Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 412
Filter
1.
Materials (Basel) ; 17(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39336319

ABSTRACT

Nonwoven filter media are used in many industrial applications due to their high filtration efficiency and great variety of compositions and structures which can be produced by different processes. During filter operation in the separation process, the fluid flow exerts forces on the filter medium which leads to its deformation, and in extreme cases damage. In order to design or select a reliable filter medium for a given application, it is essential to have a comprehensive understanding of the mechanical properties of the nonwoven material. In general, the properties of the filter material are influenced by temperature and can be changed during loading due to irreversible deformation, fatigue, and aging processes. In order to gain a deeper comprehension, the presented study examines the influence of temperature and repeated tensile stress on the filter medium properties. The focus is on fuel and oil filters employed in automotive applications. The characteristic properties of the samples, including thickness, porosity, and permeability as well as Young's modulus and Poisson's number, are measured. Young's modulus is determined for both new and aged samples. In addition, the viscoelastic behavior is investigated via a dynamic mechanical thermal analysis. The results demonstrate a significant dependence of mechanical properties on the material composition and the aging effects.

2.
Heliyon ; 10(18): e37952, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39328563

ABSTRACT

Hydrogels are used in modern wound dressings due to their ability to provide comfort with quick healing. However, poor mechanical properties of hydrogels limit their availability in commercial wound dressings. Nonwovens are highly porous, strong, and flexible structures that can provide support to hydrogels without compromising their properties. In this study, a cost-effective and sustainable hydroentangled nonwoven from industrial cotton waste was prepared and incorporated into alginate hydrogel for wound dressings. The novel composite of hydroentangled cotton nonwoven and alginate hydrogel was synthesized by a simple sol-gel technique. The effect of concentration of alginate hydrogel (0.5 wt%, 1 wt%, 1.5 wt %) and drying temperature (20 °C, 40 °C, 60 °C) of composite was analyzed for high wound exudates. The properties of prepared composite samples were characterized by scanning electron microscopy (SEM), XRD, tensile strength, tear strength, Air permeability, moisture management wound exudate test, and quantitative antimicrobial testing. Moreover, the comfort performance of these samples was evaluated by air permeability and moisture management testing. The properties of developed composites are highly dependent on the concentration of alginate and drying temperature. The results showed that maximum fluid absorbency (%) of 650 was achieved with good comfort properties. This study can help to increase the commercial availability of hydrogel-based wound dressings.

3.
Biosens Bioelectron ; 267: 116794, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39326321

ABSTRACT

Recent advances in wearable electronics have enabled the development of sweat sensors providing valuable information for healthcare monitoring. However, the limitations of sweat sensors are excessive dependence on external detection systems, the impossible to real-time visual signal transmission, and inadequate perspiration management. Herein, a single- and double-layer interwoven fabric (SDIF) is designed to achieve indicators of color visualization with an output of electrical signal and energy supply. After absorption of electrolyte, the SDIF can be rapidly activated, connected with the concentration, infiltrated volume, and environmental parameters, and the variational color of SDIF can provide visual indicators. The one tissue cycle of SDIF with three-weft intervals maintains a stable output voltage of ≈1.0 V, conducted by twisting, folding, dynamic bending, and reusing. Moreover, serial tissue cycles can be woven into large fabrics by connecting in series and parallel configurations for energy supply. The developed SDIF with an interweaving structural design using industrial-producible weaving technology provides the functionality of sweat adsorption and transportation, monitoring by recognition of color, and electrical signals to improve perspiration management.

4.
Article in English | MEDLINE | ID: mdl-39344529

ABSTRACT

Serious haze pollution, mainly caused by fine and ultrafine particulate matters (PMs) and aerosols, poses a significant threat to the public health, especially when the aerodynamic diameter is less than 2.5 µm. Electrostatic capture techniques, such as polymer electret filters and kinetic plasma processes, are widely used instead of mechanical filtration with high removal efficiency and low wind resistance (pressure drop). However, the inability to recharge, coupled with the generation of ozone byproducts, makes it challenging to meet the requirements for both recoverability and highly efficient filtration. Here, we propose an electrostatic filter as an alternative to conventional polymer electrets, aiming to achieve an ultrahigh removal efficiency, long-term performance stability, and reusability. Piezoelectric LiNbO3 (LN) particles are integrated into the polypropylene (PP) matrix through the melt-blown strategy to fabricate the LN/PP nonwoven fabric. Benefiting from the employment of piezoelectric LN particles, the LN/PP nonwovens exhibit an ultrahigh removal efficiency of 99.9% for PM0.3 to PM10. The airflow facilitates the sustained regeneration of piezoelectric charges on the surface of LN/PP nonwovens, thereby maintaining a removal efficiency of approximately 95% for continuous filtration over 11 days. Even after eight cycles of washing, the removal efficiency of the LN/PP nonwovens remains at nearly 90%, demonstrating the excellent reusability. Our proposed strategy offers an ingenious combination of high-efficiency and recoverability for filters, holding great promise for reducing plastic pollution.

5.
Materials (Basel) ; 17(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39274599

ABSTRACT

In this study, recycled carbon fibers (rCFs) recovered from waste carbon composites were used to manufacture wet-laid nonwoven fabrics. The aim was to improve dispersibility by investigating the changes in the dispersibility of carbon fibers (CFs) based on the content of the dispersant carboxymethyl cellulose (CMC) and the binder polyvinyl alcohol (PVA), and the length and basis weight of the CFs. In addition, the chemical property changes and oxygen functional group mechanisms based on the content of the CMC dispersant and PVA binder were investigated. The nonwoven fabrics made with desized CFs exhibited significantly improved dispersibility. For nonwoven fabrics produced with a fixed binder PVA content of 10%, optimal dispersibility was achieved at a dispersant CMC concentration of 0.4%. When the dispersant CMC concentration was fixed at 0.4% and the binder PVA content at 10%, the best dispersibility was observed at a CF length of 3 mm, while the maximum tensile strength was achieved at a fiber length of 6 mm. Dispersibility remained almost consistent across different basis weights. As the dispersant CMC concentration increased from 0.2% to 0.6%, the oxygen functional groups, such as carbonyl group (C=O), lactone group (O=C-O), and natrium hydroxide (NaOH), also increased. However, hydroxyl group (C-O) decreased. Moreover, the contact angle decreased, while the surface free energy increased. On the other hand, when the dispersant CMC concentration was fixed at 0.4%, the optimal binder PVA content was found to be 3%. As the binder PVA content increased from 0% to 10%, the formation of hydrogen bonds between the CMC dispersant and the PVA binder led to an increase in C=O and O=C-O bonds, while C-O and NaOH decreased. As the amount of oxygen increased, the contact angle decreased and the surface free energy increased.

6.
Luminescence ; 39(9): e4903, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39268692

ABSTRACT

Smart photochromic and fluorescent textile refers to garments that alter their colorimetric properties in response to external light stimulus. Cotton fibers have been reported as a main resource for many textile and non-textile industries, such as automobiles, medical devices, and furniture applications. Cotton is a natural fiber that is distinguished with breathability, softness, cheapness, and highly absorbent. However, there have been growing demands to find other resources for cotton textiles at high quality and low cost for various applications, such as sensor for harmful ultraviolet radiation. Herein, we present a novel method toward luminescent and photochromic nonwoven textiles from recycled cotton waste. Using the screen-printing technology, a cotton fabric that is both photochromic and fluorescent was developed using aqueous inorganic phosphor nanoparticles (10-18 nm)-containing printing paste. Both CIE Lab color coordinates and photoluminescence spectra showed that the transparent film printed on the nonwoven fabric develops a reversible green emission (519 nm) under ultraviolet light (365 nm), even at low pigment concentration (2%) in the printing paste. Colorfastness of printed fabrics showed high durability and photostability.


Subject(s)
Cellulose , Cotton Fiber , Strontium , Cotton Fiber/analysis , Cellulose/chemistry , Strontium/chemistry , Textiles , Ultraviolet Rays , Wearable Electronic Devices , Luminescence , Aluminum Oxide/chemistry , Printing , Photochemical Processes , Recycling
7.
ACS Nano ; 18(35): 24532-24540, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39161323

ABSTRACT

Advancements in electronic devices demand materials capable of exceptional performance in various challenging environments. This study presents polyvinylidene fluoride (PVDF) nonwoven membranes with controlled porosity, created using an air-guided electrospinning method, followed by a calendaring process. These membranes exhibit a combination of water-repellent properties and sound transmission capabilities, making them ideal candidates for use in air and acoustic vents in electronic systems. A key feature of our membrane is the three-dimensional nanostructured pores, ranging from 0.20 to 0.76 µm, with a mean pore size of 0.51 µm, achieved through the formation of randomly arranged long nanofibers. By employing both experimental and theoretical methods, we achieved impressive performance metrics: air permeability of 0.86 cm3/cm2/s, water contact angles up to 139.3°, and breakthrough pressure as low as 0.27 MPa. Our PVDF nonwoven membranes maintain an optimal balance of stiffness, density, and air permeability, leading to exceptionally low sound transmission loss values ranging between -10 and -40 dBV/Pa, all while preserving their structural integrity. These findings contribute to the development of next-generation waterproof and acoustically permeable membranes, offering enhanced performance capabilities in demanding operational scenarios. This work advances the field of nanomaterials, environmental engineering, and acoustic technologies, with the potential to influence the design of future electronic devices.

8.
Materials (Basel) ; 17(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39203258

ABSTRACT

Nonwoven upholstery fabric is a waste product which is mainly generated during upholstered furniture production. The polyester composition makes it problematic to recycle and reuse this product. This study examined the manufacturing process of nonwoven fabric-reinforced plywood composites and their selected mechanical and physical properties. Nonwoven fabric was integrated between veneers bound with urea-formaldehyde resin to improve standard layered composites' mechanical and physical properties. Several board variants were produced, differing in the position of the nonwoven layers in the composite structure. The composites were evaluated for modulus of rupture (MOR), modulus of elasticity (MOE), internal bond, and screw withdrawal resistance, among others. The results showed that the addition of nonwoven fabric significantly improved some properties, like internal bond and screw withdrawal resistance. Variants with strategically placed nonwoven layers showed the highest performance increases. The results underscore the potential of nonwoven fabric as an effective reinforcing material, offering a path to developing high-performance plywood composites suitable for demanding applications. Another environmental advantage is that the nonwoven fabric waste used in the tested plywood production has not been subjected to burning or landfilling but, through its incorporation into plywood structure, has positively contributed to the Carbon Capture and Storage (CCS) policy. The findings advocate for a circular economy approach, in which industrial waste is effectively repurposed, contributing to the development of green materials in the wood-based composite industry.

9.
Polymers (Basel) ; 16(16)2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39204499

ABSTRACT

An open field experiment from November 2022 to May 2023 in Croatia, which is characterized by a continental humid climate, evaluated nonwoven mulches made from viscose, jute, and hemp fibres blended with PLA fibres. The blends of viscose and jute fibres (90:10, 80:20, and 70:30 ratios) were produced using mechanical web formation on cards with needle punching for bonding webs. Additionally, hemp fibres were blended with PLA fibres in a ratio of 80:20. Winter conditions caused significant structural changes in the mulches, including shrinkage, increased mass per unit area, thickness, and reduced air permeability. The amount of PLA fibre in the nonwoven mulch blends significantly affected nonwoven fabric structure change during exposure to winter conditions. After 180 days, the breaking force of all mulches increased by 30% to 277%. The soil beneath jute and hemp mulches maintained higher temperatures and moisture levels compared to viscose mulches. Soil organic carbon content varied with fibre type and was higher under jute and hemp mulches. K2O content was significantly higher in soils covered by mulches. All mulches effectively suppressed weeds. The experiment results showed that the newly produced nonwoven mulches could replace the conventional agro foil. Results also suggest that choosing biodegradable nonwoven mulches produced from fibres obtained from natural and renewable sources can influence soil fertility and the availability of nutrients, ultimately affecting plant growth and agricultural productivity.

10.
Materials (Basel) ; 17(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39124411

ABSTRACT

Rapid advancements and proliferation of electronic devices in the past decades have significantly intensified electromagnetic interference (EMI) issues, driving the demand for more effective shielding materials. Herein, we introduce a novel two-layer graphene nonwoven fabric (2-gNWF) that shows excellent EMI shielding properties. The 2-gNWF fabric comprises a porous fibrous upper layer and a dense conductive film-like lower layer, specifically designed to enhance EMI shielding through the combined mechanisms of reflection, multiple internal reflections, and absorption of electromagnetic waves. The 2-gNWF exhibits a remarkable EMI shielding effectiveness (SE) of 80 dB while maintaining an impressively low density of 0.039 g/cm3, surpassing the performance of many existing graphene-based materials. The excellent EMI shielding performance of 2-gNWF is attributed to the multiple interactions of incident electromagnetic waves with its highly conductive network and porous structure, leading to efficient energy dissipation. The combination of high EMI SE and low density makes 2-gNWF ideal for applications that require lightweight yet effective shielding properties, demonstrating the significant potential for advanced EMI shielding applications.

11.
Materials (Basel) ; 17(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39124505

ABSTRACT

Greener materials, particularly in sandwich panels, are in increasing demand in the transportation and building sectors to reduce environmental impacts. This shift is driven by strict environmental legislation and the need to reduce material costs and fuel consumption, necessitating the utilisation of more sustainable components in the transportation and construction sectors, with improved load-bearing capabilities and diminished ecological footprints. Therefore, this study aims to analyse and evaluate the structural performance of polyethylene terephthalate (PET) core and flax or basalt/flax FRP sandwich panels as an alternative to conventional synthetic materials. The novel eco-friendly sandwich panels were manufactured using the co-curing technique. Four-point bending, edgewise compression and core shear tests were performed and insights into how the skin properties affect the strength, stiffness and failure mode of specimens were provided. The stress-strain behaviour, facing modulus and strength, flexural rigidity, core shear strength and failure modes were evaluated. The flexural facing modulus of the flax and flax/basalt sandwich skins were found to be 5.1 GPa and 9.8 GPa, respectively. The flexural rigidity of the eco-friendly sandwich panel was compared with published results and demonstrated a promising structural performance. The environmental benefits and challenges were outlined and critically evaluated focusing on transportation and construction applications.

12.
Int J Biol Macromol ; 277(Pt 1): 134055, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038583

ABSTRACT

Gauze wound dressings have received considerable attention due to their cost-effectiveness, excellent mechanical properties, and widespread applications. However, their inability to actively combat microorganisms and effectively scavenge free radicals results in suboptimal wound management. In this study, a novel nonwoven-based gauze dressing coated with quaternized chitosan/tannic acid (QCS/TA), based on electrostatic interaction and hydrogen bonding, was successfully prepared using a spray-assisted layer-by-layer assembly method. The bio-based nonwoven dressing, assembled with multiple interlacing bilayers, demonstrated outstanding antimicrobial properties, eliminating 99.99 % of Staphylococcus aureus (S. aureus) and 85 % of Escherichia coli (E. coli). Compared to the pristine nonwoven dressing, the QCS/TA-coated nonwoven dressing scavenged >85 % of the surrounding radicals within 2 h. Additionally, the nonwoven dressing exhibits excellent coagulation properties. Notably, the facile spraying procedure preserved most of the softness and breathability of the nonwoven substrate. After the deposition of seven bilayers, the bending stiffness and drape coefficient increased by only 37.63 % and 3.85 %, respectively, while the air permeability and moisture permeability reached 1712 mm/s and 3683.58 g/m2/d, respectively. This bio-based nonwoven dressing, derived from safe and non-toxic ingredients, holds promise as the next generation of multifunctional gauze dressings.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Escherichia coli , Staphylococcus aureus , Tannins , Chitosan/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Tannins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Polyphenols
13.
J Colloid Interface Sci ; 674: 873-883, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38955018

ABSTRACT

Lithium-sulfur batteries (LSBs) hold promise as the next-generation lithium-ion batteries (LIBs) due to their ultra-high theoretical capacity and remarkable cost-efficiency. However, these batteries suffer from the serious shuttle effect, challenging their practical application. To address this challenge, we have developed a unique interlayer (HCON@CNWF) composed of hollow cerium oxide nanorods (CeO2) anchored to carbonized non-woven viscose fabric (CNWF), utilizing a straightforward template method. The prepared interlayer features a three-dimensional (3D) conductive network that serves as a protective barrier and enhances electron/ion transport. Additionally, the CeO2 component effectively chemisorbs and catalytically transforms lithium polysulfides (LiPSs), offering robust chemisorption and activation sites. Moreover, the unique porous structure of the HCON@CNWF not only physically adsorbs LiPSs but also provides ample space for sulfur's volume expansion, thus mitigating the shuttle effect and safeguarding the electrode against damage. These advantages collectively contribute to the battery's outstanding electrochemical performance, notably in retaining a reversible capacity of 80.82 % (792 ± 5.60 mAh g-1) of the initial value after 200 charge/discharge cycles at 0.5C. In addition, the battery with HCON@CNWF interlayer has excellent electrochemical performance at high sulfur loading (4 mg cm-2) and low liquid/sulfur ratio (7.5 µL mg-1). This study, thus, offers a novel approach to designing advanced interlayers that can enhance the performance of LSBs.

14.
Polymers (Basel) ; 16(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39065397

ABSTRACT

Electrospinning is a widely employed manufacturing platform for tissue engineering applications because it produces structures that closely mimic the extracellular matrix. Herein, we demonstrate the potential of poly(vinyl alcohol) (PVA) electrospun nanofibers as scaffolds for tissue engineering. Nanofibers were created by needleless direct current electrospinning from PVA with two different degrees of hydrolysis (DH), namely 98% and 99% and subsequently heat treated at 180 °C for up to 16 h to render them insoluble in aqueous environments without the use of toxic cross-linking agents. Despite the small differences in the PVA chemical structure, the changes in the material properties were substantial. The higher degree of hydrolysis resulted in non-woven supports with thinner fibres (285 ± 81 nm c.f. 399 ± 153 nm) that were mechanically stronger by 62% (±11%) and almost twice as more crystalline than those from 98% hydrolysed PVA. Although prolonged heat treatment (16 h) did not influence fibre morphology, it reduced the crystallinity and tensile strength for both sets of materials. All samples demonstrated a lack or very low degree of haemolysis (<5%), and there were no notable changes in their anticoagulant activity (≤3%). Thrombus formation, on the other hand, increased by 82% (±18%) for the 98% hydrolysed samples and by 71% (±10%) for the 99% hydrolysed samples, with heat treatment up to 16 h, as a direct consequence of the preservation of the fibrous morphology. 3T3 mouse fibroblasts showed the best proliferation on scaffolds that were thermally stabilised for 4 and 8 h. Overall these scaffolds show potential as 'greener' alternatives to other electrospun tissue engineering materials, especially in cases where they may be used as delivery vectors for heat tolerant additives.

15.
Heliyon ; 10(14): e34436, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39082013

ABSTRACT

Current commercial separators used in lithium-ion batteries have inherent flaws, especially poor thermal stability, which pose substantial safety risks. This study introduces a high-safety composite membrane made from electrospun poly(vinyl alcohol)-melamine (PVAM) and polyvinylidene fluoride (PVDF) polymer solutions via a dip coating method, designed for high-voltage battery systems. The poly(vinyl alcohol) and melamine components enhance battery safety, while the PVDF coating improves lithium-ion conductivity. The dip-coated PVDF/Esp-PVAM composite separators were evaluated for electrolyte uptake, contact angle, thermal stability, porosity, electrochemical stability and ionic conductivity. Notably, our Dip 1 % PVDF@Esp-PVAM composite separator exhibited excellent wettability and a lithium-ion conductivity of approximately 7.75 × 10⁻4 S cm⁻1 at room temperature. These separators outperformed conventional PE separators in half-cells with Ni-rich NCM811 cathodes, showing exceptional cycling stability with 93.4 % capacity retention after 100 cycles at 1C/1C, as compared to 84.8 % for PE separators. Our Dip 1 % PVDF@Esp-PVAM composite separator demonstrates significant potential for enhancing the long-term durability and high-rate performance of lithium-ion batteries, making it a promising option for long-term energy storage applications.

16.
Materials (Basel) ; 17(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893874

ABSTRACT

In order to investigate the influence of a hot-pressing process on the mechanical properties of ultra-high molecular weight polyethylene (UHMWPE) fiber non-woven fabrics with stretch and in-plane shear, UHMWPE non-woven fabric samples were prepared by adjusting the temperature, time, and pressure of the hot-pressing process, and mechanical property tests were carried out so as to clarify the influence of the hot-pressing process on the mechanical properties of the samples. The results show that the hot-pressing process mainly affects the silk-glue bonding strength of the samples; in the test range, with the increase in hot-pressing temperature and time, the tensile strength and in-plane shear strength of the samples increase and then decrease, and the best mechanical properties are obtained at 130 °C and 7 min of hot pressing, respectively; at 130 °C, the in-plane shear strength is 39.94 MPa and the tensile strength is 595.43 MPa; at 7 min, the in-plane shear strength is 63.0 MPa and the tensile strength is 643.30 MPa; with the increase in the hot-pressing pressure, the in-plane shear strength of the samples increases and then decreases, and the highest is 52.60 MPa, achieved at 8 MPa; in the range of 5-8 MPa, the tensile strength of the specimens did not change significantly, and increased significantly at 9 MPa, reaching a maximum strength of 674.55 MPa.

17.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930981

ABSTRACT

ZnO nanorod nonwoven fabrics (ZNRN) were developed through hydrothermal synthesis to facilitate the prevention of the transmission of respiratory pathogens. The superhydrophobicity and antibacterial properties of ZNRN were improved through the response surface methodology. The synthesized material exhibited significant water repellency, indicated by a water contact angle of 163.9°, and thus demonstrated antibacterial rates of 91.8% for Escherichia coli (E. coli) and 79.75% for Staphylococcus aureus (S. aureus). This indicated that E. coli with thinner peptidoglycan may be more easily killed than S. aureus. This study identified significant effects of synthesis conditions on the antibacterial effectiveness, with comprehensive multivariate analyses elucidating the underlying correlations. In addition, the ZnO nanorod structure of ZNRN was characterized through SEM and XRD analyses. It endows the properties of superhydrophobicity (thus preventing bacteria from adhering to the ZNRN surface) and antibacterial capacity (thus damaging cells through the puncturing of these nanorods). Consequently, the alignment of two such features is desired to help support the development of personal protective equipment, which assists in avoiding the spread of respiratory infections.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Hydrophobic and Hydrophilic Interactions , Nanotubes , Staphylococcus aureus , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanotubes/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Textiles/microbiology , Microbial Sensitivity Tests , Surface Properties
18.
J Environ Manage ; 363: 121363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850911

ABSTRACT

The footwear industry significantly impacts the environment, from raw material extraction to waste disposal. Transforming waste into new products is a viable option to mitigate the environmental consequences, reducing the reliance on virgin raw materials. This work aims to develop thermal and acoustic insulation materials using polyester waste from footwear industry. Two nonwoven and two compressed nonwoven structures, comprising 80% polyester waste and 20% commercial recycled polyester (matrix), were produced. The materials were created through needle-punching and compression molding techniques. The study included the production of sandwich and monolayer nonwoven structures, which were evaluated considering area weight, thickness, air permeability, mechanical properties, morphology using field emission scanning electron microscopy, and thermal and acoustic properties. The nonwoven samples presented high tensile strength (893 kPa and 629 kPa) and the highest strain (79.7% and 73.3%) and compressed nonwoven structures showed higher tensile strength (2700 kPa and 1291 kPa) but reduced strain (25.8% and 40.8%). Nonwoven samples showed thermal conductivity of 0.041 W/K.m and 0.037 W/K.m. Compressed nonwoven samples had higher values at 0.060 W/K.m and 0.070 W/K.m. While the sample with the highest conductivity exceeds typical insulation levels, other samples are suitable for thermal insulation. Nonwoven structures exhibited good absorption coefficients (0.640-0.644), suitable for acoustic insulation. Compressed nonwoven structures had lower values (0.291-0.536), unsuitable for this purpose. In summary, this study underscores the potential of 100% recycled polyester structures derived from footwear and textile industry waste, showcasing remarkable acoustic and thermal insulation properties ideal for the construction sector.


Subject(s)
Acoustics , Shoes , Tensile Strength , Polyesters/chemistry , Recycling
19.
Materials (Basel) ; 17(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930376

ABSTRACT

This is the first study of non-woven fabrics elaborated by melt-blowing from polymer nanocomposites made of Nylon 6 and nanoclay (Cloisite 20A) modified with an amine (1,4 diaminobutane dihydrochloride). Morphological and physical characteristics, adsorption capacity, and antibacterial properties are presented. From the X-ray diffraction (XRD) results, it was possible to observe a displacement of the signals to other 2θ angles, due to an α to ϒ phase shift. The scanning electron microscopy (SEM) images showed that the mean diameter of fiber decreased as the content of nanoclay increased. The mechanical tests showed that the tear strength force of neat nylon was 1.734 N, but this characteristic increased to 2.135 N for the sample with 0.5% modified nanoclay. The inulin adsorption efficiency of the Nylon 6/C20A 1.5% and Nylon 6/C20A 2% samples at 15 min was 75 and 74%, respectively. The adsorption capacity of Nylon 6/C20A 1.5% and Nylon 6/C20A 2% for methylene blue and methyl orange remained above 90% even after four adsorption cycles. In addition, non-woven fabrics present antibacterial activity against E. coli.

20.
Materials (Basel) ; 17(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793281

ABSTRACT

Various modifications of standard glass fiber filtration media using electrospun PA66 nanofibers are described. PA66 were selected because they were readily available from commercial sources. Other polymers, such as PP, PET and PBT, could also be used. The first set of samples was prepared by mixing the nanofibers at two, three and five weight percent with glass fibers, and the second by laying the same proportion of the nanofibers directly onto the downstream side of the substrate. The aim of these modifications was to improve the three most basic functionalities of filter media, the separation efficiency, the differential pressure (ΔP) and the dirt holding capacity (DHC). The modified media samples were evaluated with the standard textile characterization techniques and filtration performance evaluation procedures. The results showed differences in the several tens of percentage points achieved with the two modification methods. Moreover, additional differences in performance were observed depending on the percentage of nanofibers admixed to the substrate. These differences were most apparent in the filtration efficiency and the DHC, both by several percentage points, with no apparent effect on the ∆P. The results strongly suggest that the preparation of new filter media by incorporating nanofibers directly into the matrix can result in significant improvements in filtration performance characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL