Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 822
Filter
1.
J Bone Miner Metab ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352550

ABSTRACT

Hedgehog and canonical Wnt signaling pathways and the transcription factors Runx2 and Sp7 are essential for osteoblast differentiation. Ihh is necessary for the commitment of perichondrial mesenchymal cells to Runx2+ osteoprogenitors and for the formation of the bone collar and primary spongiosa. Runx2 is needed for osteoblast differentiation during both endochondral and intramembranous ossification. It regulates the commitment of mesenchymal cells to osteoblast-lineage cells and their proliferation by inducing the expression of Hedgehog, Fgf, Wnt, Pthlh signaling pathway genes, and Dlx5. The Runx2-induced expression of Fgfr2 and Fgfr3 is important for the proliferation of osteoblast-lineage cells. Runx2 induces Sp7 expression and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Runx2, Sp7, and canonical Wnt signaling induce the differentiation of preosteoblasts into osteoblasts. Canonical Wnt signaling, but not Sp7, enhances the proliferation of osteoblast-lineage cells. In mature osteoblasts, Runx2 plays an important role in the expression of major bone matrix protein genes, including Col1a1, Col1a2, Spp1, Ibsp, and Bglap/Bglap2. The canonical Wnt signaling pathway is also crucial for bone formation by mature osteoblasts. Sp7 is needed for osteocytes to acquire a sufficient number of processes and a reduction in these processes results in osteocyte apoptosis and cortical porosity.

2.
Calcif Tissue Int ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276238

ABSTRACT

We and others have shown that application of high-level mechanical loading promotes the formation of transient plasma membrane disruptions (PMD) which initiate mechanotransduction. We hypothesized that increasing osteocyte cell membrane fragility, by disrupting the cytoskeleton-associated protein ß2-spectrin (Sptbn1), could alter osteocytic responses and bone adaptation to loading in a PMD-related fashion. In MLO-Y4 cells, treatment with the spectrin-disrupting agent diamide or knockdown of Sptbn1 via siRNA increased the number of PMD formed by fluid shear stress. Primary osteocytes from an osteocyte-targeted DMP1-Cre Sptbn1 conditional knockout (CKO) model mimicked trends seen with diamide and siRNA treatment and suggested the creation of larger PMD, which repaired more slowly, for a given level of stimulus. Post-wounding cell survival was impaired in all three models, and calcium signaling responses from the wounded osteocyte were mildly altered in Sptbn1 CKO cultures. Although Sptbn1 CKO mice did not demonstrate an altered skeletal phenotype as compared to WT littermates under baseline conditions, they showed a blunted increase in cortical thickness when subjected to an osteogenic tibial loading protocol as well as evidence of increased osteocyte death (increased lacunar vacancy) in the loaded limb after 2 weeks of loading. The impaired post-wounding cell viability and impaired bone adaptation seen with Sptbn1 disruption support the existence of an important role for Sptbn1, and PMD formation, in osteocyte mechanotransduction and bone adaptation to mechanical loading.

3.
Int J Mol Sci ; 25(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39337587

ABSTRACT

Runx2 (runt related transcription factor 2) and Sp7 (Sp7 transcription factor 7) are crucial transcription factors for bone development. The cotranscription factor Cbfb (core binding factor beta), which enhances the DNA-binding capacity of Runx2 and stabilizes the Runx2 protein, is necessary for bone development. Runx2 is essential for chondrocyte maturation, and Sp7 is partly involved. Runx2 induces the commitment of multipotent mesenchymal cells to osteoblast lineage cells and enhances the proliferation of osteoprogenitors. Reciprocal regulation between Runx2 and the Hedgehog, fibroblast growth factor (Fgf), Wnt, and parathyroid hormone-like hormone (Pthlh) signaling pathways and Dlx5 (distal-less homeobox 5) plays an important role in these processes. The induction of Fgfr2 (Fgf receptor 2) and Fgfr3 expression by Runx2 is important for the proliferation of osteoblast lineage cells. Runx2 induces Sp7 expression, and Runx2+ osteoprogenitors become Runx2+Sp7+ preosteoblasts. Sp7 induces the differentiation of preosteoblasts into osteoblasts without enhancing their proliferation. In osteoblasts, Runx2 is required for bone formation by inducing the expression of major bone matrix protein genes, including Col1a1 (collagen type I alpha 1), Col1a2, Spp1 (secreted phosphoprotein 1), Ibsp (integrin binding sialoprotein), and Bglap (bone gamma carboxyglutamate protein)/Bglap2. Bglap/Bglap2 (osteocalcin) regulates the alignment of apatite crystals parallel to collagen fibrils but does not function as a hormone that regulates glucose metabolism, testosterone synthesis, and muscle mass. Sp7 is also involved in Co1a1 expression and regulates osteoblast/osteocyte process formation, which is necessary for the survival of osteocytes and the prevention of cortical porosity. SP7 mutations cause osteogenesis imperfecta in rare cases. Runx2 is an important pathogenic factor, while Runx1, Runx3, and Cbfb are protective factors in osteoarthritis development.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Sp7 Transcription Factor , Animals , Humans , Bone Development/genetics , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Osteoblasts/metabolism , Osteoblasts/cytology , Osteogenesis/genetics , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics
4.
Iran J Biotechnol ; 22(2): e3863, 2024 Apr.
Article in English | MEDLINE | ID: mdl-39220336

ABSTRACT

Background: DNA methylation plays important roles in regulating various biological processes, including self-renewal, differentiation and regenerative capacity of stem cells. Previous studies have demonstrated that lineage-specific differentiation of mesenchymal stem cells can be promoted using nontoxic chromatin-modifying drugs. Objectives: Here we evaluated the impact of RG108, a known DNA methyltransferase inhibitor, on the expression of pluripotency genes in human adipose tissue-derived stem cells (hADSCs) and their proliferation and differentiation. Materials and Methods: Human ADSCs were isolated by collagenase treatment and characterized. Then, ADSCs were treated with 5 µM RG108 for four days. The control and RG108-treated cells were analyzed for the cell cycle progression, apoptosis and the expression of pluripotency genes. Also, ADSCs were cultured in adipogenic and osteogenic differentiation media for three weeks and were assessed by Oil Red O and Alizarin Red S staining and qPCR analysis. Results: We showed that RG108 treatment increased proliferation of hADSCs and upregulated the expression of pluripotency-related genes. Additionally, RG108 had a positive impact on the differentiation capability of ADSCs. This was evident through elevated levels of Oil Red O staining in the RG108 treatment group. Also, qPCR analysis showed the upregulation of some adipogenic and osteogenic markers by RG108. Conclusion: These findings indicate that pretreatment with RG108 improves the differentiation potential of ADSCs, probably making these cells more beneficial for cell therapy applications.

5.
Mol Med ; 30(1): 151, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39278948

ABSTRACT

Erythropoietin (EPO), expressed in red blood progenitor cells, primarily regulates erythropoiesis by binding to its receptor. Besides anemia, recent studies have identified new therapeutic indications for EPO that are not connected to red blood cell formation. Elevated EPO levels harm bone homeostasis in adult organisms and are associated with increased osteoclast; however, the underlying molecular mechanisms remain unclear. This study demonstrated that EPO enhanced osteoclast differentiation and bone resorption in vitro. We showed that EPO promoted osteoclast formation by up-regulating PPARγ expression through activating the Jak2/ERK signaling pathway. Consistently, PPARγ antagonists rescued the hyperactivation of osteoclasts due to EPO, while PPARγ agonists reversed the EMP9-mediated decrease in osteoclast differentiation. Further, exposing female mice to EPO for two months led to a decrease in bone mass and increased osteoclast numbers. The present results suggested that EPO promotes osteoclastogenesis by regulating the Jak2/ERK/ PPARγ signaling pathway. From a clinical perspective, the risk of compromised bone health should be considered when using EPO to treat anemia in post-operative patients with intertrochanteric fractures of the femur, as it could significantly impact the patient's recovery and quality of life.


Subject(s)
Cell Differentiation , Erythropoietin , Osteoclasts , PPAR gamma , Erythropoietin/pharmacology , Erythropoietin/metabolism , Animals , PPAR gamma/metabolism , Osteoclasts/metabolism , Osteoclasts/drug effects , Mice , Female , Cell Differentiation/drug effects , Osteogenesis/drug effects , Janus Kinase 2/metabolism , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Humans , Up-Regulation/drug effects , Gene Expression Regulation/drug effects , Bone Resorption/metabolism , Mice, Inbred C57BL
6.
Bone ; 189: 117236, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151745

ABSTRACT

Osteocytes are mechanosensitive, bone-embedded cells which are connected via dendrites in a lacuno-canalicular network and regulate bone resorption and formation balance. Alterations in osteocyte lacunar volume, shape and density have been identified in conditions of aging, osteoporosis and osteolytic bone metastasis, indicating patterns of impaired bone remodeling, osteolysis and disease progression. Osteolytic bone disease is a hallmark of the hematologic malignancy multiple myeloma (MM), in which monoclonal plasma cells in the bone marrow disrupt the bone homeostasis and induce excessive resorption at local and distant sites. Qualitative and quantitative changes in the 3D osteocyte lacunar morphometry have not yet been evaluated in MM, nor in the precursor conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). In this study, we characterized the osteocyte lacunar morphology in trabecular bone of the iliac crest at the ultrastructural level using high resolution microCT in human bone biopsy samples of three MGUS, two SMM and six newly diagnosed MM. In MGUS, SMM and MM we found a trend for lower lacunar density and a shift towards larger lacunae with disease progression (higher 50 % cutoff of the lacunar volume cumulative distribution) in the small osteocyte lacunae 20-900 µm3 range compared to control samples. In the larger lacunae 900-3000 µm3 range, we detected significantly higher lacunar density and microporosity in the MM group compared to the MGUS/SMM group. Regarding the shape distribution, the MGUS/SMM group showed a trend for flatter, more elongated and anisotropic osteocyte lacunae compared to the control group. Altogether, our findings suggest that osteocytes in human MM bone disease undergo changes in their lacunae density, volume and shape, which could be an indicator for osteolysis and disease progression. Future studies are needed to understand whether alterations of the lacunae architecture affect the mechanoresponsiveness of osteocytes, and ultimately bone adaptation and fracture resistance in MM and its precursors conditions.

7.
Front Endocrinol (Lausanne) ; 15: 1342938, 2024.
Article in English | MEDLINE | ID: mdl-39092287

ABSTRACT

Glucocorticoids (GC) and parathyroid hormone (PTH) are widely used therapeutic endocrine hormones where their effects on bone and joint arise from actions on multiple skeletal cell types. In osteocytes, GC and PTH exert opposing effects on perilacunar canalicular remodeling (PLR). Suppressed PLR can impair bone quality and joint homeostasis, including in GC-induced osteonecrosis. However, combined effects of GC and PTH on PLR are unknown. Given the untapped potential to target osteocytes to improve skeletal health, this study sought to test the feasibility of therapeutically mitigating PLR suppression. Focusing on subchondral bone and joint homeostasis, we hypothesize that PTH(1-34), a PLR agonist, could rescue GC-suppressed PLR. The skeletal effects of GC and PTH(1-34), alone or combined, were examined in male and female mice by micro-computed tomography, mechanical testing, histology, and gene expression analysis. For each outcome, females were more responsive to GC and PTH(1-34) than males. GC and PTH(1-34) exerted regional differences, with GC increasing trabecular bone volume but reducing cortical bone thickness, stiffness, and ultimate force. Despite PTH(1-34)'s anabolic effects on trabecular bone, it did not rescue GC's catabolic effects on cortical bone. Likewise, cartilage integrity and subchondral bone apoptosis, tartrate-resistant acid phosphatase (TRAP) activity, and osteocyte lacunocanalicular networks showed no evidence that PTH(1-34) could offset GC-dependent effects. Rather, GC and PTH(1-34) each increased cortical bone gene expression implicated in bone resorption by osteoclasts and osteocytes, including Acp5, Mmp13, Atp6v0d2, Ctsk, differences maintained when GC and PTH(1-34) were combined. Since PTH(1-34) is insufficient to rescue GC's effects on young female mouse bone, future studies are needed to determine if osteocyte PLR suppression, due to GC, aging, or other factors, can be offset by a PLR agonist.


Subject(s)
Bone Density , Bone Remodeling , Glucocorticoids , Osteocytes , Parathyroid Hormone , Animals , Osteocytes/drug effects , Osteocytes/metabolism , Parathyroid Hormone/pharmacology , Female , Male , Mice , Glucocorticoids/pharmacology , Bone Remodeling/drug effects , Bone Density/drug effects , Mice, Inbred C57BL , Bone and Bones/drug effects , Bone and Bones/metabolism , X-Ray Microtomography
8.
J Physiol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119811

ABSTRACT

Until recently, research on the pathogenesis and treatment of osteoporosis and sarcopenia has primarily focused on local and systemic humoral mechanisms, often overlooking neuronal mechanisms. However, there is a growing body of literature on the neuronal regulation of bone and skeletal muscle structure and function, which may provide insights into the pathogenesis of osteosarcopenia. This review aims to integrate these neuronal regulatory mechanisms to form a comprehensive understanding and inspire future research that could uncover novel strategies for preventing and treating osteosarcopenia. Specifically, the review explores the functional adaptation of weight-bearing bone to mechanical loading throughout evolutionary development, from Wolff's law and Frost's mechanostat theory to the mosaic hypothesis, which emphasizes neuronal regulation. The recently introduced bone osteoregulation reflex points to the importance of the osteocytic mechanoreceptive network as a receptor in this neuronal regulation mechanism. Finally, the review focuses on the bone myoregulation reflex, which is known as a mechanism by which bone loading regulates muscle functions neuronally. Considering the ageing-related regressive changes in the nerve fibres that provide both structural and functional regulation in bone and skeletal muscle tissue and the bone and muscle tissues they innervate, it is suggested that neuronal mechanisms might play a central role in explaining osteosarcopenia in older adults.

9.
J Orthop Translat ; 48: 39-52, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39087139

ABSTRACT

Background: Osteocytes are the main stress-sensing cells in bone. The substances secreted by osteocytes under mechanical loading play a crucial role in maintaining body homeostasis. Osteocytes have recently been found to release exosomes into the circulation, but whether they are affected by mechanical loading or participate in the regulation of systemic homeostasis remains unclear. Methods: We used a tail-suspension model to achieve mechanical unloading on osteocytes. Osteocyte-specific CD63 reporter mice were used for osteocyte exosome tracing. Exosome detection and inhibitor treatment were performed to confirm the effect of mechanical loading on exosome secretion by osteocytes. Co-culture, GW4869 and exosome treatment were used to investigate the biological functions of osteocyte-derived exosomes on brown adipose tissue (BAT) and primary brown adipocytes. Osteocyte-specific Dicer KO mice were used to screen for loading-sensitive miRNAs. Dual luciferase assay was performed to validate the selected target gene. Results: Firstly, we found the thermogenic activity was increased in BAT of mice subjected to tail suspension, which is due to the effect of unloaded bone on circulating exosomes. Further, we showed that the secretion of exosomes from osteocytes is regulated by mechanical loading, and osteocyte-derived exosomes can reach BAT and affect thermogenic activity. More importantly, we confirmed the effect of osteocyte exosomes on BAT both in vivo and in vitro. Finally, we discovered that let-7e-5p contained in exosomes is under regulation of mechanical loading and regulates thermogenic activity of BAT by targeting Ppargc1a. Conclusion: Exosomes derived from osteocytes are loading-sensitive, and play a vital role in regulation on BAT, suggesting that regulation of exosomes secretion can restore homeostasis. The translational potential of this article: This study provides a biological rationale for using osteocyte exosomes as potential agents to modulate BAT and even whole-body homeostasis. It also provides a new pathological basis and a new treatment approach for mechanical unloading conditions such as spaceflight.

10.
Front Endocrinol (Lausanne) ; 15: 1359052, 2024.
Article in English | MEDLINE | ID: mdl-39157681

ABSTRACT

Introduction: Changes to bone physiology play a central role in the development of osteoarthritis with the mechanosensing osteocyte releasing factors that drive disease progression. This study developed a humanised in vitro model to detect osteocyte responses to either interleukin-6, a driver of degeneration and bone remodelling in animal and human joint injury, or mechanical loading, to mimic osteoarthritis stimuli in joints. Methods: Human MSC cells (Y201) were differentiated in 3-dimensional type I collagen gels in osteogenic media and osteocyte phenotype assessed by RTqPCR and immunostaining. Gels were subjected to a single pathophysiological load or stimulated with interleukin-6 with unloaded or unstimulated cells as controls. RNA was extracted 1-hour post-load and assessed by RNAseq. Markers of pain, bone remodelling, and inflammation were quantified by RT-qPCR and ELISA. Results: Y201 cells embedded within 3D collagen gels assumed dendritic morphology and expressed mature osteocytes markers. Mechanical loading of the osteocyte model regulated 7564 genes (Padj p<0.05, 3026 down, 4538 up). 93% of the osteocyte transcriptome signature was expressed in the model with 38% of these genes mechanically regulated. Mechanically loaded osteocytes regulated 26% of gene ontology pathways linked to OA pain, 40% reflecting bone remodelling and 27% representing inflammation. Load regulated genes associated with osteopetrosis, osteoporosis and osteoarthritis. 42% of effector genes in a genome-wide association study meta-analysis were mechanically regulated by osteocytes with 10 genes representing potential druggable targets. Interleukin-6 stimulation of osteocytes at concentrations reported in human synovial fluids from patients with OA or following knee injury, regulated similar readouts to mechanical loading including markers of pain, bone remodelling, and inflammation. Discussion: We have developed a reproducible model of human osteocyte like cells that express >90% of the genes in the osteocyte transcriptome signature. Mechanical loading and inflammatory stimulation regulated genes and proteins implicated in osteoarthritis symptoms of pain as well as inflammation and degeneration underlying disease progression. Nearly half of the genes classified as 'effectors' in GWAS were mechanically regulated in this model. This model will be useful in identifying new mechanisms underlying bone and joint pathologies and testing drugs targeting those mechanisms.


Subject(s)
Inflammation , Mesenchymal Stem Cells , Osteoarthritis , Osteocytes , Humans , Osteocytes/metabolism , Osteocytes/pathology , Osteoarthritis/pathology , Osteoarthritis/metabolism , Inflammation/pathology , Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Interleukin-6/metabolism , Bone Remodeling , Cells, Cultured , Cell Differentiation
11.
Adv Protein Chem Struct Biol ; 142: 397-420, 2024.
Article in English | MEDLINE | ID: mdl-39059992

ABSTRACT

Considering the importance, bone physiology has long been studied to understand what systematic and cellular impact its cells and functions have. Exploring more questions is a substantially solid way to improve the understanding of bone physiological functions in/out sides. In adult bone, osteocytes (Ots) form about 95% of bone cells and live the longest lifespan inside their mineralized surroundings. Ots are the endocrine cells and originate from blood vessel's endothelial cells. In this work, we discussed the vital role of the "Ots". To determine the association between osteocytes' network with metabolic parameters in healthy mice, the experiments were performed on ten (10) adult C57BL6 male mice. Fasting blood and bone samples were collected weekly from mice for measurement of metabolic parameters and bone morphology. Scanning electron microscopy (SEM) revealed a 2D fine morphology of the bone which indicates a strong functional interconnection with bone nano/micro, and macro components of the organs. The long-branched canaliculi look like neurocytes in structure. The morphology and quantitative measurements of the osteocyte lacunal-canalicular system showed its wide spectrum spatial resolution of the positive and negative relationship within this system or metabolite parameters, confirming a strong cross connection between osteocyte lacunal-canalicular system and metabolism. We believe that the findings of this study can deliver a strategy about the potential roles of metabolic relation among osteocytes, insulin, and lipid in management of bone and metabolic diseases.


Subject(s)
Osteocytes , Osteocytes/metabolism , Osteocytes/cytology , Animals , Mice , Male , Mice, Inbred C57BL , Bone and Bones/metabolism
12.
Autoimmunity ; 57(1): 2364686, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946534

ABSTRACT

BACKGROUND: Chondrocyte viability, apoptosis, and migration are closely related to cartilage injury in osteoarthritis (OA) joints. Exosomes are identified as potential therapeutic agents for OA. OBJECTIVE: This study aimed to investigate the role of exosomes derived from osteocytes in OA, particularly focusing on their effects on cartilage repair and molecular mechanisms. METHODS: An injury cell model was established by treating chondrocytes with IL-1ß. Cartilage repair was evaluated using cell counting kit-8, flow cytometry, scratch test, and Western Blot. Molecular mechanisms were analyzed using quantitative real-time PCR, bioinformatic analysis, and Western Blot. An OA mouse model was established to explore the role of exosomal DLX2 in vivo. RESULTS: Osteocyte-released exosomes promoted cell viability and migration, and inhibited apoptosis and extracellular matrix (ECM) deposition. Moreover, exosomes upregulated DLX2 expression, and knockdown of DLX2 activated the Wnt pathway. Additionally, exosomes attenuated OA in mice by transmitting DLX2. CONCLUSION: Osteocyte-derived exosomal DLX2 alleviated IL-1ß-induced cartilage repair and inactivated the Wnt pathway, thereby alleviating OA progression. The findings suggested that osteocyte-derived exosomes may hold promise as a treatment for OA.


Subject(s)
Chondrocytes , Exosomes , Homeodomain Proteins , Osteoarthritis , Wnt Signaling Pathway , Animals , Humans , Male , Mice , Apoptosis , Cartilage/metabolism , Cartilage/pathology , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cell Movement , Cell Survival , Chondrocytes/metabolism , Disease Models, Animal , Exosomes/metabolism , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Interleukin-1beta/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteocytes/metabolism , Transcription Factors/metabolism
13.
J Bone Miner Res ; 39(10): 1377-1385, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-38990205

ABSTRACT

Coupling, the mechanism that controls the sequence of events in bone remodeling, is a fundamental theory for understanding the way the skeleton changes throughout life. This review is an adapted version of the Louis V Avioli lecture, delivered at the Annual Scientific Meeting of the American Society of Bone and Mineral Research in 2023. It outlines the history of the coupling concept, details how coupling is thought to occur within trabecular and cortical bone, and describes its multiple contexts and the many mechanisms suggested to couple bone-forming osteoblasts to the prior action of osteoclasts on the same bone surface. These mechanisms include signals produced at each stage of the remodeling sequence (resorption, reversal, and formation), such as factors released by osteoclasts through their resorptive action and through protein synthesis, molecules deposited in the cement line during the reversal phase, and potential signals from osteocytes within the local bone environment. The review highlights two examples of coupling factors (Cardiotrophin 1 and EphrinB2:EphB4) to illustrate the limited data available, the need to integrate the many functions of these factors within the basic multicellular unit (BMU), and the multiple origins of these factors, including the other cell types present during the remodeling sequence (such as osteocytes, macrophages, endothelial cells, and T-cells).


Coupling is a fundamental process by which bone-resorbing cells (osteoclasts) are followed by bone-forming cells (osteoblasts) on the same surface during the process of bone remodeling. This review outlines the history, basic concepts, and mechanisms proposed, and suggests directions for further research into the way this sequence of events is controlled in bone maintenance, development, and healing.


Subject(s)
Osteoclasts , Osteoclasts/metabolism , Humans , Animals , Bone Remodeling
14.
J Bone Miner Res ; 39(8): 1174-1187, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38959852

ABSTRACT

Intracellular phosphoinositide 3-kinase (PI3K) signaling is activated by multiple bone-active receptors. Genetic mutations activating PI3K signaling are associated with clinical syndromes of tissue overgrowth in multiple organs, often including the skeleton. While one formation is increased by removing the PI3K inhibitor (phosphatase and TENsin homolog deleted on chromosome 10 (PTEN)), the effect of direct PI3K activation in the osteoblast lineage has not been reported. We introduced a known gain-of-function mutation in Pik3ca, the gene encoding the p110α catalytic subunit of PI3K, in osteocytes and late osteoblasts using the dentin matrix protein-1 Cre (Dmp1Cre) mouse and assessed the skeletal phenotype. Femur shape was grossly normal, but cortical thickness was significantly greater in both male and female Dmp1Cre.Pik3caH1047R mice, leading to almost doubled bone strength at 12 wk of age. Both sexes had smaller marrow areas from 6 wk of age. Female mice also exhibited greater cross-sectional area, which continued to increase until 24 wk of age, resulting in a further increase in bone strength. Although both male and female mice had increased endocortical mineralizing surface, only female mice had increased periosteal mineralizing surface. The bone formed in the Dmp1Cre.Pik3caH1047R mice showed no increase in intracortical remodeling nor any defect in cortical bone consolidation. In contrast, on both endocortical and periosteal surfaces, there was more lamellar bone formation, including highly organized osteocyte networks extending along the entire surface at a greater thickness than in control mice. In conclusion, direct activation of PI3Kα in cells targeted by Dmp1Cre leads to high cortical bone mass and strength with abundant lamellar cortical bone in female and male mice with no increase in intracortical remodeling. This differs from the effect of PTEN deletion in the same cells, suggesting that activating PI3Kα in osteoblasts and osteocytes may be a more suitable target to promote formation of lamellar bone.


Patients with genetic activation of enzymes called phosphoinositide-3 kinase (PI3K) have tissue overgrowth syndromes, where parts of the body become enlarged, sometimes including the skeleton. There are 2 types of mutations that cause this: one that directly activates the PI3K enzyme, and one that removes the normal brake on PI3K signaling (called PTEN). We tested the effect of directly activating a PI3K enzyme specifically in osteoblasts (the cells that form bone) and osteocytes (osteoblasts that make a network inside the bone tissue itself). We found that mice with these mutations had very strong bones with an outer shell that was thicker than usual. In both male and female mice, it became thicker on the inside of the shell, but in female mice it also became thicker on the outside, making the bones even stronger over time. The new bone was well-organized, which likely helped make the increase in bone strength so profound. This is very different to previous studies of mice with the other type of mutation in their bone-forming cells; they had a shell with many large holes (pores). This indicates that directly stimulating PI3K enzyme is more beneficial for bone than removing the PTEN brake.


Subject(s)
Cortical Bone , Osteoblasts , Osteocytes , Animals , Osteocytes/metabolism , Female , Male , Osteoblasts/metabolism , Mice , Cortical Bone/metabolism , Sex Characteristics , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Enzyme Activation , Phosphatidylinositol 3-Kinases/metabolism , Femur
15.
Curr Osteoporos Rep ; 22(4): 396-415, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980532

ABSTRACT

PURPOSE OF REVIEW: Quantification of the morphology of osteocyte lacunae has become a powerful tool to investigate bone metabolism, pathologies and aging. This review will provide a brief overview of 2D and 3D imaging methods for the determination of lacunar shape, orientation, density, and volume. Deviations between 2D-based and 3D-based lacunar volume estimations are often not sufficiently addressed and may give rise to contradictory findings. Thus, the systematic error arising from 2D-based estimations of lacunar volume will be discussed, and an alternative calculation proposed. Further, standardized morphological parameters and best practices for sampling and segmentation are suggested. RECENT FINDINGS: We quantified the errors in reported estimation methods of lacunar volume based on 2D cross-sections, which increase with variations in lacunar orientation and histological cutting plane. The estimations of lacunar volume based on common practice in 2D imaging methods resulted in an underestimation of lacunar volume of up to 85% compared to actual lacunar volume in an artificial dataset. For a representative estimation of lacunar size and morphology based on 2D images, at least 400 lacunae should be assessed per sample.


Subject(s)
Imaging, Three-Dimensional , Osteocytes , Humans , Osteocytes/cytology , Imaging, Three-Dimensional/methods , Bone Density , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Image Processing, Computer-Assisted/methods
16.
Biochem Biophys Res Commun ; 727: 150315, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38950493

ABSTRACT

In response to mechanical loading of bone, osteocytes produce nitric oxide (NO•) and decrease sclerostin protein expression, leading to an increase in bone mass. However, it is unclear whether NO• production and sclerostin protein loss are mechanistically linked, and, if so, the nature of their hierarchical relationship within an established mechano-transduction pathway. Prior work showed that following fluid-shear stress (FSS), osteocytes produce NOX2-derived reactive oxygen species, inducing calcium (Ca2+) influx. Increased intracellular Ca2+ results in calcium-calmodulin dependent protein kinase II (CaMKII) activation, which regulates the lysosomal degradation of sclerostin protein. Here, we extend our discoveries, identifying NO• as a regulator of sclerostin degradation downstream of mechano-activated CaMKII. Pharmacological inhibition of nitric oxide synthase (NOS) activity in Ocy454 osteocyte-like cells prevented FSS-induced sclerostin protein loss. Conversely, short-term treatment with a NO• donor in Ocy454 cells or isolated murine long bones was sufficient to induce the rapid decrease in sclerostin protein abundance, independent of changes in Sost gene expression. Ocy454 cells express all three NOS genes, and transfection with siRNAs targeting eNOS/Nos3 was sufficient to prevent FSS-induced loss of sclerostin protein, while siRNAs targeting iNOS/Nos2 mildly blunted the loss of sclerostin but did not reach statistical significance. Similarly, siRNAs targeting both eNOS/Nos3 and iNOS/Nos2 prevented FSS-induced NO• production. Together, these data show iNOS/Nos2 and eNOS/Nos3 are the primary producers of FSS-dependent NO•, and that NO• is necessary and sufficient for sclerostin protein control. Further, selective inhibition of elements within this sclerostin-controlling mechano-transduction pathway indicated that NO• production occurs downstream of CaMKII activation. Targeting Camk2d and Camk2g with siRNA in Ocy454 cells prevented NO• production following FSS, indicating that CaMKII is needed for NO• production. However, NO• donation (1min) resulted in a significant increase in CaMKII activation, suggesting that NO• may have the ability to tune CaMKII response. Together, these data support that CaMKII is necessary for, and may be modulated by NO•, and that the interaction of these two signals is involved in the control of sclerostin protein abundance, consistent with a role in bone anabolic responses.


Subject(s)
Adaptor Proteins, Signal Transducing , Nitric Oxide , Osteocytes , Nitric Oxide/metabolism , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Osteocytes/metabolism , Mice , Stress, Mechanical , Mice, Inbred C57BL , Mechanotransduction, Cellular , Cell Line , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
17.
ACS Appl Mater Interfaces ; 16(31): 40411-40427, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39044386

ABSTRACT

The treatment of critical-sized bone defects caused by tumor removal, skeletal injuries, or infections continues to pose a major clinical challenge. A popular potential alternative solution to autologous bone grafts is a tissue-engineered approach that utilizes the combination of mesenchymal stromal/stem cells (MSCs) with synthetic biomaterial scaffolds. This approach aims to support new bone formation by mimicking many of the biochemical and biophysical cues present within native bone. Regrettably, osteocyte cells, crucial for bone maturation and homeostasis, are rarely produced within MSC-seeded scaffolds, thereby restricting the development of fully mature cortical bone from these synthetic implants. In this work, we have constructed a multimodal scaffold by combining electrospun poly(lactic-co-glycolic acid) (PLGA) fibrous scaffolds with poly(ethylene glycol) (PEG)-based hydrogels that mimic the functional unit of cortical bone, osteon (osteon-mimetic) scaffolds. These scaffolds were decorated with a novel bone morphogenic protein-6 (BMP6) peptide (BMP6p) after our findings revealed that the BMP6p drives higher levels of Smad signaling than the full-length protein counterpart, soluble or when bound to the PEG hydrogel backbone. We show that our osteon-mimetic scaffolds, in presenting concentric layers of BMP6p-PEG hydrogel overlaid on MSC-seeded PLGA nanofibers, promoted the rapid formation of osteocyte-like cells with a phenotypic dendritic morphology, producing early osteocyte markers, including E11/gp38 (E11). Maturation of these osteocyte-like cells was further confirmed by the observation of significant dentin matrix protein 1 (DMP1) throughout our bilayered scaffolds after 3 weeks, even when cultured in a medium without dexamethasone (DEX) or any other osteogenic supplements. These results demonstrate that these osteon-mimetic scaffolds, in presenting biochemical and topographical cues reminiscent of the forming osteon, can drive the formation of osteocyte-like cells in vitro from hBMSCs without the need for any osteogenic factor media supplementation.


Subject(s)
Biomimetic Materials , Mesenchymal Stem Cells , Nanofibers , Osteocytes , Osteogenesis , Tissue Scaffolds , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Humans , Osteogenesis/drug effects , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Osteocytes/cytology , Osteocytes/metabolism , Osteocytes/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Bone Morphogenetic Protein 6/chemistry , Bone Morphogenetic Protein 6/pharmacology , Bone Morphogenetic Protein 6/metabolism , Polyethylene Glycols/chemistry , Cell Differentiation/drug effects , Tissue Engineering/methods , Hydrogels/chemistry , Hydrogels/pharmacology
18.
J Orthop Translat ; 47: 161-175, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027344

ABSTRACT

Background: Zinc finger-containing transcription factor Osterix/Specificity protein-7 (Sp7) is an essential transcription factor for osteoblast differentiation. However, its functions in differentiated osteoblasts remain unclear and the effects of osteoblast-specific Sp7 deletion on osteocytes have not been sufficiently studied. Methods: Sp7 floxneo/floxneo mice, in which Sp7 expression was 30 % of that in wild-type mice because of disturbed splicing by neo gene insertion, and osteoblast-specific knockout (Sp7 fl/fl;Col1a1-Cre) mice using 2.3-kb Col1a1 enhanced green fluorescent protein (EGFP)-Cre were examined by micro-computed tomography (micro-CT), bone histomorphometry, serum markers, and histological analyses. The expression of osteoblast and osteocyte marker genes was examined by real-time reverse transcription (RT)-PCR analysis. Osteoblastogenesis, osteoclastogenesis, and regulation of the expression of collagen type I alpha 1 chain (Col1a1) were examined in primary osteoblasts. Results: Femoral trabecular bone volume was higher in female Sp7 floxneo/floxneo and Sp7 fl/fl;Col1a1-Cre mice than in the respective controls, but not in males. Bromodeoxyuridine (BrdU)-positive osteoblastic cells were increased in male Sp7 fl/fl;Col1a1-Cre mice, and osteoblast number and the bone formation rate were increased in tibial trabecular bone in female Sp7 fl/fl;Col1a1-Cre mice, although osteoblast maturation was inhibited in female Sp7 fl/fl;Col1a1-Cre mice as shown by the increased expression of an immature osteoblast marker gene, secreted phosphoprotein 1 (Spp1), and reduced expression of a mature osteoblast marker gene, bone gamma-carboxyglutamate protein/bone gamma-carboxyglutamate protein 2 (Bglap/Bglap2). Furthermore, alkaline phosphatase activity was increased but mineralization was reduced in the culture of primary osteoblasts from Sp7 fl/fl;Col1a1-Cre mice. Therefore, the accumulated immature osteoblasts in Sp7 fl/fl;Col1a1-Cre mice was likely compensated for the inhibition of osteoblast maturation at different levels in males and females. Vertebral trabecular bone volume was lower in both male and female Sp7 fl/fl;Col1a1-Cre mice than in the controls and the osteoblast parameters and bone formation rate in females were lower in Sp7 fl/fl;Col1a1-Cre mice than in Sp7 fl/fl mice, suggesting differential regulatory mechanisms in long bones and vertebrae. The femoral cortical bone was thin and porous in Sp7 floxneo/floxneo and Sp7 fl/fl;Col1a1-Cre mice of both sexes, the number of canaliculi was reduced, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL)-positive lacunae and the osteoclasts were increased, whereas the bone formation rate was similar in Sp7 fl/fl;Col1a1-Cre and Sp7 fl/fl mice. The serum levels of total procollagen type 1 N-terminal propeptide (P1NP), a marker for bone formation, were similar, while those of tartrate-resistant acid phosphatase 5b (TRAP5b), a marker for bone resorption, were higher in Sp7 fl/fl;Col1a1-Cre mice. Osteoblasts were less cuboidal, the expression of Col1a1 and Col1a1-EGFP-Cre was lower in Sp7 fl/fl;Col1a1-Cre mice, and overexpression of Sp7 induced Col1a1 expression. Conclusions: Our studies indicated that Sp7 inhibits the proliferation of immature osteoblasts, induces osteoblast maturation and Col1a1 expression, and is required for osteocytes to acquire a sufficient number of processes for their survival, which prevents cortical porosity. The translational potential of this article: This study clarified the roles of Sp7 in differentiated osteoblasts in proliferarion, maturation, Col1a1 expression, and osteocyte process formation, which are required for targeting SP7 in the development of therapies for osteoporosis.

19.
Endocrinology ; 165(8)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39024412

ABSTRACT

Osteocytes are embedded in lacunae and connected by canaliculi (lacuno-canalicular network, LCN). Bones from mice with X-linked hypophosphatemia (Hyp), which have impaired production of 1,25 dihydroxyvitamin D (1,25D) and hypophosphatemia, have abnormal LCN structure that is improved by treatment with 1,25D or an anti-FGF23 targeting antibody, supporting roles for 1,25D and phosphate in regulating LCN remodeling. Bones from mice lacking the vitamin D receptor (VDR) in osteocytes (Vdrf/f;Dmp1Cre+) and mice lacking the sodium phosphate transporter 2a (Npt2aKO), which have low serum phosphate with high serum 1,25D, have impaired LCN organization, demonstrating that osteocyte-specific actions of 1,25D and hypophosphatemia regulate LCN remodeling. In osteoclasts, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) is critical for stimulating bone resorption. Since osteocytes also resorb matrix, we hypothesize that NFATc1 plays a role in 1,25D and phosphate-mediated LCN remodeling. Consistent with this, 1,25D and phosphate suppress Nfatc1 mRNA expression in IDG-SW3 osteocytes, and knockdown of Nfatc1 expression in IDG-SW3 cells blocks 1,25D- and phosphate-mediated suppression of matrix resorption gene expression and 1,25D- and phosphate-mediated suppression of RANKL-induced acidification of the osteocyte microenvironment. To determine the role of NFATc1 in 1,25D- and phosphate-mediated LCN remodeling in vivo, histomorphometric analyses of tibiae from mice lacking osteocyte-specific Nfatc1 in Vdrf/f;Dmp1Cre+ and Npt2aKO mice were performed, demonstrating that bones from these mice have decreased lacunar size and expression of matrix resorption genes, and improved canalicular structure compared to Vdrf/f;Dmp1Cre+ and Npt2aKO control. This study demonstrates that NFATc1 is necessary for 1,25D- and phosphate-mediated regulation of LCN remodeling.


Subject(s)
Bone Remodeling , Fibroblast Growth Factor-23 , NFATC Transcription Factors , Osteocytes , Phosphates , Vitamin D , Animals , Male , Mice , Bone Remodeling/drug effects , Familial Hypophosphatemic Rickets/metabolism , Familial Hypophosphatemic Rickets/genetics , Mice, Inbred C57BL , Mice, Knockout , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Osteocytes/metabolism , Osteocytes/drug effects , Phosphates/metabolism , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism , Vitamin D/pharmacology , Vitamin D/analogs & derivatives , Female
20.
J Bone Metab ; 31(2): 101-113, 2024 May.
Article in English | MEDLINE | ID: mdl-38886968

ABSTRACT

BACKGROUND: Yerba mate (YM, Ilex paraguariensis) consumption beneficially affects the bones. However, whether YM components exert their effect on bone cells directly remains elusive. METHODS: We evaluated how main YM components affect osteoblastic (MC3T3-E1) and osteocytic (MLO-Y4) cells in vitro when administered separately or in an aqueous extract. MC3T3-E1 and MLO-Y4 cells were exposed to three different experimental conditions: (1) Caffeine, chlorogenic acid, and their combinations; (2) Caffeine, rutin, and their combinations; (3) Aqueous YM extract. RESULTS: All polyphenol and caffeine concentrations as well as that of their tested combinations significantly increased MC3T3-E1 cell viability from 16.6% to 34.8% compared to the control. In MLO-Y4 cells, the lowest rutin and the two highest caffeine concentrations significantly increased cell viability by 11.9, 14.9, and 13.7%, respectively. While rutin and caffeine combinations tended to increase MLO-Y4 cell viability, different chlorogenic acid and caffeine combinations did not affect it. Finally, the aqueous YM extract significantly increased MLO-Y4, MC3T3-E1, and differentiated MC3T3-E1 cell viability compared to the control without treatment. CONCLUSIONS: YM components (rutin, chlorogenic acid, and caffeine) positively affected bone cells, mainly pre-osteoblast cells. Moreover, the aqueous YM extract significantly increased MLO-Y4, MC3T3-E1, and differentiated MC3T3-E1 cell viabilities indicating an additional relevant nutritional property of YM infusion. Further studies would be required to elucidate the underlying effector mechanism of YM on the bones and its relationship with previously described in vivo positive effects.

SELECTION OF CITATIONS
SEARCH DETAIL