astrocyte production (glial fibrillary acidic protein [GFAP]). Therefore, targeting the Wnt5a/PI3K/AKT pathway could enhance BMSC transplantation for SCI treatment.

12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732109

ABSTRACT

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Subject(s)
Cell Differentiation , Melatonin , Mesenchymal Stem Cells , Melatonin/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Cell Differentiation/drug effects , Cells, Cultured , Adipose Tissue/cytology , Neurons/cytology , Neurons/metabolism , Neurons/drug effects , Culture Media, Conditioned/pharmacology , Schwann Cells/cytology , Schwann Cells/metabolism , Schwann Cells/drug effects , Neurogenesis/drug effects , Adult , Nestin/metabolism , Nestin/genetics , Glial Fibrillary Acidic Protein/metabolism , Neuroglia/drug effects , Neuroglia/cytology , Neuroglia/metabolism , Synapsins/metabolism
13.
Brain Res ; 1839: 148997, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38795792

ABSTRACT

Spinal cord injury (SCI) is a serious medical condition. The search for an effective cure remains a persistent challenge. Current treatments, unfortunately, are unable to sufficiently improve neurological function, often leading to lifelong disability. This systematic review and meta-analysis evaluated the effectiveness of stem cell therapy for SCI using canine models. It also explored the optimal protocol for implementing stem cell therapy. A comprehensive search of studies was conducted from 2000 to October 2022. This study focused on five outcomes: motor function score, histopathology, IHC, western blot, and SEP. The results demonstrated a significant improvement in locomotion post-SCI in dogs treated with stem cell therapy. The therapy also led to an average increase of 3.15 points in the Olby score of the treated dogs compared to the control group. These findings highlights stem cell therapy's potential as a promising SCI treatment. The meta-analysis suggests that using bone marrow stem cells, undergoing neural differentiation in vitro, applying a surgical implantation or intrathecal route of administration, associating matrigel in combination with stem cells, and a waiting period of two weeks before starting treatment can enhance SCI treatment effectiveness.


Subject(s)
Disease Models, Animal , Spinal Cord Injuries , Stem Cell Transplantation , Spinal Cord Injuries/therapy , Animals , Dogs , Stem Cell Transplantation/methods , Recovery of Function/physiology
14.
Proc Natl Acad Sci U S A ; 121(23): e2318740121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805275

ABSTRACT

Repressor element-1 silencing transcription factor (REST) is required for the formation of mature neurons. REST dysregulation underlies a key mechanism of neurodegeneration associated with neurological disorders. However, the mechanisms leading to alterations of REST-mediated silencing of key neurogenesis genes are not known. Here, we show that BRCA1 Associated ATM Activator 1 (BRAT1), a gene linked to neurodegenerative diseases, is required for the activation of REST-responsive genes during neuronal differentiation. We find that INTS11 and INTS9 subunits of Integrator complex interact with BRAT1 as a distinct trimeric complex to activate critical neuronal genes during differentiation. BRAT1 depletion results in persistence of REST residence on critical neuronal genes disrupting the differentiation of NT2 cells into astrocytes and neuronal cells. We identified BRAT1 and INTS11 co-occupying the promoter region of these genes and pinpoint a role for BRAT1 in recruiting INTS11 to their promoters. Disease-causing mutations in BRAT1 diminish its association with INTS11/INTS9, linking the manifestation of disease phenotypes with a defect in transcriptional activation of key neuronal genes by BRAT1/INTS11/INTS9 complex. Finally, loss of Brat1 in mouse embryonic stem cells leads to a defect in neuronal differentiation assay. Importantly, while reconstitution with wild-type BRAT1 restores neuronal differentiation, the addition of a BRAT1 mutant is unable to associate with INTS11/INTS9 and fails to rescue the neuronal phenotype. Taken together, our study highlights the importance of BRAT1 association with INTS11 and INTS9 in the development of the nervous system.


Subject(s)
Cell Differentiation , Chromatin , Neurogenesis , Neurons , Repressor Proteins , Humans , Chromatin/metabolism , Chromatin/genetics , Co-Repressor Proteins , Nerve Tissue Proteins , Neurogenesis/genetics , Neurons/metabolism , Promoter Regions, Genetic , Repressor Proteins/metabolism , Repressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
15.
Front Pharmacol ; 15: 1399549, 2024.
Article in English | MEDLINE | ID: mdl-38751783

ABSTRACT

Combination therapy is one of the promising approaches in developing therapeutics to cure complex diseases, such as Alzheimer's disease (AD). In Thai traditional medicines, the clinical application often comprises multiple botanical drugs as a formulation. The synergistic interactions between botanical drugs in combination therapies are proposed to have several advantages, including increased therapeutic efficacy, and decreased toxicity and/or adverse effects. This study aimed to explore the therapeutic functions of a botanical hybrid preparation (BHP) of two botanical drugs within a traditional multi-herbal formulation. The synergistic actions of BHP of Dracaena cochinchinensis stemwood (DCS) and Ardisia elliptica fruit (AEF) at a specific ratio of 1:9 w/w were illustrated in neuroprotection and anti-inflammation. In cultured PC12 cells, BHP of DCS and AEF showed synergistic functions in inducing neuronal differentiation, characterized by neurofilament expression and neurite outgrowth. In addition, BHP of DCS and AEF exhibited a synergistic effect in inhibiting the aggregation of Aß, a hallmark of AD pathology. The activated BV2 microglial cells induced by LPS were synergistically suppressed by the BHP of DCS and AEF, as evaluated by the expression of pro-inflammatory markers, including TNF-α, IL-1ß, and iNOS, as well as the morphological change of microglial cells. The findings suggested that the effects of BHP of DCS and AEF were greater than individual botanical drugs in a specific ratio of 1:9 w/w to enhance neuroprotective and anti-inflammatory functions.

16.
Cell Stem Cell ; 31(5): 754-771.e6, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701759

ABSTRACT

Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.


Subject(s)
Alternative Splicing , Cell Differentiation , Chromatin , Heterogeneous-Nuclear Ribonucleoproteins , Neurons , Polypyrimidine Tract-Binding Protein , Transcription Factors , Alternative Splicing/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Animals , Cell Differentiation/genetics , Chromatin/metabolism , Mice , Neurons/metabolism , Neurons/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription, Genetic , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Exons/genetics , Humans , Cell Self Renewal/genetics
17.
J Med Life ; 17(1): 24-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38737662

ABSTRACT

Neurological disorders, ranging from acute forms such as stroke and traumatic brain injury to neurodegenerative diseases like dementia, are the leading cause of disability-adjusted life years (DALYs) worldwide. A promising approach to address these conditions and promote nervous system regeneration is the use of the neuropeptide preparation Cerebrolysin, which has been shown to be effective in both clinical and preclinical studies. Despite claims of similar clinical efficacy and safety by several peptide preparations, concerns regarding their generic composition and efficacy have been previously raised. Based on these reports, we analyzed the peptide composition and neurotrophic activity of several peptide preparations allegedly similar to Cerebrolysin and approved in some countries for treating neurological diseases. Our results demonstrate that these preparations lack relevant biological activity and that the peptide composition is significantly different from Cerebrolysin. peptide.


Subject(s)
Amino Acids , Peptides , Amino Acids/pharmacology , Humans , Peptides/pharmacology , Neuroprotective Agents/pharmacology , Animals
18.
J Nat Med ; 78(3): 599-607, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662302

ABSTRACT

In this study, the effects of 3,5,7,3',4'-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III ß-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3ß (GSK-3ß). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3ß inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.


Subject(s)
MAP Kinase Signaling System , Neuronal Outgrowth , Animals , Neuronal Outgrowth/drug effects , Mice , MAP Kinase Signaling System/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Neurites/drug effects , Cell Differentiation/drug effects , Phosphorylation/drug effects , Flavonoids/pharmacology , Flavones/pharmacology , Flavones/chemistry , Cell Line, Tumor , Glycogen Synthase Kinase 3 beta/metabolism , Cell Line
19.
In Vitro Cell Dev Biol Anim ; 60(6): 689-696, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656569

ABSTRACT

Hair follicle stem cells (HFSCs) are adult stem cells located in the outer root sheath of the follicle bulge with high neural plasticity, which promise a potential for the stem cell therapy for neurological diseases. Hirschsprung's disease (HD) is characterized by the absence of ganglia in the distant bowel. In this study, we elucidated the capacity of HFSCs to differentiate into neuronal cells in the aganglionic colon from embryonic rat. HFSCs were isolated from adult Sprague-Dawley (SD) rats and formed spheres that could be passaged. The cultured HFSCs expressed neural crest stem cells (NCSCs) markers such as SOX10, CD34, and nestin, which indicated their neural crest lineage. Subsequent differentiation assays demonstrated that these cells could give rise to neural progeny that expressed neuronal or glial markers. The aganglionic colon from the embryonic intestine was applied as in vitro explant to test the capacity of proliferation and differentiation of HFSCs. The HFSCs expressing GFP or RFP integrated in intestinal explants and maintained proliferative capacity. Moreover, the HFSCs differentiated into Tuj1- or S100ß-positive cells in the cultured intestinal explants. The results proposed that the HFSCs might be an alternative source of neural stem cells for the HD therapy.


Subject(s)
Adult Stem Cells , Cell Differentiation , Hair Follicle , Neurons , Rats, Sprague-Dawley , Animals , Neurons/cytology , Neurons/metabolism , Hair Follicle/cytology , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Rats , Cell Proliferation , Intestines/cytology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Cells, Cultured
20.
Am J Physiol Cell Physiol ; 326(6): C1648-C1658, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38682237

ABSTRACT

The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.


Subject(s)
Cell Differentiation , Cyclin-Dependent Kinase 5 , Metformin , Nerve Growth Factor , Neurons , Receptor, trkA , Animals , Metformin/pharmacology , Rats , PC12 Cells , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Receptor, trkA/metabolism , Receptor, trkA/antagonists & inhibitors , Neurons/drug effects , Neurons/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects , Neurogenesis/drug effects , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Phosphotransferases
SELECTION OF CITATIONS
SEARCH DETAIL