Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
Food Chem ; 462: 140967, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208726

ABSTRACT

This study examined the impact of live bread yeast (Saccharomyces cerevisiae) on the nutritional characteristics of Asian dried noodles. Micronutrient analysis of fermented noodles revealed a 6.9% increase in the overall amino acid content, a 37.1% increase in the vitamin B content and a 63.0% decrease in the phytic acid level. Molecular weight analysis of starch and protein contents revealed moderate decrease in the fermented noodles. The in vitro digestion of fermented noodles showed a slightly faster initial acidification, four-fold decrease in the initial shear viscosity (from 8.85 to 1.94 Pa·s). The initial large food particle count (>2 mm diameter) was 19.5% lower in the fermented noodles. The fermented noodles contained slightly higher free sugar content (73.5 mg g-1 noodle) during the gastric digestion phase. The overall nutrition and digestion results indicate nutritional improvement and digestion-easing attributes in the fermented noodles.


Subject(s)
Digestion , Fermentation , Saccharomyces cerevisiae , Amino Acids/metabolism , Amino Acids/analysis , Bread/analysis , Bread/microbiology , China , Models, Biological , Nutrients/metabolism , Nutrients/analysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry
2.
J Food Sci ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39366775

ABSTRACT

This study examined the effects of adding different types of arabinoxylans (AXs) to wheat flour with varying gluten strengths on flour quality and noodle-making performance, with the aim of utilizing AXs as health-enhanced ingredients. Three flours (Goso, Hojoong, and Joongmo) with low, medium, and high gluten strengths were used, along with two water-extractable AXs (E1 and E2) and one water-unextractable AX (U) with diverse molecular weights and viscosities. The addition of 2% AXs increased the water and sucrose solvent retention capacity values and decreased the gluten performance index values for all flours, with a notable effect on Goso flour by U. The dough development time was prolonged in all flours, necessitating more water for development. The sodium dodecyl sulfate sedimentation volume increased with the addition of AXs, especially with E2 and U. Pasting properties remained unaffected, suggesting a minimal impact on starch-related properties. However, noodles made with E2 and U showed deteriorated quality in terms of fresh noodle texture, weight gain, cooking water turbidity, and cooked noodle texture, in contrast to noodles made with E1 alone. Additionally, adjusting the water amount when adding U altered the textural properties, approaching that of noodles without added AXs. Overall, the impact of AXs on flour and noodle quality varied depending on their molecular weights, viscosities, and the gluten strength of the flour. Additionally, AXs could be successfully utilized by adjusting the water amount for the production of health-enhancing noodles. PRACTICAL APPLICATION: Arabinoxylans, as health-promoting ingredients, can be utilized in noodle production by optimizing the water amount and mixing time.

3.
J Sci Food Agric ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276015

ABSTRACT

BACKGROUND: Understanding the effects of different additions of adzuki bean flour (ABF) on structural and functional characteristics of extruded buckwheat noodles is important in developing high-quality starchy foods with desirable glycemic indexes. This study explored how varying amounts of ABF in extruded buckwheat noodles influenced their structural and functional characteristics. RESULTS: The findings indicated that adding ABF substantially boosted the levels of protein and flavonoids, while decreasing the content of fat and starch. Adding ABF to the noodles extended the optimum cooking time and led to a reduction in both the stickiness of the cooked noodles and the pore size of the starch gel structure, compared with pure buckwheat noodles. Fourier transform infrared spectroscopy indicated that R1047/1022 increased with the content of ABF increased, while R1022/995 decreased. X-ray diffraction showed that the relative crystallinity of buckwheat noodles was enhanced with increasing ABF amount. Adding ABF notably significantly decreased the estimated glycemic index. The buckwheat noodles extruded with 20% ABF addition demonstrated notably stronger α-glucosidase inhibitory effects than those extruded with no ABF addition. CONCLUSION: The present study demonstrates that the additions of ABF improved the structure and hypoglycemic activity of extruded buckwheat noodles while decreasing starch digestibility, and the optimal value was reached at an ABF addition of 20%. The study might fill gaps in starch noodle research and provide a new strategy for the development of functional food in the food industry. © 2024 Society of Chemical Industry.

4.
Int J Biol Macromol ; 279(Pt 4): 135475, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39260637

ABSTRACT

This study aimed to investigate the effects of raw Polygonatum cyrtonema Hua polysaccharides (RPCPs) and "zhi" P. cyrtonema Hua polysaccharides (ZPCPs) on the gluten structure, in vitro digestion, and shelf life of fresh wet noodles (FWN). The results demonstrated that incorporating PCPs improved the cooking and sensory qualities of FWN. Moreover, the shelf life of FWN was extended by 6 days with 1.5 % RPCPs (w/w) compared with the control FWN. Furthermore, incorporating 1.5 % ZPCPs led to a 1.2- and 0.2-fold increase in the disulfide bond and α-helix content, respectively, compared with the control FWN. This resulted in enhanced gluten structure, improved springiness and viscidity, and reduced cooking loss by 14.47 %-52.19 %. The scanning electron microscopy analysis revealed that the starch particles were entrapped by PCPs, leading to higher gelatinization temperature and lower setback value of FWN, thereby reducing the starch digestion ratio to 55.50 %. In summary, the findings suggested that FWN containing PCPs can extend shelf life, improve taste, and slow starch digestion staple.


Subject(s)
Glutens , Polygonatum , Polysaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Glutens/chemistry , Polygonatum/chemistry , Cooking , Digestion/drug effects , Starch/chemistry , Taste , Food Storage
5.
Food Sci Biotechnol ; 33(13): 3037-3046, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39220312

ABSTRACT

This study explores the impact of milling methods on the quality and noodle-making performance by comparing jet-milled (WF-JM) and ultra-centrifugally milled (WF-UM) purple-colored whole wheat flours. WF-JM exhibits smaller starch granules and a fragmented protein matrix attributed to the increased milling pressure. Physicochemical analyses reveal lower moisture and higher damaged starch in WF-JM. Rheological analyses show lower viscosity in the WF-JM blends. The mixograph results reveal weaker dough-mixing stability and strength for WF-JM. Cooked noodles from WF-JM are uneven, in contrast to uniform WF-UM strands. Blending WF-UM enhances noodle quality. Overall, the noodle-making performance for WF-JM was inferior compared to WF-UM, confirming the significantly negative impact of damaged starch and fragmented protein matrix in whole wheat flour than the positive effect of particle size. This study highlights the complex interplay between milling methods, particle size, and physicochemical attributes, providing insights for optimizing whole wheat flour processing and product quality.

6.
Food Sci Biotechnol ; 33(13): 3057-3065, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39220320

ABSTRACT

This study investigated the suitability of a potato starch (NP)-Dodamssal rice starch (DD) mixture to replace acetylated potato starch (AP) in long-life noodles. Wheat flour (WF) was replaced with AP and NP in 20% of WF, and NP was replaced with DD in 10-50% of NP. The swelling power of the WF-AP mixture was similar to that of all the WF-NP-DD mixtures. The melting enthalpies of the WF-NP-DD mixtures were slightly higher than those of the WF-AP mixtures. The pasting viscosity decreased with increasing DD content of the mixtures. The G' of all the WF-NP-DD mixtures was higher than that of the WF-AP mixture over the temperature profile, and similar G' patterns over time were observed. The tensile strengths of noodles by the WF-NP-DD mixtures were similar to those obtained using the WF and WF-AP mixture. Overall, NP-DD mixtures have the potential to replace AP when mixed with WF. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01628-7.

7.
Food Sci Nutr ; 12(7): 4605-4614, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055187

ABSTRACT

The aim of this study was to evaluate the shelf-life and sensory characteristics of a functional instant noodle preparation designed to be used in emergencies as a tactical ration. Instant noodles were selected for their global acceptability and ease of preparation. In this study, semolina flour was used as the main ingredient, and soy protein isolate was added to increase the protein content. Additionally, green tea and beef tallow were incorporated to decrease the likelihood of oxidation. Carboxymethyl cellulose was added to increase the porosity and water absorption of the dry noodles. Spirulina powder was used as a dressing for the final product before serving to increase the nutritional value and provide the consumer with the required vitamins and minerals of the day. Physical, chemical, and organoleptic properties were assessed at multiple timepoints in a 120-day period to perform an accelerated shelf-life test by determining their critical moisture content and moisture sorption isotherm curves at 30, 45, and 55°C. The shelf-life of the product was evaluated to be 1197.28 days at 30°C and 75% relative humidity in aluminum pouches. In conclusion, the product is shelf-stable at room temperature and is recommended to be stored and used in disaster conditions such as earthquakes, floods, and wars.

8.
Materials (Basel) ; 17(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39063765

ABSTRACT

To address the bottleneck associated with the slow ion transport kinetics observed in the porosity of activated carbons (ACs), hierarchically structured pore sizes were introduced on ACs used for electric double-layer capacitors (EDLCs) to promote ion transport kinetics under fast-rate charge-discharge conditions. In this study, we synthesized cellophane noodle-derived activated carbon (CNAC) with tailored porous structures, including the pore volume fraction of macro/meso/micropores and the specific surface area. The porous structures were effectively modulated by adjusting the KOH concentration during chemical activation. In addition, optimized KOH activation in CNAC modulated the chemical bonding ratios of C=O, pyrrolic-N, and graphitic-N. Given the hierarchically designed porous structure and chemical bonding states, the CNAC fabricated with optimized KOH activation exhibited a superior ultrafast rate capability in EDLCs (132.0 F/g at 10 A/g).

9.
Food Res Int ; 189: 114526, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876602

ABSTRACT

The study of the changes in rheological properties and components during the processing of Chinese traditional handmade hollow dried noodle (HHDN) is essential to explaining the excellent quality of HHDN. The dynamic oscillation frequency sweep, stress relaxation, and uniaxial extension characteristics of the dough after kneading, stretching, and resting were investigated at six sampling points during the processing of HHDN. The result showed that stretching led to an increase in G' and G0, and a significant decrease (P < 0.05) in extensibility from 131.02 mm to 57.99 mm. Confocal laser scanning microscopy (CLSM) was used to observe the microstructure of the gluten network, which was destroyed during stretching and restored during resting. Studies of changes in components showed that the stretching process resulted in a decrease in GMP content from 3.24 (g/100 g) to 3.18 (g/100 g), and the resting process resulted in ß-sheets decreasing significantly (P < 0.05). The degree of starch pasting increased significantly (P < 0.05) after stretching. The results of the correlation analysis showed that components changes were highly correlated with the rheological properties during the processing of HHDN.


Subject(s)
Food Handling , Rheology , Flour/analysis , Food Handling/methods , Glutens , Microscopy, Confocal , Starch/chemistry , Triticum/chemistry
10.
Int J Biol Macromol ; 271(Pt 2): 132593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788865

ABSTRACT

This study delves into the effects of curdlan integration and thermal sterilization on the rheological properties, structure, and quality attributes of concentrated rice starch gel. Acting as a heat-set polysaccharide, curdlan established a dual-network gel structure with rice starch gel, displaying strong interactions with rice starch, as confirmed by confocal laser scanning microscopy and Fourier-transform infrared spectroscopy. The addition of curdlan expedited the gel formation of rice starch, yielding a denser gel structure. Consequently, this enhanced G', solid-like behavior, textural properties, and cooking quality while reducing frequency-dependence. Given the cooling-induced gelation behavior of pure rice starch, thermal treatment disrupted inter-chain hydrogen bonding, compromising the structural integrity of the gel. This disruption manifested in a softer texture and diminished mechanical properties and cooking quality. Notably, this decline in mechanical properties and cooking quality of rice starch gel was markedly ameliorated with the incorporation of curdlan, particularly at a content of ≥1.0 %. Compared with pure RS, 1.0 % CD inclusion showed a reduction in cooking breakage rate by 30.69 % and an increase in hardness by 38.04 %. This work provides valuable insights for the advancement of fresh starch gel-based foods that exhibit exceptional quality and an extended shelf life.


Subject(s)
Gels , Oryza , Rheology , Starch , beta-Glucans , Oryza/chemistry , beta-Glucans/chemistry , Starch/chemistry , Gels/chemistry , Sterilization/methods , Hot Temperature , Spectroscopy, Fourier Transform Infrared , Cooking/methods
11.
Food Chem ; 453: 139598, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38754351

ABSTRACT

In this study, dynamic behaviors of proteins and water during fresh noodles processing associated with the quality of fresh noodles were systematically investigated by using wheat near-isogenic lines carrying high-molecular-weight glutenin subunits (HMW-GS) 2 + 12, 3 + 12 or 5 + 10 at the Glu-D1 locus. The results showed that subunits 5 + 10 tend to form a complex gluten network and had a poorly hydrated ability, that prevent the intrusion of external water during cooking; subunits 3 + 12 formed a moderate strength gluten network that generated a medium ability to resist the hydrated and mechanical treatment, which explained the highest water absorption and less cooking loss of cooked noodles; while subunits 2 + 12 formed fragile protein aggregates that had a poor ability to resist mechanical. The findings demonstrated that subunits 3 + 12 provided a suitable gluten network which was crucial for intrusion and hydration of external water thus formed a uniform gluten network and excellent fresh noodle quality.


Subject(s)
Cooking , Glutens , Molecular Weight , Triticum , Water , Glutens/chemistry , Triticum/chemistry , Water/chemistry , Flour/analysis , Plant Proteins/chemistry , Food Handling
12.
Foods ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790862

ABSTRACT

Every year, a significant amount of pepper stalks are wasted due to low utilization. The ash produced from pepper stalks contains a significant amount of alkaline salts, which are food additives that can enhance the quality of noodles. Therefore, utilizing natural pepper straw ash to improve the quality of noodles shows promising development prospects. In this study, pepper straw ash leachate (PSAL) was extracted and added to noodles. The quality of the noodles gradually improved with the addition of PSAL, with the best effect observed at a concentration of 18% (PSAL mass/flour mass). This addition resulted in a 57.8% increase in noodle hardness, a 55.43% increase in chewiness, a 19.41% rise in water absorption rate, and a 13.28% increase in disulfide bond content. These alterations rendered the noodles more resilient during cooking, reducing their tendency to soften and thus enhancing chewiness and palatability. Incorporating PSAL also reduced cooking loss by 57.79%. Free sulfhydryl groups decreased by 5.1%, and scanning electron microscopy revealed a denser gluten network structure in the noodles, with more complete starch wrapping. This study significantly enhanced noodle quality and provided a new pathway for the application of pepper straw resources in the food industry.

13.
J Texture Stud ; 55(3): e12836, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702990

ABSTRACT

A new technique known as dough crumb-sheet composite rolling (DC-SCR) was used to improve the quality of fresh noodles. However, there is a dearth of theoretical investigations into the optimal selection of specific parameters for this technology, and the underlying mechanisms are not fully understood. Therefore, the effects of dough crumb addition times in DC-SCR on the texture, cooking, and eating quality of fresh noodles were first studied. Then, the underlying regulation mechanism of DC-SCR technology on fresh noodles was analyzed in terms of moisture distribution and microstructure. The study demonstrated that the most significant enhancement in the quality of fresh noodles was achieved by adding dough crumbs six times. Compared with fresh noodles made without the addition of dough crumbs, the initial hardness and chewiness of fresh noodles made by adding six times of dough crumbs increased by 25.32% and 46.82%, respectively. In contrast, the cooking time and cooking loss were reduced by 28.45% and 29.69%, respectively. This quality improvement in fresh noodles made by DC-SCR came from the microstructural differences of the gluten network between the inner and outer layers of the dough sheet. A dense structure on the outside and a loose structure on the inside could endow the fresh noodles made by DC-SCR with higher hardness, a shortened cooking time, and less cooking loss. This study would provide a theoretical and experimental basis for creating high-quality fresh noodles.


Subject(s)
Bread , Cooking , Flour , Food Handling , Water , Cooking/methods , Flour/analysis , Food Handling/methods , Bread/analysis , Hardness , Glutens/analysis , Food Quality , Triticum/chemistry , Humans
14.
Food Sci Biotechnol ; 33(6): 1351-1358, 2024 May.
Article in English | MEDLINE | ID: mdl-38585563

ABSTRACT

The rising health consciousness of consumers has resulted in multiple studies on the use of animal and vegetable proteins in gluten-free noodle production, but chicken breast meat (CBM) has not been the subject of such studies. Thus, we aimed to create protein-fortified gluten-free noodles using economical and nutritious CBM and compare their quality attributes with commonly used wheat flour noodles (WN). Among the CBM noodles (CN), CN with tapioca starch (CN-T) showed the highest sensory and textural similarity to WN. The color values of cooked noodles were not considerably different. The water absorption capacity and volume expansion ratio of CN-T were not significantly different from those of WN. In CNs, an ungelatinized microstructure was observed, and CN-T displayed well-formed structural bonds related to adhesiveness, similar to WN. The CN-T had a protein content about 2% higher than WN. This finding is informative for the development of gluten-free noodles using CBM.

15.
Oxf Med Case Reports ; 2024(3): omae021, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532762

ABSTRACT

Japanese noodle 'udon' is an original Asian noodle popular in Japan. Udon is one of the most elastic noodle, and which is required to take more than several hours to digest in a certain case. We encountered a case of enteropathy caused by consumption of udon. A fifteen-year-old girl visited the outpatient clinic with a symptom of epigastralgia persistent from the previous night. She had eaten noodles for dinner the night before. Clinical images showed patient's stomach filled with udon. Noodle-associated enteropathy is not rare in our community, however, there had not been reported in other Asian countries.

16.
Food Chem ; 447: 138996, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492293

ABSTRACT

Freeze-thaw cycles (FTC) could cause damage to food during storage. The effects of different FTC on Hot-dry noodles (HDN) in terms of quality, moisture, starch, and protein characteristics were studied. This study showed that FTC decreased the texture properties and water absorption of HDN. Meanwhile, cooking loss was significantly increased after FTC. The water content of HDN was decreased and water migration was increased during FTC. In addition, results showed that FTC destroyed the order structure and increased the crystallinity of starch in HDN. Under FTC, the disulfide bond of HDN was broken, the free sulfhydryl group was increased, and the electrophoretic patterns confirmed the protein depolymerization. The microstructure also showed that the gluten network became incomplete and starch was exposed outside the substrate. This study expounded the mechanism of HDN quality deterioration during FTC, which laid a foundation for the development and improvement of frozen and freeze-thaw noodles.


Subject(s)
Cooking , Starch , Starch/chemistry , Chemical Phenomena , Flour/analysis , Water
17.
Food Chem ; 445: 138775, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38401315

ABSTRACT

To overcome the problem that takeaway noodles possessed poor immersion resistance, in this study noodles were prepared from post-ripened wheat flour, and changes in textural properties, protein components, and water status of noodles were determined. The firmness and tensile distance of noodles were gradually increased by 7.40%-35.88% when wheat flour was post-ripened for 20-40 d. Afterwards, noodle textural qualities were slightly decreased. Compared with control groups, contents of glutenin macropolymer (GMP) and disulfide bonds were significantly (p<0.05) increased and protein network was also more compact, whereas the Glutenin/Gliadin ratio and free sulfhydryl groups content were significantly (p<0.05) reduced. Contents of sodium dodecyl sulfate extractable protein (SDSEP) were reduced by 3.22%-6.23%. Meanwhile, the decrease in A23 indicated that wheat flour post-ripening limited water-absorbing capacity of noodles during immersion. In conclusion, wheat flour post-ripening promoted the immersion resistance of noodles by inducing protein cross-linking, and the best post-ripening time was 20-40 d.


Subject(s)
Flour , Immersion , Flour/analysis , Triticum/chemistry , Gliadin , Water , Cooking
18.
Food Sci Nutr ; 12(1): 508-525, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38268865

ABSTRACT

This study investigated the oxidative stability of instant fried noodles by applying free and microencapsulated black hollyhock extracts (BHE) and borage extracts (BE) (BE, BHE, ME-BE and ME-BHE). At first, the BE and BHE were encapsulated with whey protein and maltodextrin at a 90:10 ratio through a spray dryer. After evaluating particle characteristics (including anthocyanin content, zeta potential, polydispersity index (PDI), particle size, and morphology), they were added to the noodle formulation (wheat flour 78.5%, NaCl 0.78%, and water 21.21%) at 1% w/w level, and the physicochemical (proximate analysis, pH, color, cooking loss, and texture), sensory properties (taste, odor, color, texture, and overall acceptability), and oxidative stability (acid value, peroxide value, anisidine index, thiobarbituric acid index, conjugated dienes) of the fried noodles were studied. The results showed that the microcapsules had uneven shapes with angular surfaces. There was no significant difference between the zeta potential, particle size, PDI, and encapsulation efficiency of BE- and BHE-loaded microcapsules, and the values reported fell between -34.96 and -34.84 mV, 1.128 and 1.195 µm, 0.247 and 0.283, and 80.08% and 83.47%, respectively. Adding extracts to the functional noodles decreased cooking loss and pH compared to the control. The noodles exhibited a darker color. BE and BHE reduced the oxidation of fried noodle oil, with microencapsulated extracts showing stronger effects during storage (p < .05). Sensory evaluation indicated high acceptability for all samples. Encapsulation effectively preserves the natural antioxidant activities of BE and BHE, providing potential benefits for food processing and storage.

19.
Heliyon ; 10(1): e24061, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38230233

ABSTRACT

Antioxidant compounds such as phenolics and carotenoids scavenge reactive oxygen species and protect against degenerative diseases such as cancer and cardiovascular disease when used as food additives or supplements. Mango peel is a by-product of mango which is a good source of bioactive substances such as phytochemicals, antioxidants, and dietary fibers. Unfortunately, the study on mango peel as a potential food additive is very limited. Accordingly, the present study aimed to develop functional noodles through extrusion technology with the encapsulation of mango peel powder as a natural source of bioactive compounds. First, mango peel powder (MPP) was prepared and incorporated during the mixing of ingredients before noodles formation at three different levels (2.5, 5 and 7.5 %). Afterward, the noodles were studied to determine how the encapsulated MPP affects the proximate composition, physicochemical characteristics, polyphenols, carotenoids, anthocyanin, antioxidant and antidiabetic activity, and sensory characteristics. The noodles exhibited a dose-dependent relationship in the content of bioactive components and functional activities with the encapsulation of MPP levels. A significantly (p 0.05) higher value was noticed in 7.5 % of MPP-encapsulated noodles than in any level of MPP encapsulation in noodles. The fiber and protein contents in the MPP-encapsulated noodles were increased by about 0-1.22 % and 0-3.16 %, respectively. However, noodles' color index and water absorption index were decreased with the level of MPP encapsulation. The cooking loss of noodles increased from 4.64 to 5.17, 6.49, and 7.32 %, whereas the cooked weight decreased from 35.11 to 34.40, 33.65, and 33.23 % with 2.5, 5.0, and 7.5 % of MPP encapsulation, respectively. However, MPP was stable during storage of noodles exhibiting higher phenolic content and antioxidant activity than control samples. The sensory evaluation showed that MPP-encapsulated noodles at levels 2.5 and 5 % had approximately similar overall acceptability values with the control sample. As a result of the findings, it appears that adding MPP up to 5 % to noodles improves their nutritional quality without changing their cooking, structural, or sensory aspects. Therefore, mango peel powder can be a potential cheap source for the development of functional noodles and food ingredients.

20.
Int J Biol Macromol ; 257(Pt 2): 128765, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096940

ABSTRACT

We herein evaluated the impact of adding wheat bran dietary fiber (WBDF) on the aggregation behavior of gluten in dough at various stages of the noodle-making process. Scanning electron microscopy and confocal laser scanning microscopy images confirmed the effective insertion of WBDF particles into the gluten matrix. Importantly, the gap between WBDF and gluten widened during the rolling process. The addition of WBDF led to a reduction in glutenin macropolymer (GMP) content and an elevation in sulfhydryl content, induced the depolymerization behaviors at the molecular level. Additionally, it facilitated the conversion of α-helices and ß-turns into ß-sheets and random coils within the dough. Moreover, the processing and addition of WBDF contributed to a decrease in weight loss, whereas the degradation temperature remained constant. Resting decreased the sulfhydryl content, whereas sheeting and cutting increased it, further fostering protein depolymerization in the presence of WBDF. These actions significantly increased the ß-sheets and random coils content at the expense of ß-turns and α-helices content. Significantly, controlled processing emerged as a crucial factor in enhancing gluten depolymerization induced by WBDF in the dough. This comprehensive study provides a nuanced perspective on controlling dough processing to strike a balance between dietary fiber-rich and high-quality foods.


Subject(s)
Dietary Fiber , Glutens , Dietary Fiber/analysis , Food Quality , Temperature , Flour/analysis
SELECTION OF CITATIONS
SEARCH DETAIL