Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Protein Expr Purif ; : 106607, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39260807

ABSTRACT

Plant non-specific lipid transfer protein (nsLTP) is able to bind and transport lipids and essential oils, as well as engage in various physiological processes, including defense against phytopathogens. Kalanchoe fedtschenkoi (Lavender Scallops) is an attractive and versatile succulent. To investigate the functional mechanism of Kalanchoe fedtschenkoi nsLTP (Ka-nsLTP), we expressed, purified and successfully obtained monomeric Ka-nsLTP. Mutational experiments revealed that the C6A variant retained the same activity as the wild-type (WT) Ka-nsLTP. Ka-nsLTP showed weak antiphytopathogenic bacterial activity, but inhibited fungal growth. Ka-nsLTP possessed a hydrophobic cavity effectively binding lauric acid. Our results offer novel molecular insights into the functional mechanism of nsLTP, which broadens our knowledge of the biological function of nsLTP in crops and provides a useful locus for genetic improvement of plants.

2.
Article in English | MEDLINE | ID: mdl-39092795

ABSTRACT

Summary: Background. Gibberellin Regulated Proteins (GRPs) are small glycoproteins that induce allergy to various types of fruit. This study aimed to evaluate co-sensitization to cypress pollen and other molecules responsible for fruit allergy, such as nsLTP (Pru p 3), PR-10 (Bet v1), and Profilin (Bet v2). Methods. Sixty subjects sensitized to peach GRP (Pru p 7) were consecutively recruited from four Italian centers: 28 males and 32 females (mean age 37.9 years; range 11-79). Specific IgE for Pru p 7, Pru p 3, Bet v 1, Bet v 2, cypress pollen extract (Cup s), and Cup a 1 were determined in all subjects. Results. Sensitization rates to Cup s, Cup a 1, Pru p 3, Bet v 1, and Bet v 2 in the entire studied population were 90.0%, 83.3%, 45.8%, 40.0%, and 30.0%, respectively. In subjects residing in Northern Italy, the respective sensitization rates were 96.4%, 80.0%, 50.0%, 73.3%, and 40.0%, while in those residing in Southern Italy, they were 83.3%, 86.7%, 40.0%, 6.7%, and 20.0%. The only significant difference was observed for PR-10 (p less than 0.0001) Co-sensitization to PR-10 was found to be associated with a reduced risk of anaphylaxis (OR: 0.125). Allergic reactions were most commonly triggered by peach (26/40), followed by orange (12/40), with other foods being less frequently implicated. Conclusions. This study confirms a high association between sensitization to Pru p 7 and cypress pollen and highlights a high percentage of co-sensitization to nsLTP, PR-10, and profilin. PR-10 emerged as a protective factor against anaphylaxis.

3.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928218

ABSTRACT

Pollen from common ragweed is an important allergen source worldwide and especially in western and southern Romania. More than 100 million patients suffer from symptoms of respiratory allergy (e.g., rhinitis, asthma) to ragweed pollen. Among the eleven characterized allergens, Amb a 6 is a non-specific lipid transfer protein (nsLTP). nsLTPs are structurally stable proteins in pollen and food from different unrelated plants capable of inducing severe reactions. The goal of this study was to produce Amb a 6 as a recombinant and structurally folded protein (rAmb a 6) and to characterize its physicochemical and immunological features. rAmb a 6 was expressed in Spodoptera frugiperda Sf9 cells as a secreted protein and characterized by mass spectrometry and circular dichroism (CD) spectroscopy regarding molecular mass and fold, respectively. The IgE-binding frequency towards the purified protein was evaluated using sera from 150 clinically well-characterized ragweed-allergic patients. The allergenic activities of rAmb a 6 and the nsLTP from the weed Parietaria judaica (Par j 2) were evaluated in basophil activation assays. rAmb a 6-specific IgE reactivity was associated with clinical features. Pure rAmb a 6 was obtained by insect cell expression. Its deduced molecular weight corresponded to that determined by mass spectrometry (i.e., 10,963 Da). rAmb a 6 formed oligomers as determined by SDS-PAGE under non-reducing conditions. According to multiple sequence comparisons, Amb a 6 was a distinct nsLTP with less than 40% sequence identity to currently known plant nsLTP allergens, except for nsLTP from Helianthus (i.e., 52%). rAmb a 6 is an important ragweed allergen recognized by 30% of ragweed pollen allergic patients. For certain patients, rAmb a 6-specific IgE levels were higher than those specific for the major ragweed allergen Amb a 1 and analysis also showed a higher allergenic activity in the basophil activation test. rAmb a 6-positive patients suffered mainly from respiratory symptoms. The assumption that Amb a 6 is a source-specific ragweed allergen is supported by the finding that none of the patients showing rAmb a 6-induced basophil activation reacted with Par j 2 and only one rAmb a 6-sensitized patient had a history of plant food allergy. Immunization of rabbits with rAmb a 6 induced IgG antibodies which strongly inhibited IgE binding to rAmb a 6. Our results demonstrate that Amb a 6 is an important source-specific ragweed pollen allergen that should be considered for diagnosis and allergen-specific immunotherapy of ragweed pollen allergy.


Subject(s)
Allergens , Antigens, Plant , Carrier Proteins , Immunoglobulin E , Humans , Allergens/immunology , Immunoglobulin E/immunology , Antigens, Plant/immunology , Antigens, Plant/chemistry , Animals , Carrier Proteins/immunology , Carrier Proteins/metabolism , Plant Proteins/immunology , Plant Proteins/chemistry , Female , Rhinitis, Allergic, Seasonal/immunology , Male , Adult , Ambrosia/immunology , Spodoptera/immunology , Recombinant Proteins/immunology , Amino Acid Sequence , Sf9 Cells , Middle Aged , Plant Extracts
4.
Curr Allergy Asthma Rep ; 23(9): 497-508, 2023 09.
Article in English | MEDLINE | ID: mdl-37351723

ABSTRACT

PURPOSE OF REVIEW: A significant fraction of allergens bind small molecular ligands, and many of these compounds are classified as lipids. However, in most cases, we do not know the role that is played by the ligands in the allergic sensitization or allergic effector phases. RECENT FINDINGS: More effort is dedicated toward identification of allergens' ligands. This resulted in identification of some lipidic compounds that can play active immunomodulatory roles or impact allergens' molecular and allergic properties. Four allergen families (lipocalins, NPC2, nsLTP, and PR-10) are among the best characterized in terms of their ligand-binding properties. Allergens from these four families are able to bind many chemically diverse molecules. These molecules can directly interact with human immune system and/or affect conformation and stability of allergens. While there is more data on the allergens and their small molecular ligands, we are just starting to understand their role in allergy.


Subject(s)
Hypersensitivity , Humans , Ligands , Allergens , Immunoglobulin E
5.
Front Plant Sci ; 13: 1014266, 2022.
Article in English | MEDLINE | ID: mdl-36275567

ABSTRACT

Plant non-specific lipid transfer proteins (nsLTPs) are small basic proteins that play a significant regulatory role in a wide range of physiological processes. To date, no genome-wide survey and expression analysis of this gene family in sugarcane has been performed. In this study we identified the nsLTP gene family in Saccharum spontaneum and carried out expression profiling of nsLTPs in two sugarcane cultivars (Saccharum spp.) that have different resistance to leaf scald caused by Xanthomonas albilineans (Xa) infection. The effect of stress related to exogenous salicylic acid (SA) treatment was also examined. At a genome-wide level, S. spontaneum AP85-441 had 71 SsnsLTP genes including 66 alleles. Tandem (9 gene pairs) and segmental (36 gene pairs) duplication events contributed to SsnsLTP gene family expansion. Five SsnsLTP proteins were predicted to interact with five other proteins. Expression of ShnsLTPI.8/10/Gb.1 genes was significantly upregulated in LCP85-384 (resistant cultivar), but downregulated in ROC20 (susceptible cultivar), suggesting that these genes play a positive regulatory role in response of sugarcane to Xa infection. Conversely, ShnsLTPGa.4/Ge.3 appears to act as a negative regulator in response Xa infection. The majority (16/17) of tested genes were positively induced in LCP85-384 72 h after SA treatment. In both cultivars, but particularly in LCP85-384, ShnsLTPIV.3/VIII.1 genes were upregulated at all time-points, suggesting that the two genes might act as positive regulators under SA stress. Meanwhile, both cultivars showed downregulated ShnsLTPGb.1 gene expression, indicating its potential negative role in SA treatment responses. Notably, the ShnsLTPGb.1 gene had contrasting effects, with positive regulation of gene expression in response to Xa infection and negative regulation induced by SA stress. Together, our results provide valuable information for elucidating the function of ShnsLTP family members under two stressors and identified novel gene sources for development of sugarcane that are tolerant of environmental stimuli.

6.
Int J Mol Sci ; 23(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955505

ABSTRACT

Non-specific lipid transfer proteins (nsLTPs) are small cysteine-rich basic proteins which play essential roles in plant growth, development and abiotic/biotic stress response. However, there is limited information about the nsLTP gene (BnLTP) family in rapeseed (Brassica napus). In this study, 283 BnLTP genes were identified in rapeseed, which were distributed randomly in 19 chromosomes of rapeseed. Phylogenetic analysis showed that BnLTP proteins were divided into seven groups. Exon/intron structure and MEME motifs both remained highly conserved in each BnLTP group. Segmental duplication and hybridization of rapeseed's two sub-genomes mainly contributed to the expansion of the BnLTP gene family. Various potential cis-elements that respond to plant growth, development, biotic/abiotic stresses, and phytohormone signals existed in BnLTP gene promoters. Transcriptome analysis showed that BnLTP genes were expressed in various tissues/organs with different levels and were also involved in the response to heat, drought, NaCl, cold, IAA and ABA stresses, as well as the treatment of fungal pathogens (Sclerotinia sclerotiorum and Leptosphaeria maculans). The qRT-PCR assay validated the results of RNA-seq expression analysis of two top Sclerotinia-responsive BnLTP genes, BnLTP129 and BnLTP161. Moreover, batches of BnLTPs might be regulated by BnTT1 and BnbZIP67 to play roles in the development, metabolism or adaptability of the seed coat and embryo in rapeseed. This work provides an important basis for further functional study of the BnLTP genes in rapeseed quality improvement and stress resistance.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/metabolism , Brassica rapa/genetics , Brassica rapa/metabolism , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins/metabolism , Stress, Physiological/genetics
7.
BMC Complement Med Ther ; 22(1): 135, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35578215

ABSTRACT

BACKGROUND: Trachyspermum ammi, commonly known as Ajwain, is a member of the Apiaceae family. It is a therapeutic herbal spice with diverse pharmacological properties, used in traditional medicine for various ailments. However, all previous studies were conducted using small molecule extracts, leaving the protein's bioactivity undiscovered. AIM: The current study aimed to demonstrate the cytotoxic activity of Ajwain non-specific lipid transfer protein (nsLTP1) in normal breast (MCF10A), breast cancer (MCF-7), and pancreatic cancer (AsPC-1) cell lines. Also, to evaluate its structural stability in human serum as well as at high temperature conditions. METHODS: The cytotoxic activity of Ajwain nsLTP1 was evaluated in MCF-7 and AsPC-1 cell lines using MTT assay. Annexin V-FITC and PI staining were used to detect the early apoptotic and late apoptotic cells. The role of nsLTP1 in inducing apoptosis was further studied by quantifying Bcl-2, Bax, Caspase-3, Survivin, EGFR, and VEGF genes expression using RT-PCR. CD spectroscopy analyzed the nsLTP1 conformational changes after thermal treatment for structure stability determination. The RP-HPLC was used to analyze the nsLTP1 degradation rate in human serum at different time intervals incubated at 37 °C. RESULTS: Ajwain nsLTP1 showed a potent cytotoxic effect in MCF-7 and AsPC-1. The IC50 value obtained in MCF-7 was 8.21 µM, while for AsPC-1 4.17 µM. The effect of nsLTP1 on stimulating apoptosis revealed that the proportions of apoptotic cells in both cell lines were relatively increased depending on the concentration. The apoptotic cells percentage at 20 µM was in MCF-7 71% (***P < 0.001) and AsPC-1 88% (***P < 0.001). These results indicate that nsLTP1 might efficaciously induce apoptosis in multiple types of cancerous cells. Genes expression in MCF-7 and AsPC-1 showed significant upregulation in Bax and Caspase-3 and downregulation in Bcl-2, Survivin, EGFR, and VEGF protein. The CD analysis of nsLTP1 showed a significant thermostable property. In serum, nsLTP1 showed a slow degradation rate, indicating high stability with a half-life of ~ 8.4 h. CONCLUSION: Our results revealed the potential anticancer activity of Ajwain nsLTP1 and its mechanism in inducing apoptosis. It further exhibited thermostable properties at high temperatures and in human serum, which suggested this protein as a promising anticancer agent.


Subject(s)
Antineoplastic Agents , Apiaceae , Antineoplastic Agents/pharmacology , Apiaceae/chemistry , Carrier Proteins , Caspase 3 , ErbB Receptors , Humans , Seeds/chemistry , Survivin , Vascular Endothelial Growth Factor A , bcl-2-Associated X Protein
8.
Food Chem (Oxf) ; 4: 100111, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35592704

ABSTRACT

The apple fruit (Malus domestica L. Borkh) is one of the most popular fruits worldwide. Beyond their beneficial properties, apples contain proteins that trigger allergic reactions in susceptible consumers. Mal d1 to d4 are allergens present in a variety of different isoforms in apples. In this study, we used proteomics to quantify all four Mal d proteins in 52 apple genotypes with varying allergenic potentials. A total of 195, 17, 14, and 18 peptides were found to be related to Mal d1, d2, d3, and d4 proteins, respectively of which 25 different Mal d proteins could be unambiguously identified. The allergenic potential of the Mal d isoforms was characterized by comparing the isoform abundance with the allergenic score of genotypes from oral challenge tests. The detected Mal d peptides presumably have different IgE binding properties and could be used as potential molecular markers to discriminate between hypoallergenic and hyperallergenic cultivars.

9.
BMC Plant Biol ; 22(1): 21, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996379

ABSTRACT

BACKGROUND: Brassica napus is an important agricultural species, improving stress resistance was one of the main breeding goals at present. Non-specific lipid transfer proteins (nsLTPs) are small, basic proteins which are involved in some biotic or abiotic stress responses. B. napus is susceptible to a variety of fungal diseases, so identify the BnLTPs and their expression in disease responses is very important. The common reference genome of B. napus does not contain all B. napus genes because of gene presence/absence variations between individuals. Therefore, it was necessary to search for candidate BnLTP genes in the B. napus pangenome. RESULTS: In the present study, the BnLTP genes were identified throughout the pangenome, and different BnLTP genes were presented among varieties. Totally, 246 BnLTP genes were identified and could be divided into five types (1, 2, C, D, and G). The classification, phylogenetic reconstruction, chromosome distribution, functional annotation, and gene expression were analyzed. We also identified potential cis-elements that respond to biotic and abiotic stresses in the 2 kb upstream regions of all BnLTP genes. RNA sequencing analysis showed that the BnLTP genes were involved in the response to Sclerotinia sclerotiorum infection. We identified 32 BnLTPs linked to blackleg resistance quantitative trait locus (QTL). CONCLUSION: The identification and analysis of LTP genes in the B. napus pangenome could help to elucidate the function of BnLTP family members and provide new information for future molecular breeding in B. napus.


Subject(s)
Ascomycota/pathogenicity , Brassica napus/genetics , Brassica napus/immunology , Brassica napus/microbiology , Carrier Proteins/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Crops, Agricultural/genetics , Crops, Agricultural/immunology , Crops, Agricultural/microbiology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genome, Plant
10.
Nutrients ; 13(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202484

ABSTRACT

INTRODUCTION: Allergy to nonspecific lipid transfer protein (nsLTP) is the main cause of plant-food allergy in Spain. nsLTPs are widely distributed in the plant kingdom and have high cross-reactivity but extremely variable clinical expression. Little is known about the natural evolution of this allergy, which complicates management. The objective of this study was to assess the development of allergy to new plant foods in nsLTP-sensitized patients 10 years after diagnosis. METHODS: One hundred fifty-one patients showing specific IgE to nsLTP determined by ISAC (Thermofisher) were included. After clinical workup (i.e., anamnesis, skin test, and challenge when needed), these patients were divided into two groups: 113 patients allergic to one or more plant food (74.5%) and 38 patients not allergic to any plant food (25.1%). Ten years later, a telephone interview was conducted to check whether patients had developed additional allergic reactions to plant foods. RESULTS: Ten years after diagnosis, 35 of the 113 (31%) plant-food-allergic patients sensitized to nsLTP reported reactions to new, previously tolerated plant foods, mainly Rosaceae/Prunoideae fruits and nuts followed by vegetables, Rosacea/Pomoideae fruits, legumes, and cereals. Five out of 38 (13.2%) patients previously sensitized to nsLTP but without allergy to any plant food had experienced allergic reactions to some plant food: two to Rosaceae/Prunoideae fruits, two to Rosaceae/Prunoideae fruit and nuts, and one to legumes. CONCLUSION: Patients sensitized to nsLTP developed allergic reactions to other plant foods, mainly Rosaceae-Prunoideae fruits and nuts. This was more frequent among plant-food-allergic patients than among those who had never had plant-food allergy.


Subject(s)
Allergens/immunology , Antigens, Plant/immunology , Carrier Proteins/immunology , Desensitization, Immunologic/adverse effects , Food Hypersensitivity/immunology , Plant Proteins/immunology , Adult , Cross Reactions/immunology , Female , Follow-Up Studies , Fruit/immunology , Humans , Immunoglobulin E/immunology , Male , Nuts/immunology , Rosaceae/immunology , Skin Tests , Spain , Vegetables/immunology
11.
Mol Nutr Food Res ; 65(18): e2100369, 2021 09.
Article in English | MEDLINE | ID: mdl-34331387

ABSTRACT

SCOPE: Food allergy to sunflower seed (SFS) protein is not frequent and only non-specific lipid transfert protein (nsLTP) Hel a 3 is officially recognized as a food allergen. Out of the eleven seed storage 2S-albumins (SESA) detected in SFS, only SFA-8 allergenicity has been investigated so far. The study aimed then to evaluate SFS protein allergenicity and particularly, to compare the sensitization potency of SESA in a mouse model. METHODS AND RESULTS: The most abundant SESA and nsLTP were isolated from SFS through a combination of chromatographic methods. Purified proteins were then used to measure specific IgG1 and IgE responses in BALB/c mice orally sensitized to different SFS protein isolates. The study, thus, confirmed the allergenicity of SFA-8 and Hel a 3 but mice were also highly sensitized to other SESA such as SESA2-1 or SESA20-2. Furthermore, competitive inhibition of IgE-binding revealed that SFA-8 IgE-reactivity was due to cross-reactivity with other SESA. 11S-globulins were weakly immunogenic and were rapidly degraded in an in vitro model of gastroduodenal digestion. In contrast, Hel a 3, SESA2-1 and SFA-8 were more resistant to proteolysis and gastroduodenal digestion did not affect their IgE-reactivity. CONCLUSIONS: SESA2-1 or SESA20-2 were more potent allergens than SFA-8 in this mouse model. Allergenicity of SESA must be now confirmed in SFS-allergic patients.


Subject(s)
2S Albumins, Plant/immunology , Antigens, Plant/immunology , Food Hypersensitivity/immunology , Seed Storage Proteins/immunology , 2S Albumins, Plant/adverse effects , 2S Albumins, Plant/isolation & purification , 2S Albumins, Plant/pharmacokinetics , Animals , Antigens, Plant/adverse effects , Cross Reactions , Digestion , Disease Models, Animal , Female , Helianthus/chemistry , Helianthus/immunology , Immunity, Humoral , Immunoglobulin E/chemistry , Mice, Inbred BALB C , Seed Storage Proteins/chemistry , Seed Storage Proteins/isolation & purification , Seed Storage Proteins/pharmacokinetics , Spleen/drug effects , Spleen/immunology
12.
Allergy ; 76(8): 2367-2382, 2021 08.
Article in English | MEDLINE | ID: mdl-33866585

ABSTRACT

Many allergens feature hydrophobic cavities that allow the binding of primarily hydrophobic small-molecule ligands. Ligand-binding specificities can be strict or promiscuous. Serum albumins from mammals and birds can assume multiple conformations that facilitate the binding of a broad spectrum of compounds. Pollen and plant food allergens of the family 10 of pathogenesis-related proteins bind a variety of small molecules such as glycosylated flavonoid derivatives, flavonoids, cytokinins, and steroids in vitro. However, their natural ligand binding was reported to be highly specific. Insect and mammalian lipocalins transport odorants, pheromones, catecholamines, and fatty acids with a similar level of specificity, while the food allergen ß-lactoglobulin from cow's milk is notably more promiscuous. Non-specific lipid transfer proteins from pollen and plant foods bind a wide variety of lipids, from phospholipids to fatty acids, as well as sterols and prostaglandin B2, aided by the high plasticity and flexibility displayed by their lipid-binding cavities. Ligands increase the stability of allergens to thermal and/or proteolytic degradation. They can also act as immunomodulatory agents that favor a Th2 polarization. In summary, ligand-binding allergens expose the immune system to a variety of biologically active compounds whose impact on the sensitization process has not been well studied thus far.


Subject(s)
Allergens , Food Hypersensitivity , Allergens/metabolism , Animals , Cattle , Female , Ligands , Pollen , Protein Binding
13.
World Allergy Organ J ; 14(3): 100530, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33767803

ABSTRACT

Food anaphylaxis is a severe, potentially life-threatening, systemic hypersensitivity reaction. Within a retrospective study we applied ImmunoCAP-ISAC in a heterogenous cohort of 54 food anaphylactic patients and compared its performance to conventional in vitro (ELISA, ImmunoCAP) and in vivo (skin prick test, oral food challenge) diagnosis. Comparing clinical diagnosis with results obtained by ImmunoCAP-ISAC we obtained moderate agreement (kappa 0.524, p < 0.05). The comparison between SPT and ImmunoCAP vs ImmunoCAP-ISAC indicates a good sensitivity of microarray testing. Among the 54 tested sera, 36 and 41 were in substantial agreement with results obtained by SPT (69%, kappa 0.667, p < 0.05) and ImmunoCAP-ISAC (76%, kappa 0.759, p < 0.05), respectively. Within this adult anaphylaxis cohort, plant food allergens were identified as the predominant IgE-binding proteins, with PR10 proteins, ω-5-gliadin and nsLTPs as the most frequent ones. In summary, microarray based IgE testing may help to unravel the elicitating food in anaphylaxis in particular when the elicitor is so far unknown.

14.
J Agric Food Chem ; 69(11): 3511-3518, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33719421

ABSTRACT

The influence of gastrointestinal digestion on the immunological properties of three different nonspecific lipid-transfer proteins (nsLTPs) described in tomato fruit has been assessed using an in vitro system mimicking the stomach and intestine digestion conditions. Tomato peel/pulp nsLTP, Sola l 3, was degraded after digestion, although the immunoglobulin E (IgE) recognition of intact protein and a 10 kDa band were still observed after 30 min of duodenal digestion in the presence of phosphatidylcholine. The tomato seed nsLTP, Sola l 7, showed a higher stability than the other seed allergen, Sola l 6, during digestion. Sola l 7 showed an IgE immunoreactive 6.5 kDa band in immunoblotting analysis, retaining up to 7% of its IgE-binding capacity in inhibition ELISA test after 60 min of duodenal digestion and keeping intact its ability to activate basophils after digestion. These results suggest that the tomato seed allergen Sola l 7 might be considered as an important allergen in the induction of allergic responses to tomato due to its high stability against gastrointestinal digestion.


Subject(s)
Food Hypersensitivity , Solanum lycopersicum , Allergens , Antigens, Plant , Digestion , Immunoglobulin E , Lipids , Plant Proteins , Seeds
15.
Molecules ; 26(2)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419110

ABSTRACT

(1) Background: Non-specific lipid transfer proteins (nsLTPs), which belong to the prolamin superfamily, are potent allergens. While the biological role of LTPs is still not well understood, it is known that these proteins bind lipids. Allergen nsLTPs are characterized by significant stability and resistance to digestion. (2) Methods: nsLTPs from gold kiwifruit (Act c 10.0101) and pomegranate (Pun g 1.0101) were isolated from their natural sources and structurally characterized using X-ray crystallography (3) Results: Both proteins crystallized and their crystal structures were determined. The proteins have a very similar overall fold with characteristic compact, mainly α-helical structures. The C-terminal sequence of Act c 10.0101 was updated based on our structural and mass spectrometry analysis. Information on proteins' sequences and structures was used to estimate the risk of cross-reactive reactions between Act c 10.0101 or Pun g 1.0101 and other allergens from this family of proteins. (4) Conclusions: Structural studies indicate a conformational flexibility of allergens from the nsLTP family and suggest that immunoglobulin E binding to some surface regions of these allergens may depend on ligand binding. Both Act c 10.0101 and Pun g 1.0101 are likely to be involved in cross-reactive reactions involving other proteins from the nsLTP family.


Subject(s)
Actinidia/chemistry , Allergens/chemistry , Antigens, Plant/chemistry , Carrier Proteins/chemistry , Plant Proteins/chemistry , Pomegranate/chemistry , Seeds/chemistry , Allergens/isolation & purification , Antigens, Plant/isolation & purification , Carrier Proteins/isolation & purification , Crystallography, X-Ray , Plant Proteins/isolation & purification , Protein Conformation, alpha-Helical
16.
Foods ; 11(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35010137

ABSTRACT

Pectin, a dietary fiber, is a polysaccharide that is widely used in food industry as a gelling agent. In addition, prebiotic and beneficial immunomodulatory effects of pectin have been demonstrated, leading to increased importance as food supplement. However, as cases of anaphylactic reactions after consumption of pectin-supplemented foods have been reported, the present study aims to evaluate the allergy risk of pectin. This is of particular importance since most of the pectin used in the food industry is extracted from citrus or apple pomace. Both contain several allergens such as non-specific lipid transfer proteins (nsLTPs), known to induce severe allergic reactions, which could impair the use of pectins in nsLTP allergic patients. Therefore, the present study for the first time was performed to analyze residual nsLTP content in two commercial pectins using different detection methods. Results showed the analytical sensitivity was diminished by the pectin structure. Finally, spiking of pectin with allergenic peach nsLTP Pru p 3 led to the conclusion that the potential residual allergen content in both pectins is below the threshold to induce anaphylactic reactions in nsLTP-allergic patients. This data suggests that consumption of the investigated commercial pectin products provides no risk for inducing severe reactions in nsLTP-allergic patients.

17.
Phytopathology ; 111(4): 671-683, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32896217

ABSTRACT

Trichothecene mycotoxins such as deoxynivalenol (DON) are virulence factors of Fusarium graminearum, which causes Fusarium head blight, one of the most important diseases of small grain cereals. We previously identified a nonspecific lipid transfer protein (nsLTP) gene, AtLTP4.4, which was overexpressed in an activation-tagged Arabidopsis line resistant to trichothecin, a type B trichothecene in the same class as DON. Here we show that overexpression of AtLTP4.4 in transgenic wheat significantly reduced F. graminearum growth in 'Bobwhite' and 'RB07' lines in the greenhouse and reduced fungal lesion size in detached leaf assays. Hydrogen peroxide accumulation was attenuated on exposure of transgenic wheat plants to DON, indicating that AtLTP4.4 may confer resistance by inhibiting oxidative stress. Field testing indicated that disease severity was significantly reduced in two transgenic 'Bobwhite' lines expressing AtLTP4.4. DON accumulation was significantly reduced in four different transgenic 'Bobwhite' lines expressing AtLTP4.4 or a wheat nsLTP, TaLTP3, which was previously shown to have antioxidant activity. Recombinant AtLTP4.4 purified from Pichia pastoris exhibited potent antifungal activity against F. graminearum. These results demonstrate that overexpression of AtLTP4.4 in transgenic wheat suppresses DON accumulation in the field. Suppression of DON-induced reactive oxygen species by AtLTP4.4 might be the mechanism by which fungal spread and mycotoxin accumulation are inhibited in transgenic wheat plants.


Subject(s)
Fusarium , Antifungal Agents/pharmacology , Antioxidants , Carrier Proteins , Plant Diseases , Saccharomycetales , Triticum/genetics
18.
Plant Cell Rep ; 39(9): 1185-1197, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32638075

ABSTRACT

KEY MESSAGE: A Triticeae type III non-specific lipid transfer protein (nsLTP) was shown for the first time to be translocated from the anther tapetum to the pollen cell wall. Two anther-expressed non-specific lipid transfer proteins (nsLTPs) were identified in triticale (× Triticosecale Wittmack). LTPc3a and LTPc3b contain a putative signal peptide sequence and eight cysteine residues in a C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C pattern. These proteins belong to the type III class of nsLTPs which are expressed exclusively in the inflorescence of angiosperms. The level of LTPc3 transcript in the anther was highest at the tetrad and uninucleate microspore stages, and absent in mature pollen. In situ hybridization showed that LTPc3 was expressed in the tapetal layer of the developing triticale anther. The expression of the LTPc3 protein peaked at the uninucleate microspore stage, but was also found to be associated with the mature pollen. Accordingly, an LTPc3a::GFP translational fusion expressed in transgenic Brachypodium distachyon first showed activity in the tapetum, then in the anther locule, and later on the mature pollen grain. Altogether, these results represent the first detailed characterization of a Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation.


Subject(s)
Cell Wall/metabolism , Plant Proteins/metabolism , Pollen/metabolism , Triticale/metabolism , Brachypodium/genetics , Cysteine , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified , Pollen/genetics , Protein Transport , Triticale/cytology , Triticale/genetics
19.
Genomics ; 112(6): 4332-4341, 2020 11.
Article in English | MEDLINE | ID: mdl-32717318

ABSTRACT

Nonspecific lipid transfer proteins (nsLTPs) play vital roles in lipid metabolism, cell apoptosis and biotic and abiotic stresses in plants. However, the distribution of nsLTPs in Arachis duranensis has not been fully characterized. In this study, we identified 64 nsLTP genes in A. duranensis (designated AdLTPs), which were classified into six subfamilies and randomly distributed along nine chromosomes. Tandem and segmental duplication events were detected in the evolution of AdLTPs. The Ks and ω values differed significantly between Types 1 and D subfamilies, and eight AdLTPs were under positive selection. The expression levels of AdLTPs were changed after salinity, PEG, low-temperature and ABA treatments. Three AdLTPs were associated with resistance to nematode infection, and DOF and WRI1 transcription factors may regulate the AdLTP response to nematode infection. Our results may provide valuable genomic information for the breeding of peanut cultivars that are resistant to biotic and abiotic stresses.


Subject(s)
Arachis/genetics , Carrier Proteins/genetics , Plant Proteins/genetics , Animals , Arachis/metabolism , Carrier Proteins/classification , Carrier Proteins/metabolism , Chromosome Mapping , Gene Duplication , Genes, Plant , Nematoda , Phylogeny , Plant Diseases/parasitology , Plant Proteins/classification , Plant Proteins/metabolism , Stress, Physiological
20.
Allergy ; 75(12): 3228-3236, 2020 12.
Article in English | MEDLINE | ID: mdl-32535938

ABSTRACT

BACKGROUND: Patients with peach allergy due to nsLTP sensitization constitute a heterogeneous group in terms of sensitization profile and severity. This could be due to the presence of additional allergies to pollens. The aim of this study was to analyse the clinical characteristics, sensitization profile and severity of reactions in peach-allergic patients sensitized to nsLTP from two Mediterranean areas with different pollen exposure. METHODS: Patients with diagnosis of LTP allergy from the Allergy Unit of Hospital Regional Universitario de Malaga (HRUM) and Hospital Clinic de Barcelona (HCB) were prospectively included and classified into two groups; (a) LTP-monoallergic: those that presented reaction only with peach and (b) LTP-Allergy: those that presented reaction with peach and at least another plant-food containing LTP. RESULTS: A total of 252 patients were included, 235 (93.2%) had LTP-syndrome and 17 (6.8%) were LTP-monoallergic. We found a higher percentage of anaphylaxis and delayed onset of symptoms in the LTP-monoallergic group (P = .02 and P = .04, respectively). Moreover, anaphylaxis was less frequent in patients with profilin sensitization (P = .03). The comparison of patients' data from HRUM with data from HCB showed differences in sensitization to olive tree pollen and profilin (P = .01 and P = .001, respectively). CONCLUSION: This study was undertaken to characterize two large group of subjects from to two regions with differing exposures to pollen. We found that more than 90% of peach-allergic patients in both populations evolved to LTP-Allergy and showed an early onset. Profilin sensitization could be more useful as a severity biomarker than the number of nsLTP, aeroallergen sensitizations or sIgE levels. This could provide clues regarding sensitization and severity patterns that might be relevant in other geographical areas.


Subject(s)
Food Hypersensitivity , Prunus persica , Allergens , Antigens, Plant , Biomarkers , Carrier Proteins , Cross Reactions , Food Hypersensitivity/diagnosis , Food Hypersensitivity/epidemiology , Humans , Plant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL