Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
J Neurosci Methods ; 363: 109345, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34464651

ABSTRACT

BACKGROUND: Ethanol exposure at early ontogeny promotes further predisposition to consume the drug. Operant conditioning allows motivational alcohol properties to be assessed. To date, the operant conditioning approach used during infancy consisted in paired subjects being trained to learn an operant response, using simultaneously a yoked partner, which received reinforcer solution as a result of a paired animal instrumental response (OYS). NEW METHOD: In our study, we attempted to evaluate ethanol reinforcing effects during PDs 15-18 in an operant conditioning schedule with a stimulus discrimination procedure (OSD), as an alternative control learning. This new proposal includes a single subject, who has to choose between an S+ nose-poke hole, which delivers the reinforcer into the mouth, or an S- nose-poke hole with no reinforcement effect. RESULTS: The OSD results seemed to be more reliable than those obtained using the OYS procedure, since some data appeared to be more robust when using a yoked nose-poke hole than when employing a yoked subject, such as in control learning. Consequently, OSD has the following advantages compared to the OYS procedure: a) the operant response learned is controlled by the overall behavior of the same subject, resulting in a relatively clearer data; b) a yoked animal is not necessary, thereby reducing the number of rats used in the operant conditioning procedure. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: A novel technique of operant conditioning adapted to infancy was developed by training animals to emit a particular response to gain access to alcohol solution as a reinforcer.


Subject(s)
Conditioning, Operant , Reinforcement, Psychology , Animals , Animals, Newborn , Ethanol , Rats , Rats, Sprague-Dawley
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(7): e8303, 2019. graf
Article in English | LILACS | ID: biblio-1011594

ABSTRACT

Reinforcement omission effects (ROEs) are characterized by higher response rates after reinforcement omission than after reinforcement delivery. This pattern of behavior is interpreted in terms of motivational and attentional processes. Recent studies from our laboratory have shown that the amygdala, nucleus accumbens, and medial prefrontal cortex are involved in ROE modulation. Also, the literature has demonstrated a role of other areas such as substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) in processes related to surprising events, such as prediction error and presentation or omission of an event (exteroceptive stimulus and reinforcement). Since these structures send projections to areas related to ROE modulation such as the amygdala, nucleus accumbens, and prefrontal cortex, the objective of the present study was to determine whether the SNc and VTA also integrate the circuit involved in ROE modulation. Rats were trained on a fixed-interval 12 s with limited-hold 6 s signaled schedule of reinforcement (Pre-lesion training). After acquisition of stable performance, the rats received bilateral neurotoxic lesions of the SNc (Experiment 1) and VTA (Experiment 2). Following postoperative recovery, the rats were submitted to two refresher sessions (Post-lesion training). Subsequently, the training was changed from a 100 to a 50% schedule of reinforcement (Post-lesion testing). In both experiments, the results showed that there was no difference in performance between sham rats and rats with bilateral lesions of the SNc or the VTA.


Subject(s)
Animals , Male , Rats , Reinforcement, Psychology , Behavior, Animal/physiology , Substantia Nigra/injuries , Ventral Tegmental Area/injuries , Conditioning, Operant/physiology , Pars Compacta/injuries , Substantia Nigra/physiopathology , Rats, Wistar , Ventral Tegmental Area/physiopathology , Pars Compacta/physiopathology , Learning/physiology
3.
Psychol. neurosci. (Impr.) ; 6(3): 391-396, July-Dec. 2013. ilus, graf
Article in English | LILACS | ID: lil-703102

ABSTRACT

The reinforcement omission effect (ROE), reflected by response rates that are higher after reinforcement omission than after reinforcement delivery, has been attributed to both motivational and attentional consequences of the surprising reinforcement omission. These processes depend on the operation of separate amygdala areas and their connections with other brain systems. The interaction between the amygdala and orbitofrontal cortex has been suggested to be important in the modulation of motivational processes. The present study sought to verify whether the mechanisms involved in the ROE depend on the integrity of the orbitofrontal cortex. Prior to acquisition training, rats received bilateral excitotoxic lesions of the orbitofrontal cortex or sham lesions. Following postoperative recovery, the rats were trained on a fixed-interval 12 s limited-hold 6 s signaled schedule of reinforcement. After the acquisition of stable performance, the training was changed from a 100% to 50% schedule of reinforcement. The results showed that rats in both groups exhibited the ROE, with no differences in performance between groups following nonreinforcement. These data do not support the hypothesis that the orbitofrontal cortex is included in the neural substrates related to ROE modulation. The results also showed no difference in response rates between groups in the periods that preceded and followed nonreinforcement. These findings confirm previous studies that showed that the ROE is not related to the facilitation of behavior induced by nonreinforcement...


Subject(s)
Humans , Cerebral Cortex , Craniocerebral Trauma , Reinforcement, Psychology , Rats, Wistar
4.
Behav Brain Res ; 252: 439-43, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23796973

ABSTRACT

The reinforcement omission effects (ROEs) have been attributed to both motivational and attentional consequences of the surprising reinforcement omission. Some studies have been showed amygdala is part of a circuit involved in the ROEs modulation. The view that amygdala lesions interfere with the ROEs is supported by evidence involving amygdala in responses correlated with motivational processes. These processes depend on the operation of separate amygdala areas and their connections with other brain systems. It has been suggested the interaction between the amygdala and the nucleus accumbens (NAC) is important to the modulation of motivational processes. Recent neuroimaging studies in human revealed reward delivery enhances activity of subcortical structures (NAC and amygdala), whereas reward omission reduces the activity in these same structures. The present study aimed to clarify whether the mechanisms related to ROEs depend on NAC. Prior to acquisition training, rats received bilateral excitotoxic lesions of NAC (NAC group) or sham lesions (Sham group). Following postoperative recovery, the rats were trained on a fixed-interval with limited hold signaled schedule of reinforcement. After acquisition of stable performance, the training was changed from 100% to 50% schedule of reinforcement. Both NAC and Sham groups presented the ROEs. However, after nonreinforcement, the response rates of the NAC group were lower than those registered in the Sham group. The performance of the NAC group decreased in the period following nonreinforcement when compared to the period preceding reinforcement omission. These findings suggest the NAC is part of the neural substrate involved in the ROEs modulation.


Subject(s)
Conditioning, Operant/physiology , Extinction, Psychological/physiology , Nucleus Accumbens/injuries , Reinforcement, Psychology , Analysis of Variance , Animals , Male , Nucleus Accumbens/physiology , Rats , Rats, Wistar , Reinforcement Schedule
5.
Psychol. Neurosci. (impr.) ; 6(3): 391-396, 2013. ilus, graf
Article in English | Index Psychology - journals | ID: psi-61612

ABSTRACT

The reinforcement omission effect (ROE), reflected by response rates that are higher after reinforcement omission than after reinforcement delivery, has been attributed to both motivational and attentional consequences of the surprising reinforcement omission. These processes depend on the operation of separate amygdala areas and their connections with other brain systems. The interaction between the amygdala and orbitofrontal cortex has been suggested to be important in the modulation of motivational processes. The present study sought to verify whether the mechanisms involved in the ROE depend on the integrity of the orbitofrontal cortex. Prior to acquisition training, rats received bilateral excitotoxic lesions of the orbitofrontal cortex or sham lesions. Following postoperative recovery, the rats were trained on a fixed-interval 12 s limited-hold 6 s signaled schedule of reinforcement. After the acquisition of stable performance, the training was changed from a 100% to 50% schedule of reinforcement. The results showed that rats in both groups exhibited the ROE, with no differences in performance between groups following nonreinforcement. These data do not support the hypothesis that the orbitofrontal cortex is included in the neural substrates related to ROE modulation. The results also showed no difference in response rates between groups in the periods that preceded and followed nonreinforcement. These findings confirm previous studies that showed that the ROE is not related to the facilitation of behavior induced by nonreinforcement.(AU)


Subject(s)
Cerebral Cortex , Reinforcement, Psychology , Craniocerebral Trauma , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL