Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Sci Total Environ ; 928: 172456, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38636864

ABSTRACT

Oil palm plantations can impact hydrological processes in many tropical watersheds. The rapid conversion of tropical rainforests for commercial operations in recent decades has been associated with water scarcity, flooding, and polluted rivers. However, this widespread and emerging issue is less studied and underreported due to limited data availability, modeling complexity, and the remote nature of these landscapes. Ecohydrologic modeling enables us to investigate changes in watershed conditions caused by large-scale land cover changes from plantations. This study examines the impact of oil plantations on water quantity and quality using the SWAT+ model in the Kais River Watershed, West Papua, Indonesia. The objective is to assess the hydrological changes concerning land cover conversion to oil palm plantations. Results show that establishing oil palm plantations increased surface runoff by 21 %, and sediment yields rose by 16.9 % compared to the baseline. There was also a significant increase of 78 % in mean annual total nitrogen and 144 % in total phosphorous after the plantations' establishment. The results show that forest conversion to oil palm plantations in the Kais River watershed is a primary driver of change in hydrological regimes, resulting in the deterioration of water quality. There is a need for conservation strategies to mitigate the impacts of significant landscape changes in watershed ecosystems.

2.
Curr Biol ; 34(2): 410-416.e4, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38194972

ABSTRACT

Infant survival is a major determinant of individual fitness and constitutes a crucial factor in shaping species' ability to maintain viable populations in changing environments.1 Early adverse conditions, such as maternal loss, social isolation, and ecological hazards, have been associated with reduced rates of infant survivorship in wild primates.2,3,4 Agricultural landscapes increasingly replacing natural forest habitats may additionally threaten the survival of infants through exposure to novel predators,5 human-wildlife conflicts,6,7 or the use of harmful chemicals.8,9 Here, we investigated potential links between agricultural habitat use and high infant mortality in wild southern pig-tailed macaques (Macaca nemestrina) inhabiting a mosaic landscape of rainforest and oil palm plantation in Peninsular Malaysia. Longitudinal data revealed that 57% of all infants born during the study period (2014-2023) died before the age of 1 year, far exceeding mortality rates reported for other wild primates.10,11,12,13,14 Importantly, prolonged time spent in the plantation during infancy decreased the likelihood of infant survival by 3-fold, likely caused by increased exposure to the threats inherent to this environment. Further, mortality risk was elevated for infants born to primiparous mothers and predicted by prolonged maternal interbirth intervals, suggesting potential long-term effects attributed to the uptake and/or accumulation of pesticides in mothers' bodies.15,16,17 Indeed, existing literature reports that pesticides may cross the placental barrier, thus impacting fetal development during pregnancy.18,19,20 Our findings emphasize the importance of minimizing anthropogenic threats to wildlife in agricultural landscapes by establishing environmentally friendly cultivation practices that can sustain wildlife populations in the long term.


Subject(s)
Endangered Species , Pesticides , Humans , Animals , Female , Pregnancy , Survivorship , Conservation of Natural Resources , Placenta , Ecosystem , Primates , Animals, Wild , Macaca nemestrina
3.
Trop Life Sci Res ; 34(2): 131-160, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38144373

ABSTRACT

It is well established that oil palm is one of the most efficient and productive oil crops. However, oil palm agriculture is also one of the threats to tropical biodiversity. This study aims to investigate how set-aside areas in an oil palm plantation affect bird biodiversity. The research area includes two set-asides areas: peat swamp forest and riparian reserves and two oil palm sites adjacent to reserved forest sites. A total of 3,074 birds comprising 100 species from 34 families were observed in an oil palm plantation landscape on peatland located in the northern part of Borneo, Sarawak, Malaysia. Results showed that efforts by set-asides forest areas in large scale of oil palm dominated landscapes supported distinct bird species richness. High percentage of the canopies and shrub covers had a positive effect on bird species richness at area between oil palm and peat swamp forest. Herbaceous cover with height less than 1 m influenced the abundance of birds in the plantation closed to the peat swamp forest. The set-aside areas in oil palm plantations are essential in supporting bird's refuges and should be part of oil palm landscape management to improve biodiversity conservation. Thus, provided the forest set-aside areas are large enough and risks to biodiversity and habitat are successfully managed, oil palm can play an important role in biodiversity conservation.

4.
Bull Entomol Res ; 113(4): 456-468, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37183666

ABSTRACT

Mosquito surveillance programmes are essential to assess the risks of local vector-borne disease outbreaks as well as for early detection of mosquito invasion events. Surveys are usually performed with traditional sampling tools (i.e., ovitraps and dipping method for immature stages or light or decoy traps for adults). Over the past decade, numerous studies have highlighted that environmental DNA (eDNA) sampling can enhance invertebrate species detection and provide community composition metrics. However, the usefulness of eDNA for detection of mosquito species has, to date, been largely neglected. Here, we sampled water from potential larval breeding sites along a gradient of anthropogenic perturbations, from the core of an oil palm plantation to the rainforest on São Tomé Island (Gulf of Guinea, Africa). We showed that (i) species of mosquitoes could be detected via metabarcoding mostly when larvae were visible, (ii) larvae species richness was greater using eDNA than visual identification and (iii) new mosquito species were also detected by the eDNA approach. We provide a critical discussion of the pros and cons of eDNA metabarcoding for monitoring mosquito species diversity and recommendations for future research directions that could facilitate the adoption of eDNA as a tool for assessing insect vector communities.


Subject(s)
Culicidae , DNA, Environmental , Animals , Culicidae/genetics , DNA Barcoding, Taxonomic/methods , Mosquito Vectors , Larva/genetics , Biodiversity
5.
Sci Total Environ ; 859(Pt 2): 160319, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36410477

ABSTRACT

Land conversion from natural forests to plantations (e.g., oil palm) in Southeast Asia is one of the most intensive land-use changes occurring worldwide. To clarify the effects of oil palm plantations on water quality, we conducted multipoint river and stream water sampling in peninsular Malaysia at the end of the rainy season over a 3-year period (2013-2015). We measured the major dissolved ions and stable isotope ratios of water (δ2H-H2O and δ18O-H2O) and nitrate (δ15N-NO3- and δ18O-NO3-) in water from the upper streams in mountainous forests to the midstream areas of two major rivers in peninsular Malaysia. The electrical conductivity increased, and the d-excess value (as an index of the degree of evaporation) decreased with increasing distance from the headwaters, suggesting the effect of evaporative enrichment and the addition of pollutants. We separated the sampling points into four groups (G1-G4) through cluster analysis of the water quality data. From the land use/land cover (LULC) classification maps developed from satellite images and local information, we found that G1 and G2 mainly consisted of sampling points in forested areas, while G3 and G4 were located in oil-palm-affected areas. The concentrations of major ions were higher in the oil palm areas, indicating the effects of fertilizer and limestone (i.e., pH adjustment) applications. The dissolved inorganic nitrogen concentration did not differ among the groups, but the dissolved organic carbon, total dissolved nitrogen, and δ15N-NO3- were higher in the oil palm area than in the forested area. Although the nitrogen concentration was low, even in the oil palm area, the significantly higher δ15N-NO3- in the oil palm area indicated substantial denitrification. This implies that denitrification contributed to the lowering of the NO3- concentration in rivers in the oil palm area, in addition to nutrient uptake by oil palm trees.


Subject(s)
Nitrates , Water Pollutants, Chemical , Nitrates/analysis , Water Quality , Forests , Nitrogen/analysis , Isotopes/analysis , Nitrogen Isotopes/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
6.
Ecotoxicology ; 31(6): 976-997, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35699849

ABSTRACT

Anticoagulant rodenticides (ARs) are used worldwide for the control of rodent pests and are the main method of control of rat pest populations in agricultural areas. The main aim of this review is to discuss the risk of ARs to non-target wildlife in oil palm areas in Southeast Asia, mainly Indonesia and Malaysia. We discussed AR use in oil palm areas and toxicities of ARs on target and non-target animals. We also reviewed published literature on wildlife species reported in oil palm areas in Southeast Asia and utilizing this information, we assessed the hazard risk of ARs to non-target wildlife in oil palm plantations. ARs are a secondary exposure hazard to rodent-consuming mammalian carnivores, such as leopard cats and civets, and rodent-consuming raptors, such as barn owls. Consumption of dead poisoned prey puts scavengers, such as water monitors, at high risk for AR exposure. Domestic livestock and granivorous birds are at high risk for AR exposure via primary exposure to toxic bait, while omnivores such as macaques and wild pigs are at moderate risk for both primary and secondary exposure to ARs. The effects of ARs on barn owls have been well studied in the field and in laboratory secondary toxicity studies. Thus, the nest-box occupancy and reproductive parameters of local barn owl populations can be monitored as an indicator of the AR exposure level in the area. CLINICAL TRIALS REGISTRATION: No clinical trials were involved in this study.


Subject(s)
Raptors , Rodenticides , Strigiformes , Animals , Animals, Wild , Anticoagulants/toxicity , Asia, Southeastern , Mammals , Rats , Rodenticides/toxicity
7.
Data Brief ; 43: 108329, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35677627

ABSTRACT

Oil palm plantations are the fundamental units in a palm supply chain. The fresh fruit bunch (FFB) yield at a plantation varies based on the maturity (age) of the oil palm trees. Failure to account for the maturity can lead to a demand-supply mismatch. To address this issue, Rajakal et al. (2021) have developed a mathematical optimisation model to determine the optimal maturity of the plantations needed to meet the crude palm oil demand. This article presents the data set on the FFB production and land use change (LUC) emissions at the plantations. The model was coded and solved in LINGO 18.0. The data can be used for further investigation in optimising other related activities in a palm supply chain.

8.
Environ Res ; 207: 112216, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34656630

ABSTRACT

Patterns and practices of agricultural expansion threaten the persistence of global biodiversity. Wildlife species surviving large-scale land use changes can be exposed to a suite of contaminants that may deleteriously impact their health. There is a paucity of data concerning the ecotoxicological impacts associated with the global palm oil (Elaeis guineensis) industry. We sampled wild Malay civets (Viverra tangalunga) across a patchwork landscape degraded by oil palm agriculture in Sabah, Malaysian Borneo. Using a non-lethal methodology, we quantified the levels of 13 essential and non-essential metals within the hair of this adaptable small carnivore. We robustly assessed the biological and environmental drivers of intrapopulation variation in measured levels. Metal concentrations were associated with civet age, weight, proximity to a tributary, and access to oxbow lakes. In a targeted case study, the hair metal profiles of 16 GPS-collared male civets with differing space use patterns were contrasted. Civets that entered oil palm plantations expressed elevated aluminium, cadmium, and lead, and lower mercury hair concentrations compared to civets that remained exclusively within the forest. Finally, we paired hair metal concentrations with 34 blood-based health markers to evaluate the possible sub-lethal physiological effects associated with varied hair metal levels. Our multi-facetted approach establishes these adaptable carnivores as indicator species within an extensively altered ecosystem, and provides critical and timely evidence for future studies.


Subject(s)
Conservation of Natural Resources , Ecosystem , Agriculture , Biodiversity , Forests
9.
Sci Total Environ ; 800: 149425, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34399350

ABSTRACT

The promotion of biodiesel from palm oil for on-road transportation during the past decade has led to the expansion of oil palm plantations, including in Thailand. Hence, it is necessary to study the effects of land use for oil palm and the linkage between each impact for a holistic understanding. Besides, the consideration of various impact aspects in terms of a nexus is necessary for suggesting appropriate practices or zoning, because a single impact evaluation may not be comprehensive. Therefore, this study assessed the land use impacts from oil palm plantations in the five regions of Thailand. The land use impacts studied were greenhouse gas emissions, water scarcity, soil quality, and biodiversity. The assessment indicated the southern region to be the most suitable for further expansion of oil palm plantations, which is consistent with the government recommendation. However, if the expansion of oil palm in other regions is necessary, the central region is recommended because of available irrigation supply and better soil fertility compared to other regions. This study found that the land use impacts resulted from unsuitable management of oil palm plantations in the past. The increase of greenhouse gas emissions was mainly due to the excessive use of chemical fertilizers for soil quality improvement and water pumping from irrigation water consumption. Meanwhile, the deficiency of water availability led to the degradation of biodiversity and ecosystems. To decrease the land use impacts in the long run, suitable practice is important for sustainable oil palm plantations.


Subject(s)
Ecosystem , Water , Biodiversity , Palm Oil , Thailand
10.
Pak J Biol Sci ; 24(1): 25-34, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33683028

ABSTRACT

BACKGROUND AND OBJECTIVE: Predatory arthropods may play a crucial role in decreasing the pest population that causes a significant loss in oil palm production. In this study, we investigated the diversity of predatory arthropods and their abundance on immature and mature oil palm plantation grown in Aceh Tamiang, Sumatra, Indonesia. MATERIALS AND METHODS: Arthropod predators were collected by using light trap, yellow-pan trap and pitfall trap that were placed on an immature and mature oil palm plantation. Specimens were sorted and identified in the Laboratory. RESULTS: The results showed that there were 674 individuals arthropod predators (insects and spiders) consisted of 7 orders, 22 families and 37 morphospecies collected in the immature plantation. While in mature plantation, arthropod predators found were 740 individuals consisted of 6 orders 23 families and 42 morphospecies. Ants (Hymenoptera: Formicidae) dominated other families regarding morphospecies and individual numbers. There was no significant difference in term of species richness and abundance of predators between both phases of the plantation which implied that the two plantations hosted a similar composition and abundance of predators. The diversity indices of predators calculated in both plantations showed that the predators were categorized as middle level of diversity and middle level of individual distribution, However, the community is unstable. CONCLUSION: Our results suggested that predatory predators were present in similar structure in both phases of oil palm plantations. Efforts to conserve them are needed to enhance their performance as part of a sustainable and environmentally friendly method for controlling pests in oil palm plantation.


Subject(s)
Arecaceae/parasitology , Arthropods/physiology , Behavior, Animal , Crops, Agricultural/parasitology , Pest Control, Biological , Predatory Behavior , Animals , Arecaceae/growth & development , Arthropods/classification , Crops, Agricultural/growth & development , Ecosystem , Indonesia
11.
Glob Chang Biol ; 27(11): 2361-2376, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33528067

ABSTRACT

Need for regional economic development and global demand for agro-industrial commodities have resulted in large-scale conversion of forested landscapes to industrial agriculture across South East Asia. However, net emissions of CO2 from tropical peatland conversions may be significant and remain poorly quantified, resulting in controversy around the magnitude of carbon release following conversion. Here we present long-term, whole ecosystem monitoring of carbon exchange from two oil palm plantations on converted tropical peat swamp forest. Our sites compare a newly converted oil palm plantation (OPnew) to a mature oil palm plantation (OPmature) and combine them in the context of existing emission factors. Mean annual net emission (NEE) of CO2 measured at OPnew during the conversion period (137.8 Mg CO2  ha-1  year-1 ) was an order of magnitude lower during the measurement period at OPmature (17.5 Mg CO2  ha-1  year-1 ). However, mean water table depth (WTD) was shallower (0.26 m) than a typical drainage target of 0.6 m suggesting our emissions may be a conservative estimate for mature plantations, mean WTD at OPnew was more typical at 0.54 m. Reductions in net emissions were primarily driven by increasing biomass accumulation into highly productive palms. Further analysis suggested annual peat carbon losses of 24.9 Mg CO2 -C ha-1  year-1 over the first 6 years, lower than previous estimates for this early period from subsidence studies, losses reduced to 12.8 Mg CO2 -C ha-1  year-1 in the later, mature phase. Despite reductions in NEE and carbon loss over time, the system remained a large net source of carbon to the atmosphere after 12 years with the remaining 8 years of a typical plantation's rotation unlikely to recoup losses. These results emphasize the need for effective protection of tropical peatlands globally and strengthening of legislative enforcement where moratoria on peatland conversion already exist.


Subject(s)
Carbon , Soil , Asia, Southeastern , Carbon/analysis , Ecosystem , Forests , Wetlands
12.
Article in English | WPRIM (Western Pacific) | ID: wpr-964055

ABSTRACT

@#Soil sample is one of the important evidence that can be found in crime scene. Unknown soil sample can be analysed and compared with reference sample in order to determine the origin as its physical and chemical components possess unique characteristics. The purpose of this study is to determine the physical and chemical characteristics of soil from oil palm plantations in Perak, Malaysia to assist forensic investigation. Total of 97 topsoil samples were collected from three different oil palm plantations in Perak. Particle size distribution was obtained using dry sieving technique and colour of soil sample was examined under three conditions that are dry, moist and ashed. Soil pH was measured using pH meter and percentage of composition of soil organic matter (SOM) was determined by weighing the sample before and after ignition. Result showed that the composition of particle size <0.18mm was within the range of 5.57-21.11% whereas for particle size between 0.18mm - 0.6mm was within 31.62 - 52.96% and 25.78-66.86% for particle size >0.6mm. The color mode of soil after oven dried, moistened and ashed was greyish brown (10YR 5/2), very dark greyish brown (10YR 3/2) and light yellowish brown (10YR 6/4) respectively. Soil pH was in the range of 5.79 – 6.70. The percentage of SOM was between 3.29 - 20.48%. The physical and chemical characteristics of soil analysed in this study from three different locations of oil palm plantations varied and it is possible to discriminate these locations based on the analysis highlighted in this study.

13.
Biomolecules ; 10(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708824

ABSTRACT

A field trial experiment was conducted to investigate the degradation of metsulfuron-methyl at two application dosages, 15 g a.i/ha and 30 g a.i/ha, at an oil palm plantation. Soil samples were collected at ‒1, 0, 1, 3, 7, 14, and 21 days after treatment (DAT) at the following depths: 0-10, 10-20, 20-30, 30-40, and 40-50 cm. The results showed rapid degradation of metsulfuron-methyl in the soil, with calculated half-life (t½) values ranging from 6.3 and 7.9 days. The rates of degradation of metsulfuron-methyl followed first-order reaction kinetics (R2 = 0.91-0.92). At the spray dosage of 15 g a.i/ha, metsulfuron-methyl residue was detected at up to 20-30 cm soil depth, at 3.56% to 1.78% at 3 and 7 DAT, respectively. Doubling the dosage to 30 g a.i/ha increased the metsulfuron-methyl residue in up to 30-40 cm soil depth at 3, 7, and 14 DAT, with concentrations ranging from 1.90% to 1.74%. These findings suggest that metsulfuron-methyl has a low impact on the accumulation of the residues in the soil at application dosages of 15 g a.i/ha and 30 g a.i/ha, due to rapid degradation, and the half-life was found to be 6.3 to 7.9 days.


Subject(s)
Arylsulfonates/analysis , Herbicides/analysis , Soil Pollutants/analysis , Arecaceae/growth & development , Crop Production , Kinetics , Palm Oil/chemistry , Soil/chemistry
14.
Data Brief ; 30: 105567, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32382599

ABSTRACT

This data article is about bats observed from fragmented forest understories interspaced by agricultural plantations, utility corridors, and man-made structures within rural areas of Setiu (Bukit Kesing Forest Reserve and Ladang Tayor TDM) and Hulu Terengganu (Pengkalan Utama and Sungai Buweh, Kenyir) that are situated in Terengganu state, Peninsular Malaysia. Surveys were conducted from October 2018 until January 2019. These bats were captured using harp traps and mist nets that were set 30 m apart across flyways, streams, rivers and less cluttered trees in the 50 m transect zones (identified at each site). All animals captured were distinguished by morphology and released at the same location it was caught. The data comprise of 15 species of bats from four family groups, namely Hipposideridae, Pteropodidae, Rhinolophidae and Vespertilionidae. The data were interpreted into weight-forearm length (W-FA) to inform about bats Body Condition Index (-0.25 to 0.25).

15.
Sci Total Environ ; 723: 137988, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32392686

ABSTRACT

Tropical peatland degradation due to oil palm plantation development has reduced peat's ability to naturally regulate floods. In turn, more severe and frequent flooding on peatlands could seriously impair plantation productivity. Understanding the roles of peatland ecosystems in regulating floods has become essential given the continued pressure on land resources, especially in Southeast Asia. However, the limited knowledge on this topic has resulted in the oversimplifications of the relationships between floods, commercial plantations and peatland sustainability, creating major disagreement among policymakers at different levels in governments, companies, NGOs and society. Hence, this study identifies whether flood policies are integrated within peatland management through a qualitative policy analysis of publicly available papers, government reports, and other official documents that discuss flooding, and/or more in general, hydrology in peatlands. Document analysis was then triangulated with data obtained from several semi-structured discussions. The analysis indicates that the industry on peatlands and the peatland's environmental sustainability could be threatened by increased flooding. We show that, in spite of this, flood policies in SE Asian countries like Malaysia and Indonesia have not been well-integrated into peatland management. We also discuss how the countries could move forward to overcome this problem.

16.
Rev. bras. entomol ; 63(1): 6-8, Jan.-Mar. 2019. graf
Article in English | LILACS | ID: biblio-1045545

ABSTRACT

ABSTRACT The oil palm is an economically important crop cultivated in the North of Brazil. Damage caused by insects is one of the main causes of reduced productivity for the oil palm. Before this research, only the beetles of the family Curculionidae were considered to be oil palm pests in Brazil. However, for the first time, we report on the damage caused by a giant rhinoceros beetle to oil palm plantations in Pará, Brazil. The beetle was identified as Golofa claviger (Linnaeus, 1771), which has a single record in Brazil (Pará) but is widely distributed in South America. The species occurs in an unprecedentedly high abundance of local specimens. The attacks are concentrated on the central cluster of young palms. Feeding behavior is identified as the main cause of the damage as the beetles use their mouthparts to rip the plant tissues, causing wedge-shaped cuts on young fronds that have not yet unfurled. After an attack, the leaflets of the unfurled fronds are partially destroyed.

17.
Front Microbiol ; 9: 2381, 2018.
Article in English | MEDLINE | ID: mdl-30364106

ABSTRACT

Palm oil production in Indonesia increased constantly over the last decades, which led to massive deforestation, especially on Sumatra island. The ongoing conversion of rainforest to agricultural systems results in high biodiversity loss. Here, we present the first RNA-based study on the effects of rainforest transformation to rubber and oil palm plantations in Indonesia for the active soil bacterial communities. For this purpose, bacterial communities of three different converted systems (jungle rubber, rubber plantation, and oil palm plantation) were studied in two landscapes with rainforest as reference by RT-PCR amplicon-based analysis of 16S rRNA gene transcripts. Active soil bacterial communities were dominated by Frankiales (Actinobacteria), subgroup 2 of the Acidobacteria and Alphaproteobacteria (mainly Rhizobiales and Rhodospirillales). Community composition differed significantly between the converted land use systems and rainforest reference sites. Alphaproteobacteria decreased significantly in oil palm samples compared to rainforest samples. In contrast, relative abundances of taxa within the Acidobacteria increased. Most important abiotic drivers for shaping soil bacterial communities were pH, calcium concentration, base saturation and C:N ratio. Indicator species analysis showed distinct association patterns for the analyzed land use systems. Nitrogen-fixing taxa including members of Rhizobiales and Rhodospirillales were associated with rainforest soils while nitrifiers and heat-resistant taxa including members of Actinobacteria were associated with oil palm soils. Predicted metabolic profiles revealed that the relative abundances of genes associated with fixation of nitrogen significantly decreased in plantation soils. Furthermore, predicted gene abundances regarding motility, competition or gene transfer ability indicated rainforest conversion-induced changes as well.

18.
Glob Chang Biol ; 24(11): 5518-5533, 2018 11.
Article in English | MEDLINE | ID: mdl-30007100

ABSTRACT

The tropical peat swamp forests of South-East Asia are being rapidly converted to agricultural plantations of oil palm and Acacia creating a significant global "hot-spot" for CO2 emissions. However, the effect of this major perturbation has yet to be quantified in terms of global warming potential (GWP) and the Earth's radiative budget. We used a GWP analysis and an impulse-response model of radiative forcing to quantify the climate forcing of this shift from a long-term carbon sink to a net source of greenhouse gases (CO2 and CH4 ). In the GWP analysis, five tropical peatlands were sinks in terms of their CO2 equivalent fluxes while they remained undisturbed. However, their drainage and conversion to oil palm and Acacia plantations produced a dramatic shift to very strong net CO2 -equivalent sources. The induced losses of peat carbon are ~20× greater than the natural CO2 sequestration rates. In contrast, a radiative forcing model indicates that the magnitude of this shift from a net cooling to warming effect is ultimately related to the size of an individual peatland's carbon pool. The continuous accumulation of carbon in pristine tropical peatlands produced a progressively negative radiative forcing (i.e., cooling) that ranged from -2.1 to -6.7 nW/m2 per hectare peatland by 2010 CE, referenced to zero at the time of peat initiation. Peatland conversion to plantations leads to an immediate shift from negative to positive trend in radiative forcing (i.e., warming). If drainage persists, peak warming ranges from +3.3 to +8.7 nW/m2 per hectare of drained peatland. More importantly, this net warming impact on the Earth's radiation budget will persist for centuries to millennia after all the peat has been oxidized to CO2 . This previously unreported and undesirable impact on the Earth's radiative balance provides a scientific rationale for conserving tropical peatlands in their pristine state.


Subject(s)
Agriculture , Carbon Cycle , Carbon Dioxide/analysis , Global Warming , Wetlands , Conservation of Natural Resources
19.
Microb Ecol ; 75(2): 459-467, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28779295

ABSTRACT

Decline in forest productivity due to forest conversion is defining the Bornean landscape. Responses of bacterial communities due to land-use changes are vital and could define our understanding of ecosystem functions. This study reports the changes in bacterial community structure in organic soil (0-5 cm; O-Horizon) and organic-mineral soil (5-15 cm; A-Horizon) across Maliau Basin Conservation Area old growth forest (MBOG), Fragment E logged forest (FELF) located in Kalabakan Forest Reserve to Benta Wawasan oil palm plantation (BWOP) using two-step PCR amplicon analysis of bacteria DNA on Illumina Miseq next generation sequencing. A total of 30 soil samples yielded 893,752-OTU reads at ≥97% similarity from 5,446,512 good quality sequences. Soil from BWOP plantation showed highest unshared OTUs for organic (49.2%) and organic-mineral (50.9%) soil. MBOG soil showed a drop in unshared OTUs between organic (48.6%) and organic-mineral (33.9%). At phylum level, Proteobacteria dominated MBOG but shifted to Actinobacteria in logged and plantation soil. Present findings also indicated that only FELF exhibited change in bacterial communities along the soil depth, moving from the organic to the organic-mineral layer. Both layers of BWOP plantation soils deviated from other forests' soil in ß-diversity analysis. To our knowledge, this is the first report on transitions of bacterial community structures with different soil horizons in the tropical rainforest including Borneo, Sabah. Borneo tropical soils form a large reservoir for soil bacteria and future exploration is needed for fully understanding the diversity structure and their bacterial functional properties.


Subject(s)
Bacteria/isolation & purification , Soil Microbiology , Agriculture , Bacteria/classification , Bacteria/genetics , Biodiversity , Ecosystem , Forests , Malaysia , Phylogeny , Soil/chemistry
20.
Sci Total Environ ; 587-588: 381-388, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28242223

ABSTRACT

To understand the variations in the decomposability of tropical peat soil following deforestation for an oil palm plantation, a field incubation experiment was conducted in Sarawak, Malaysia. Peat soils collected from three types of primary forest, namely Mixed Peat Swamp (MPS; Gonystylus-Dactylocladus-Neoscrotechinia association), Alan Batu (ABt; Shorea albida-Gonstylus-Strenonurus association), and Alan Bunga (ABg; Shorea albida association), were packed in polyvinyl chloride pipes and installed in an oil palm plantation. Carbon dioxide (CO2) and methane (CH4) fluxes from soil were monthly measured for 3years. Environmental variables including soil temperature, soil moisture content, and groundwater table were also monitored. The pH, loss on ignition, and total carbon (C) content were similar among the three soils, while total N content was larger in the MPS than in the ABg soils. Based on 13C nuclear magnetic resonance (NMR) spectroscopy, C composition of the MPS and ABg soils was characterized by the largest proportion of C present as alkyl C and O-alkyl C, respectively. The C composition of the ABt soil was intermediate between the MPS and ABg soils. The CO2 fluxes from the three soils ranged from 78 to 625mgCm-2h-1 with a negative correlation to groundwater level. The CH4 fluxes ranged from -67 to 653µgCm-2h-1. Both total CO2 and CH4 fluxes were larger in the order ABg>ABt>MPS (P<0.05). Annual rate of peat decomposition as was estimated from cumulative C loss differed up to 2 times, and the rate constant in exponential decay model was 0.033y-1 for the MPS soil and 0.066y-1 for the ABg soil. The field incubation results of the three forest peat soils seem to reflect the difference in the labile organic matter content, represented by polysaccharides.

SELECTION OF CITATIONS
SEARCH DETAIL