Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Biomedicines ; 12(9)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39335633

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Despite new treatments, the HCC rate remains important, making it necessary to develop novel therapeutic strategies. Photodynamic therapy (PDT) using a Rose-Bengal (RB) photosensitizer (RB-PDT) could be a promising approach for liver tumor treatment. However, the lack of standardization in preclinical research and the diversity of illumination parameters used make comparison difficult across studies. This work presents and characterizes a novel illumination device based on one green light-emitting diode (CELL-LED-550/3) dedicated to an in vitro RB-PDT. The device was demonstrated to deliver a low average irradiance of 0.62 mW/cm2 over the 96 wells of a multi-well plate. Thermal characterization showed that illumination does not cause cell heating and can be performed inside an incubator, allowing a more rigorous assessment of cell viability after PDT. An in vitro cytotoxic study of the RB-PDT on an HCC cell line (HepG2) demonstrated that RB-PDT induces a significant decrease in cell viability: almost all the cells died after a light dose irradiation of 0.3 J/cm2 using 75 µM of RB (<10% of viability). In conclusion, the RB-PDT could be a therapeutic option to treat unresectable liver lesions and subclinical disease remaining in the post-resection tumor surgical margin.

2.
Sensors (Basel) ; 24(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39338725

ABSTRACT

This article presents a comprehensive study on the impact of irradiation optical fiber cores with a femtosecond-pulsed laser, operating at a wavelength of 1030 nm, on the signal amplitude in Rayleigh scattering-based optical frequency domain reflectometry (OFDR). The experimental study involves two fibers with significantly different levels of germanium doping: the standard single-mode fiber (SMF-28) and the ultra-high numerical aperture fiber (UHNA7). The research findings reveal distinct characteristics of reflected and scattered light amplitudes as a function of pulse energy. Although different amplitude changes are observed for the examined fibers, both can yield an enhancement of amplitude. The paper further investigates the effect of fiber Bragg grating inscription on the overall amplitude of reflected light. The insights gained from this study could be beneficial for controlling the enhancement of light scattering amplitude in fibers with low or high levels of germanium doping.

3.
Neurophotonics ; 11(Suppl 1): S11513, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39119220

ABSTRACT

Within the realm of optical neural interfaces, the exploration of plasmonic resonances to interact with neural cells has captured increasing attention among the neuroscience community. The interplay of light with conduction electrons in nanometer-sized metallic nanostructures can induce plasmonic resonances, showcasing a versatile capability to both sense and trigger cellular events. We describe the perspective of generating propagating or localized surface plasmon polaritons on the tip of an optical neural implant, widening the possibility for neuroscience labs to explore the potential of plasmonic neural interfaces.

4.
Sensors (Basel) ; 24(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39204908

ABSTRACT

Defects occurring during the welding process of metal structural components directly affect their overall strength, which is crucial to the load-bearing capacity and durability of the components. This signifies the importance of accurate measurement and assessment of weld strength. However, traditional non-destructive testing methods such as ultrasonic and non-contact camera inspection have certain technical limitations. In response to these issues, this paper analyzes the detection principle of weld strength, revealing that weld defects reduce the effective area of the structural bearing section and cause stress concentration around them. Through repeated experimental data analysis of samples, strain distribution data along the one-dimensional direction caused by defects such as slag inclusion and porosity were obtained. Experimental results show that this method can identify defect types in welds, including slag inclusion, porosity, and unevenness, and accurately measure the location and size of defects with a precision of 0.64 mm, achieving qualitative analysis of weld defects. Additionally, by deploying distributed optical fiber sensors (DOFS) at different vertical distances along the weld direction, the propagation law of stress induced by different types of weld defects on samples was thoroughly analyzed. This further validates the advantages of this method in weld strength detection, including high spatial resolution, high sensitivity, and non-destructive measurement.

5.
Rock Mech Rock Eng ; 57(8): 5371-5395, 2024.
Article in English | MEDLINE | ID: mdl-39171322

ABSTRACT

We combined novel laboratory techniques and numerical modeling to investigate (a)seismic preparatory processes associated with deformation localization during a triaxial failure test on a dry sample of Berea sandstone. Laboratory observations were quantified by measuring strain localization on the sample surface with a distributed strain sensing (DSS) array, utilizing optical fibers, in conjunction with both passive and active acoustic emission (AE) techniques. A physics-based computational model was subsequently employed to understand the underlying physics of these observations and to establish a spatio-temporal correlation between the laboratory and modeling results. These simulations revealed three distinct stages of preparatory processes: (i) highly dissipative fronts propagated towards the middle of the sample correlating with the observed acoustic emission locations; (ii) dissipative regions were individuated in the middle of the sample and could be linked to a discernible decrease of the P-wave velocities; (iii) a system of conjugate bands formed, coalesced into a single band that grew from the center towards the sample surface and was interpreted to be representative for the preparation of a weak plane. Dilatative lobes at the process zones of the weak plane extended outwards and grew to the surface, causing strain localization and an acceleration of the simulated deformation prior to failure. This was also observed during the experiment with the strain rate measurements and spatio-temporally correlated with an increase of the seismicity rate in a similar rock volume. The combined approach of such laboratory and numerical techniques provides an enriched view of (a)seismic preparatory processes preceding the mainshock.

6.
Sensors (Basel) ; 24(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39124006

ABSTRACT

Salinity is a very important parameter from an environmental perspective, and therefore, efficient and accurate systems are required for marine environmental monitoring and productive industries. A plasmonic sensor based on doubly deposited tapered optical fibers (DLUWTs-double-layer uniform-waist tapers) for the measurement of salinity is presented. The physical principle of the sensor, as well as its structure, is discussed, and its performance is experimentally demonstrated, obtaining very good sensitivities. The possibility of shifting towards higher wavelength measuring ranges associated with DLUWTs is also exploited. At the same time, we have considered the necessity of an extensive characterization of the behavior of the refractive index of salty water, both with variations in temperature and the composition of the salts dissolved. This is important due to the somehow changing reality of salinity measurements and the possibility of establishing new approaches for the determination of absolute salinity as opposed to practical salinity based on electrical conductivity measurements. The results obtained, which show high sensitivity and a good performance in general without the need for the use of semi-empirical algorithms, permit, in our opinion, an advance in the tendency towards refractometric determination of salinity with optical sensors apt for in situ, real-time, accurate measurements in realistic measuring conditions.

7.
Sci Rep ; 14(1): 15872, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982095

ABSTRACT

We present theoretical and experimental evidence of high-gain far-detuned nonlinear frequency conversion, extending towards both the visible and the mid-infrared, in a few-mode graded-index silica fiber pumped at 1.064  µ m , and more specifically achieving gains of hundreds of dB per meter below 0.65  µ m and beyond 3.5  µ m . Interestingly, our findings highlight the potential of graded-index fibers for enabling high-gain wavelength conversion into the strong-loss spectral region of silica. Such advancements require an accurate interpretation of intramodal and intermodal four-wave mixing processes.

8.
Biosensors (Basel) ; 14(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39056627

ABSTRACT

Cortisol is a clinically validated stress biomarker that takes part in many physiological and psychological functions related to the body's response to stress factors. In particular, it has emerged as a pivotal tool for understanding stress levels and overall well-being. Usually, in clinics, cortisol levels are monitored in blood or urine, but significant changes are also registered in sweat and saliva. In this work, a surface plasmon resonance probe based on a D-shaped plastic optical fiber was functionalized with a glucocorticoid receptor exploited as a highly efficient bioreceptor specific to cortisol. The developed plastic optical fiber biosensor was tested for cortisol detection in buffer and artificial saliva. The biosensor response showed very good selectivity towards other hormones and a detection limit of about 59 fM and 96 fM in phosphate saline buffer and artificial saliva, respectively. The obtained detection limit, with a rapid detection time (about 5 min) and a low-cost sensor system, paved the way for determining the cortisol concentration in saliva samples without any extraction process or sample pretreatment via a point-of-care test.


Subject(s)
Biosensing Techniques , Hydrocortisone , Optical Fibers , Saliva , Surface Plasmon Resonance , Hydrocortisone/analysis , Saliva/chemistry , Humans , Limit of Detection , Plastics , Receptors, Glucocorticoid
9.
Sensors (Basel) ; 24(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39001114

ABSTRACT

To facilitate the sensor fabrication and sensing operation in microstructured optical fiber-based surface plasmon resonance (SPR) sensors for high refractive index (RI) detection, we propose a special hollow fiber-based SPR sensor that comprises an opening on its body side and a thin gold layer coated on its outer surface. The analyte is able to flow into the hollow core through the side-opening to form new fiber core, with the Gaussian-like mode propagating in it. We investigate the sensing performance of the proposed sensor in a higher RI range of 1.48 to 1.54 at two feasible schemes: one is to only fill the fiber core with analyte (Scheme A), and the other is to directly immerse the sensor in the analyte (Scheme B). The results demonstrate that our sensor exhibits higher wavelength sensitivity at Scheme A with a maximum wavelength sensitivity of 12,320 nm/RIU, while a greater amplitude sensitivity was found at Scheme B with a maximum amplitude sensitivity of 1146 RIU-1. Our proposed sensor features the advantages of simple fabrication, flexible operation, easy analyte filling and replacing, enhanced real-time detection capabilities, high RI detection, and very high wavelength sensitivity and amplitude sensitivity, which makes it more competitive in SPR sensing applications.

10.
ACS Appl Mater Interfaces ; 16(32): 42704-42716, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39083595

ABSTRACT

Polymer optical fibers (POFs) are lightweight, fatigue-tolerant, and suitable for local area networks, automobiles, aerospace, smart textiles, supercomputers, and servers. However, commercially available POFs are exclusively fabricated using synthetic polymers derived from nonrenewable resources. Recently, attempts have been made to fabricate biocompatible and biopolymeric optical fibers. However, their limitations in mechanical performance, thermal stability, and optical properties foil practical applications in waveguiding. Here, we report a comprehensive study of the preparation of biopolymer optical fibers with tailored mechanical strength, thermal properties, and their short-distance applications. Specifically, we use alginate as one of the key components with methylcelluloses to promote readily scalable wet spinning at ambient conditions to fabricate 21 combinations of composite fibers. The fibers display high maximum strain (up to 58%), Young's modulus (up to 11 GPa), modulus of toughness (up to 63 MJ/m3), and a high strength (up to 195 MPa), depending on the composition and fabrication conditions. The modulus of toughness is comparable to that of glass optical fibers, while the maximum strain is nearly 15 times higher. The mechanically robust fibers with high thermal stability allow rapid humidity, touch sensing, and complex shapes such as serpentine, coil, or twisted structures without losing their light transmission properties. More importantly, the fibers display enhanced optical performance and sensitivity in the near-infrared (NIR) region, making them suitable for advanced biomedical applications. Our work suggests that biobased materials offer innovative solutions to create short-distance optical fibers from fossil fuel-free resources with novel functionalities.

11.
Sensors (Basel) ; 24(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931712

ABSTRACT

An optical-chemical sensor based on two modified plastic optical fibers (POFs) and a molecularly imprinted polymer (MIP) is realized and tested for the detection of 2-furaldehyde (2-FAL). The 2-FAL measurement is a scientific topic of great interest in different application fields, such as human health and life status monitoring in power transformers. The proposed sensor is realized by using two POFs as segmented waveguides (SW) coupled through a micro-trench milled between the fibers and then filled with a specific MIP for the 2-FAL detection. The experimental results show that the developed intensity-based sensor system is highly selective and sensitive to 2-FAL detection in aqueous solutions, with a limit of detection of about 0.04 mg L-1. The proposed sensing approach is simple and low-cost, and it shows performance comparable to that of plasmonic MIP-based sensors present in the literature for 2-FAL detection.

12.
Adv Sci (Weinh) ; 11(33): e2402886, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38940404

ABSTRACT

The development of bend-induced effectively single-mode fiber with a square cross-section and flat top-hat intensity distribution is reported using core topology nanostructuring dedicated to femtosecond laser ablation systems. The fiber's core comprises 5419 silica and germanium-doped silica nanorods with a diameter of 430 nm each arranged into a hexagonal lattice. The distribution of the rods is calculated using in-house developed code based on the Monte Carlo algorithm to obtain a target shape of mode and intensity distribution. As a proof-of-concept, a silica nanostructured fiber with a 24 µm core is developed and verified against the purity of mode guidance, bending, and guiding losses. It is shown that for a wavelength of 1030 nm, the fiber is effectively single-mode with 96% mode purity when bending with a radius of 20 cm is applied. The fiber has a measured mode area of 360 µm2, numerical aperture of 0.03, and total losses of 0.07 dB m-1.

13.
Sensors (Basel) ; 24(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794089

ABSTRACT

In recent years, optical fibers have found extensive use in special environments, including high-energy radiation scenarios like nuclear explosion diagnostics and reactor monitoring. However, radiation exposure, such as X-rays, gamma rays, and neutrons, can compromise fiber safety and reliability. Consequently, researchers worldwide are focusing on radiation-resistant fiber optic technology. This paper examines optical fiber radiation damage mechanisms, encompassing ionization damage, displacement damage, and defect centers. It also surveys the current research on radiation-resistant fiber optic design, including doping and manufacturing process improvements. Ultimately, it summarizes the effectiveness of various approaches and forecasts the future of radiation-resistant optical fibers.

14.
Foods ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731700

ABSTRACT

An experimental study is presented on the possibility of using the fluorescence from organic dyes as a broadband light source together with a monochromator for applications in excitation-emission matrix (EEM) fluorescence spectroscopy. A high-power single-chip light-emitting diode (LED) was chosen as an excitation source with a central output wavelength at 365 nm to excite a fluorescent solution of Coumarin 1 dye dissolved in ethanol. Two excitation configurations were investigated: direct excitation from the LED and excitation through an optical-fiber-coupled LED. A Czerny-Turner monochromator with a diffraction grating was used for the spectral tuning of the fluorescence. A simple method was investigated for increasing the efficiency of the excitation as well as the fluorescence signal collection by using a diffuse reflector composed of barium sulfate (BaSO4) and polyvinyl alcohol (PVA). As research objects, extra-virgin olive oil (EVOO), Coumarin 6 dye, and Perylene, a polycyclic aromatic hydrocarbon (PAH), were used. The results showed that the light-emitting-diode-induced fluorescence was sufficient to cover the losses on the optical path to the monochromator output, where a detectable signal could be obtained. The obtained results reveal the practical possibility of applying the fluorescence from dyes as a light source for food system analysis by EEM fluorescence spectroscopy.

15.
Water Res ; 257: 121682, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718654

ABSTRACT

Photocatalyst-coated optical fibers (P-OFs) using UV-A LEDs offer a highly promising solution for the degradation of micropollutants within municipal, reuse, industrial or home distribution systems, by integrating P-OFs into water storage tanks. P-OFs have photocatalysts attached to bundles of optical fibers, enabling their direct deployment within tanks. This eliminates the necessity for photocatalyst slurries, which would require additional membrane or separation systems. However, a current limitation of P-OFs is light management, specifically light oversaturation of the coated photocatalysts and short light transmission distances along fibers. This study overcomes this limitation and reveals strategies to improve the light dissipation uniformity along P-OFs, and demonstrates the performance of P-OFs on degrading a model micropollutant, carbamazepine (CBZ). Key tunable variables of fibers and light emission conditions, including photocatalyst coating patchiness (p), minimum light incident angles (θm), radiant flux launched to fibers (Φi), and fiber diameters (D), were modeled to establish their relationships with the light dissipation uniformity in TiO2-coated quartz optical fibers (TiO2-QOFs). We then validated modeling insights by conducting experiments to examine how these variables influence the generation of evanescent waves which are localized energy on fiber surfaces, leading to either photocatalyst activation or the recapture of unused light back into fibers. We observed substantial enhancements in evanescent waves generation by decreasing p and increasing θm, resulting in uniform light dissipation which reduces light oversaturation and improves light transmission distances. Moreover, these optimizations led to a remarkable three-fold improvement in CBZ degradation rates and a 65% reduction in energy consumption. Such improvement substantially reduces the capital and operational cost and enhances practicality of energy-efficient photocatalysis without additional chemical oxidants for micropollutant degradation in water storage tanks.


Subject(s)
Optical Fibers , Quartz , Titanium , Water Pollutants, Chemical , Titanium/chemistry , Quartz/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Water Purification/methods , Carbamazepine/chemistry
16.
J Dent ; 145: 104998, 2024 06.
Article in English | MEDLINE | ID: mdl-38636650

ABSTRACT

OBJECTIVES: The study aimed to introduce a novel two-step optical fiber-based photo-activation of dental resin-based composites (RBCs) for reducing polymerization shrinkage stress (PSS). METHODS: Proposed protocol design - in the first step, two flexible plastic optical fibers connected to a dental light curing unit (LCU), were used as light guides inserted into the filling to initiate low-irradiance polymerization from within; in the second step, fibers were extracted and remaining voids were filled with RBC, followed by conventional high-irradiance curing to finalize polymerization. Three bulk-fill RBCs were tested (Beautifil-Bulk Restorative, Filtek Bulk-fill Posterior, Tetric PowerFill) using tooth cavity models. Three non-invasive examination techniques were employed: Digital Holographic Interferometry, Infrared Thermography, and Raman spectroscopy for monitoring model deformation, RBC temperature change, and degree of conversion (DC), respectively. A control group (for each examined RBC) underwent conventional photo-activation. RESULTS: The experimental protocol significantly reduced model deformation by 15 - 35 %, accompanied by an 18 - 54 % reduction in RBC temperature change, emphasizing the impact of thermal shrinkage on PSS. Real-time measurements of deformation and temperature provided indirect insights into reaction dynamics and illuminated potential mechanisms underlying PSS reduction. After a 24-hour dark-storage period, DC outcomes comparable to conventional curing were observed, affirming the clinical applicability of the method. CONCLUSIONS: Protocol involving the use of two 1.5 mm fibers in the first step (300 mW/cm2 x 10 s), followed by a second conventional curing step (1000 mW/cm2 x 10 s), is recommended to achieve the desired PSS reduction, while maintaining adequate DC and ensuring efficient clinical application. CLINICAL SIGNIFICANCE: Obtained PSS reduction offers promise in potentially improving the performance of composite restorations. Additionally, leveraging the flexibility of optical fibers improves light guide approach for restorations on posterior teeth. Meanwhile, implementation in clinical practice is easily achievable by coupling the fibers with commercial dental LCUs using the provided plastic adapter.


Subject(s)
Composite Resins , Materials Testing , Optical Fibers , Polymerization , Composite Resins/chemistry , Composite Resins/radiation effects , Humans , Curing Lights, Dental , Dental Materials/chemistry , Dental Materials/radiation effects , Temperature , Spectrum Analysis, Raman , Light-Curing of Dental Adhesives/methods , Stress, Mechanical , Surface Properties
17.
J Funct Biomater ; 15(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38535272

ABSTRACT

Calcium phosphate (CaP) glass has recently gained popularity as a promising material for a wide range of biomedical applications. Recent developments have seen CaP glasses moving from a passive implant material to an active degradable material, particularly as a major constituent of bioresorbable photonic devices. This holds great promise in advanced biomedical applications, since the main constituents of CaP glasses are present in the human body. In this review, the progressive advancements in the biomedical applications of calcium phosphate glass-based devices over the past 50 years are discussed. An overview of their role as reinforcing agents and the studies on doping their matrices for ion releasing and drug and gene delivery are reviewed. Recent applications of CaP glass and fibers in soft-tissue engineering and their potential for optical quality bioresorbable devices are then discussed along with the current challenges and potential future directions, emphasizing the promising role of CaP glass in the next generation of biomaterials. Considering their progress and potential in performing several biomedical functionalities over time, CaP glass-based devices hold promise for becoming enabling tools as an implantable, bioresorbable, multifunctional class of devices in future biomedicine.

18.
Sci Rep ; 14(1): 7404, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548783

ABSTRACT

Optical fiber with YPO4:Pr3+ nanocrystals (NCs) is presented for the first time using the glass powder-NCs doping method. The method's advantage is separate preparation of NCs and glass to preserve luminescent and optical properties of NCs once they are incorporated into optical fiber. The YPO4:Pr3+ nanocrystals were synthesized by the co-precipitation and hydrothermal methods, optimized for size (< 100 nm), shape, Pr3+ ions concentration (0.2 mol%), and emission lifetime. The core glass was selected from the non-silica P2O5-containing system with refractive index (n = 1.788) close to the NCs (no = 1.657, ne = 1.838). Optical fiber was drawn by modified powder-in-tube method after pre-sintering of glass powder-YPO4:Pr3+ (wt 3%) mixture to form optical fiber preform. Luminescent properties of YPO4:Pr3+ and optical fiber showed their excellent agreement, including sharp Pr3+ emission at 600 nm (1D2-3H4) and 1D2 level lifetime (τ = 156 ± 5 µs) under 488 nm excitation. The distribution of the YPO4:Pr3+ NCs in optical fiber were analyzed by TEM-EDS in the core region (FIB-SEM-prepared). The successful usage of glass powder-NCs doping method was discussed in the aspect of promising properties of the first YPO4:Pr3+ doped optical fiber as a new way to develop active materials for lasing applications, among others.

19.
Sensors (Basel) ; 24(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475191

ABSTRACT

The utilization of downhole optical cables has significantly enhanced the efficiency and reliability of oilfield production operations; however, the challenging high-temperature and high-pressure conditions prevalent in oil-gas fields markedly reduce the service lifespan of these optical cables. This limitation severely impedes their application and further development in subterranean environments. In this study, a qualitative analysis was conducted on the structural materials utilized in two types of optical cables to identify these materials and assess the high-temperature tolerance and aging resistance properties of the optical fibers incorporated within. It was discovered that hydrogen infiltration into the subterranean optical cables predominantly accounts for their operational failure. To address this issue, an optical loss testing platform was established, facilitating the execution of a high-temperature and high-pressure hydrogen permeation aging experiment on the optical fibers, allowing for the evaluation of the hydrogen resistance capabilities of the two types of optical fibers. The findings from this study provide a theoretical foundation and methodological guidance for the optimization of optical fibers, aiming to enhance their durability and functional performance in adverse environmental conditions encountered in oil-gas field applications.

20.
J Biomed Opt ; 29(2): 026002, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38312854

ABSTRACT

Significance: There is a need for a cost-effective, quantitative imaging tool that can be deployed endoscopically to better detect early stage gastrointestinal cancers. Spatial frequency domain imaging (SFDI) is a low-cost imaging technique that produces near-real time, quantitative maps of absorption and reduced scattering coefficients, but most implementations are bulky and suitable only for use outside the body. Aim: We aim to develop an ultra-miniature SFDI system comprising an optical fiber array (diameter 0.125 mm) and a micro camera (1×1 mm package) to displace conventionally bulky components, in particular, the projector. Approach: First, we fabricated a prototype with an outer diameter of 3 mm, although the individual component dimensions could permit future packaging to a <1.5 mm diameter. We developed a phase-tracking algorithm to rapidly extract images with fringe projections at three equispaced phase shifts to perform SFDI demodulation. Results: To validate the performance, we first demonstrate comparable recovery of quantitative optical properties between our ultra-miniature system and a conventional bench-top SFDI system with an agreement of 15% and 6% for absorption and reduced scattering, respectively. Next, we demonstrate imaging of absorption and reduced scattering of tissue-mimicking phantoms providing enhanced contrast between simulated tissue types (healthy and tumour), done simultaneously at wavelengths of 515 and 660 nm. Using a support vector machine classifier, we estimate that sensitivity and specificity values of >90% are feasible for detecting simulated squamous cell carcinoma. Conclusions: This device shows promise as a cost-effective, quantitative imaging tool to detect variations in optical absorption and scattering as indicators of cancer.


Subject(s)
Carcinoma, Squamous Cell , Optical Imaging , Humans , Optical Imaging/methods , Phantoms, Imaging , Endoscopy, Gastrointestinal
SELECTION OF CITATIONS
SEARCH DETAIL