Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.085
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1442046, 2024.
Article in English | MEDLINE | ID: mdl-39351524

ABSTRACT

Objective: To investigate the relationship between circulating receptor activator of nuclear factor-kappa B ligand (RANKL) levels and marrow adipose tissue in postmenopausal females. Methods: A total of 164 postmenopausal females were included in the study. Serum levels of osteoprotegerin (OPG) and RANKL were measured using ELISA kits. Body composition and bone mineral density (BMD) were assessed using dual-energy X-ray absorptiometry. Complex-based chemical shift imaging-based MRI was employed to evaluate the vertebral marrow proton density fat fraction (PDFF). A multivariate linear regression model was utilized to analyze the predictive effects of PDFF and BMD on circulating levels of OPG and RANKL. Results: Simple regression analysis showed significant associations among the marrow PDFF, BMD at either site, serum RANKL, and the RANKL/OPG ratio. In multivariate linear regression models, marrow PDFF was found to have a positive correlation (ß = 3.15, 95% CI 2.60 to 3.70) and BMD had negative correlations (ß = -0.200, 95% CI -0.348 to -0.051 for vertebral BMD; ß = -0.383, 95% CI -0.589 to -0.177 for total hip BMD; and ß =-0.393, 95% CI -0.598 to -0.188 for femoral neck BMD, all p < 0.01) with circulating soluble RANKL levels after adjusting for age, body mass index, physical activity, total fat mass, android/gynoid ratio, and lean mass. Similar results were observed for the RANKL/OPG ratio. Additionally, multivariate linear regression analyses revealed that marrow PDFF was a significant independent contributor of circulating soluble RANKL (ß = 1.34, 95% CI 1.10 to 1.58, p < 0.001) after further controlling for BMD. However, marrow PDFF or BMD had no associations with circulating levels of OPG after adjusting for all potential confounders mentioned above. Conclusions: Vertebral marrow fat fraction is independently associated with circulating soluble RANKL levels in postmenopausal females.


Subject(s)
Adipose Tissue , Bone Density , Bone Marrow , Osteoprotegerin , Postmenopause , RANK Ligand , Humans , Female , RANK Ligand/blood , Postmenopause/blood , Middle Aged , Bone Marrow/metabolism , Bone Marrow/diagnostic imaging , Osteoprotegerin/blood , Adipose Tissue/metabolism , Adipose Tissue/diagnostic imaging , Aged , Absorptiometry, Photon , Osteoporosis, Postmenopausal/blood , Osteoporosis, Postmenopausal/diagnostic imaging , Osteoporosis, Postmenopausal/metabolism , Body Composition , Biomarkers/blood
2.
Bone Rep ; 22: 101802, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39297019

ABSTRACT

Purpose: Osteoprotegerin (OPG) plays an important role in the inhibition of osteoclast formation and bone resorption. Studies have reported lower OPG levels among women with a pathogenic variant (mutation) in the BRCA1 gene, and thus, may be at greater risk for skeletal bone loss. Thus, we investigated the association between circulating OPG and two validated markers of bone health: 1) bone fracture risk score (FRAX) and 2) bone mineral density (BMD), among BRCA mutation carriers. Methods: Women with a blood sample and clinical data were included in this analysis. An enzyme-linked immunosorbent assay (ELISA) was used to quantify serum OPG (pg/mL) and the 10-year risk of major osteoporotic fracture (FRAXmajor) and hip fracture (FRAXhip) (%) was estimated using a web-based algorithm. For a subset of women, lumbar spine BMD was previously assessed by dual x-ray absorptiometry (DXA)(T-score). A Mann-Whitney U test was used to evaluate the association between OPG and FRAX score, while linear regression was used to assess the association of OPG and BMD. Results: Among 701 women with a BRCA1 mutation, there was a significant (and unexpected) positive association between OPG levels and FRAX score (FRAXmajor: 2.12 (low OPG) vs. 2.53 (high OPG) P < 0.0001; FRAXhip: 0.27 (low OPG) vs. 0.44 (high OPG) P < 0.0001). In a subset with BMD measurement (n = 50), low serum OPG was associated with a significantly lower BMD T-score (-1.069 vs. -0.318; P = 0.04). Conclusion: Our findings suggest that women with inherently lower OPG may be at risk of lower BMD, the gold standard marker of bone disease. Due to the young age of our cohort, on-going studies are warranted to re-evaluate the association between OPG and FRAX in BRCA mutation carriers.

3.
Int J Biol Macromol ; 280(Pt 1): 135662, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39284477

ABSTRACT

The use of nanotechnology and polymer-based carriers in osteoporosis treatment offers promising avenues for targeted drug delivery and enhanced therapeutic efficacy. In this study, we developed a novel nanoconjugate composed of Chitosan (CH), Chondroitin Sulfate (CS), and Daidzein (DZ) to treat glucocorticoid-induced osteoporosis in an in vivo zebrafish model. The CH-CS-DZ nanoconjugate were synthesized using the ionic gelation method, with a CH: CS ratio of 1:1 and a 3 % DZ concentration was identified as optimal for further analysis. The resulting nanoparticles exhibited a particle size of 401.2 ± 0.87 nm. The polydispersity index (PDI) and zeta potential of nanoconjugate were of 0.147 ± 0.04 and 43.55 ± 0.68 mV respectively. Drug release studies demonstrated that 79.66 ± 4.04 % of DZ was released under physiological conditions (pH 7.5) after 96 h, indicating a sustained release profile beneficial for prolonged therapeutic effects. In vivo, studies using zebrafish larvae revealed a significant reduction in oxidative stress and apoptosis in the CH-CS-DZ treated group compared to the glucorticoid dexamethasone (Dex) treated group. Specifically, reactive oxygen species (ROS) levels were reduced, and lipid peroxidation was markedly decreased (p < 0.001) in the CH-CS-DZ treated group. Additionally, the survival and hatching rates of CH-CS-DZ-treated larvae were 94 % and 95 %, respectively, significantly higher than those in the Dex-treated group. The CH-CS-DZ nanoconjugate also restored bone mineralization, as evidenced by a significant increase in calcium deposition (p < 0.001) and alkaline phosphatase (ALP) activity (122 ± 0.4 U/L), compared to the Dex group (84 ± 0.7 U/L). Gene expression analysis showed upregulation of OPG and ALP and downregulation of RANKL and RUNX2b, further indicating the anti-osteoporotic potential of the CH-CS-DZ nanoconjugates. These findings suggest that polymer-based nanoconjugates like CH-CS-DZ can effectively mitigate osteoporosis through targeted delivery and sustained release, offering a potent strategy for bone health restoration.

4.
Prostaglandins Leukot Essent Fatty Acids ; 203: 102639, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39270488

ABSTRACT

Gallein, a small molecule related to fluorescein, is established as an inhibitor of Gßγ subunits to inhibit G protein (Gs) signaling. This agent is providing a potential therapeutic strategy to ameliorate organ dysfunctions especially involved in inflammation, however; the effects on bone metabolism have not yet been clarified. Prostaglandins (PGs) play important roles as autacoids including osteoblasts, and d-type prostanoid (DP) receptor, a member of G protein-coupled receptor specific to PGD2, is expressed on osteoblasts. We previously reported that prostaglandin D2 (PGD2) induces the syntheses of osteoprotegerin (OPG) and interleukin-6 (IL-6), essential factors in bone remodelling process, and p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/p42 MAPK are involved in the signal transduction of PGD2 in osteoblast-like MC3T3-E1 cells. Thus, we investigated in this study that the effect and the underlying mechanism of gallein, an inhibitor Gßɤ subunits, on the syntheses of OPG and IL-6 induced by PGD2 in these cells. The cultured cells were treated with gallein or fluorescein, a structurally related compound inactive to Gßɤ subunits, and subsequently stimulated with PGD2. Not fluorescein but gallein amplified the PGD2-stimulated releases of OPG and IL-6. Gallein enhanced the PGD2-upregulated mRNA expression levels of OPG and IL-6. Regarding the signaling mechanism, gallein did not affect the PGD2-induced phosphorylation of p38 MAPK, JNK, or p42 MAPK. In conclusion, gallein upregulates the PGD2-stimulated syntheses of OPG and IL-6 by the specific effect to inhibit Gßγ subunits in osteoblasts, but the effect is not exerted at the upstream of p38 MAPK, JNK, or p44/p42 MAPK activation.

5.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(5): 593-608, 2024 Oct 01.
Article in English, Chinese | MEDLINE | ID: mdl-39304503

ABSTRACT

OBJECTIVES: This study aimed to investigate the protective effect and mechanism of carvacrol hydrogel on the alveolar bone in rats with periodontitis. METHODS: A thermosensitive hydrogel supported by carvacrol was prepared using poloxamer and hydroxypropyl methyl cellulose as matrix. SD rats were randomly divided into blank group, periodontitis group, blank hydrogel group, and low-, medium-, and high-dose hydrogel groups. The periodontitis symptoms and the CT structure of the alveolar bone were observed. The changes in liver, spleen, kidney, and periodontal tissues were observed. The related indexes of bone metabolism in serum were detected. The expression of osteoprotegerin (OPG) and nuclear transcription factor-κB (NF-κB) pathway proteins was determined by Western blot. The levels of inflammatory factors were assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS: Carvacrol hydrogel had good slow release, biocompatibility, and cell adhesion. The periodontitis of rats in the carvacrol hydrogel group was significantly alleviated, the expression of OPG protein in gingival tissue was significantly increased (P<0.01), and the levels of receptor activator of NF-κB ligand (RANKL), receptor activator of NF-κB (RANK), NF-κB protein, and inflammatory factors were significantly decreased (P<0.01). CONCLUSIONS: Carvacrol hydrogel can regulate the OPG and NF-κB pathways, reduce alveolar bone absorption, and improve periodontal inflammation.


Subject(s)
Cymenes , Hydrogels , NF-kappa B , Osteoprotegerin , Periodontitis , Rats, Sprague-Dawley , Animals , Cymenes/pharmacology , Cymenes/therapeutic use , Rats , Periodontitis/drug therapy , Osteoprotegerin/metabolism , NF-kappa B/metabolism , Alveolar Process/drug effects , Alveolar Process/metabolism , Monoterpenes/pharmacology , Monoterpenes/therapeutic use
6.
J Family Med Prim Care ; 13(8): 3042-3048, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39228587

ABSTRACT

Introduction: Vitamin D's precise role in bone mineral density regulation remains elusive. Nevertheless, its deficiency is linked to increased bone turnover through the upregulation of RANK ligands by osteoblasts. This study aimed to (i) evaluate vitamin D status in young adults and (ii) assess the association between vitamin D deficiency and bone turnover markers receptor activator of nuclear factor-κB ligand (RANKL), RANK, and the osteoprotegerin (OPG) in determining bone mineral density. Materials and Methods: This cross-sectional study involved 474 participants from the East Khasi Hills district, Meghalaya. Vitamin D levels were measured using the UniCel DxI 800 system, while OPG, RANK, and RANKL were assessed through enzyme-linked immunosorbent assay (ELISA). Additionally, a whole-body dual X-ray absorptiometry (DEXA) scan determined bone mineral density. Vitamin D deficiency was categorised as <20 ng/ml, insufficiency as 20-29 ng/ml, and sufficiency as ≥30 ng/ml. Results: Findings indicated 54.6% vitamin D deficiency and 35.4% insufficiency in young adults. Osteoporosis affected 26%, and 67% exhibited osteopenia. A weak positive correlation was found between vitamin 25(OH) D and bone mineral density T score (r = 0.16, r2 = 0.02, P = 0.44). Additionally, moderately weak correlations were observed between serum vitamin D and OPG (r = -0.42, r2 = 0.18, P < 0.001) and between vitamin D and RANKL (r = -0.13, r2 = 0.01, P = 0.18). Conclusion: The study suggests that vitamin D deficiency diminishes bone mineral density by promoting RANKL-RANK osteoclastogenesis and upregulating OPG expression. As young adults form a significant workforce, creating awareness is crucial for maintaining optimal health.

7.
Curr Osteoporos Rep ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325366

ABSTRACT

PURPOSE OF REVIEW: This review aims to consolidate recent observations regarding extra-osseous roles of the RANK-RANKL-OPG axis, primarily within skeletal muscle. RECENT FINDINGS: Preclinical efforts to decipher a common signalling pathway that links the synchronous decline in bone and muscle health in ageing and disease disclosed a potential role of the RANK-RANKL-OPG axis in skeletal muscle. Evidence suggests RANKL inhibition benefits skeletal muscle function, mass, fibre-type switching, calcium homeostasis and reduces fall incidence. However, there still exists ambiguity regarding the exact mechanistic actions and subsequent functional improvements. Other potential RANK-RANKL-OPG extra-osseous roles include regulation of neural-inflammation and glucose metabolism. Growing evidence suggests the RANK-RANKL-OPG axis may play a regulatory role in extra-osseous tissues, especially in skeletal muscle. Targeting RANKL may be a novel therapy in ameliorating loss of muscle mass and function. More research is warranted to determine the causality of the RANK-RANKL-OPG axis in extra-osseous tissues, especially those affected by aging.

8.
Cancers (Basel) ; 16(16)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39199584

ABSTRACT

BACKGROUND: The receptor activator of the nuclear factor-kB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) pathway is a determining pathway in the balance between bone formation and resorption, and disruptions in this complex can affect bone metabolism. METHODS: This study analyzes the changes in RANKL, OPG, and 25(OH)D levels; the RANKL/OPG ratio; and other bone turnover markers (BTMs) from diagnosis to complete remission in children with acute lymphoblastic leukemia (ALL). This is a prospective observational cohort study, carried out at the Instituto Mexicano del Seguro Social, Mexico City, including 33 patients (4-17 years) with newly diagnosed B-cell ALL. The patients were treated with the HP09 chemotherapy protocol. Children who had previously been treated with corticosteroids were excluded. A peripheral blood sample at diagnosis and remission was collected to determine the 25(OH)D and BTM concentrations. RESULTS: Increased RANKL (p = 0.001) and osteocalcin (p < 0.001) levels and RANKL/OPG ratio (<0.001) and a decreased OPG level (p = 0.005) were observed at remission, predominantly in the high-risk (HR) relapse and vitamin D deficiency groups. A negative association between RANKL and OPG (r = -0.454, p = 0.008) was observed. CONCLUSIONS: we suggest that the RANKL/OPG ratio could serve as a bone remodeling marker in ALL patients.

9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(5): 655-666, 2024 May 28.
Article in English, Chinese | MEDLINE | ID: mdl-39174879

ABSTRACT

OBJECTIVES: Progressive bone resorption and destruction is one of the most critical clinical features of middle ear cholesteatoma, potentially leading to various intracranial and extracranial complications. However, the mechanisms underlying bone destruction in middle ear cholesteatoma remain unclear. This study aims to explore the role of parathyroid hormone-related protein (PTHrP) in bone destruction associated with middle ear cholesteatoma. METHODS: A total of 25 cholesteatoma specimens and 13 normal external auditory canal skin specimens were collected from patients with acquired middle ear cholesteatoma. Immunohistochemical staining was used to detect the expressions of PTHrP, receptor activator for nuclear factor-kappa B ligand (RANKL), and osteoprotegerin (OPG) in cholesteatoma and normal tissues. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the presence of TRAP positive multi-nucleated macrophages in cholesteatoma and normal tissues. Mono-nuclear macrophage RAW264.7 cells were subjected to interventions, divided into a RANKL intervention group and a PTHrP+ RANKL co-intervention group. TRAP staining was used to detect osteoclast formation in the 2 groups. The mRNA expression levels of osteoclast-related genes, including TRAP, cathepsin K (CTSK), and nuclear factor of activated T cell cytoplasmic 1 (NFATc1), were measured using real-time polymerase chain reaction (real-time PCR) after the interventions. Bone resorption function of osteoclasts was assessed using a bone resorption pit analysis. RESULTS: Immunohistochemical staining showed significantly increased expression of PTHrP and RANKL and decreased expression of OPG in cholesteatoma tissues (all P<0.05). PTHrP expression was significantly positively correlated with RANKL, the RANKL/OPG ratio, and negatively correlated with OPG expression (r=0.385, r=0.417, r=-0.316, all P<0.05). Additionally, the expression levels of PTHrP and RANKL were significantly positively correlated with the degree of bone destruction in cholesteatoma (r=0.413, r=0.505, both P<0.05). TRAP staining revealed a large number of TRAP-positive cells, including multi-nucleated osteoclasts with three or more nuclei, in the stroma surrounding the cholesteatoma epithelium. After 5 days of RANKL or PTHrP+RANKL co-intervention, the number of osteoclasts was significantly greater in the PTHrP+RANKL co-intervention group than that in the RANKL group (P<0.05), with increased mRNA expression levels of TRAP, CTSK, and NFATc1 (all P<0.05). Scanning electron microscopy of bone resorption pits showed that the number (P<0.05) and size of bone resorption pits on bone slices were significantly greater in the PTHrP+RANKL co-intervention group compared with the RANKL group. CONCLUSIONS: PTHrP may promote the differentiation of macrophages in the surrounding stroma of cholesteatoma into osteoclasts through RANKL induction, contributing to bone destruction in middle ear cholesteatoma.


Subject(s)
Bone Resorption , Cell Differentiation , Cholesteatoma, Middle Ear , Macrophages , Osteoclasts , Osteoprotegerin , Parathyroid Hormone-Related Protein , RANK Ligand , Animals , Humans , Male , Mice , Bone Resorption/metabolism , Cholesteatoma, Middle Ear/metabolism , Cholesteatoma, Middle Ear/pathology , Macrophages/metabolism , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Osteoclasts/metabolism , Osteoprotegerin/metabolism , Parathyroid Hormone-Related Protein/metabolism , RANK Ligand/metabolism , RANK Ligand/genetics , RAW 264.7 Cells
10.
Adv Biol (Weinh) ; : e2300653, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164219

ABSTRACT

Clinical complications frequently follow polytrauma and bleeding fractures, increasing the risk of delayed fracture healing and nonunions, especially in aged patients. Therefore, this study examines age's impact on fracture repair with and without severe bleeding in mice. Young (17-26 weeks) and aged (64-72 weeks) male C57BL/6J mice (n = 72 in total, n = 6 per group) are allocated into 3 groups: the fracture group (Fx) undergoes femur osteotomy stabilized via external fixator, the combined trauma group (THFx) additionally receives pressure-controlled trauma hemorrhage (TH) and Sham animals are implanted with catheter and fixator without blood loss or osteotomy. Femoral bones are evaluated histologically 24 h and 3 weeks post-trauma, while RANKL/OPG and ß-CTx are measured systemically via ELISA after 3 weeks. Aging results in less mineralized bone and fewer osteoclasts within the fracture of aged mice in contrast to young groups after three weeks. Systemically, aged animals exhibit increased RANKL and OPG levels after fracture compared to their young counterparts. The RANKL/OPG ratio rises in aged Fx animals compared to young mice, with a similar trend in THFx groups. In conclusion, age has an effect during the later course of fracture healing on the cellular and systemic levels.

11.
Clin Orthop Surg ; 16(4): 661-668, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092303

ABSTRACT

Background: Periprosthetic osteolysis is a prevalent complication following total ankle arthroplasty (TAA), implicating various cytokines in osteoclastogenesis as pivotal in this process. This study aimed to evaluate the relationship between osteolysis and the concentrations of osteoclastogenesis-related cytokines in synovial fluid and investigate its clinical value following TAA. Methods: Synovial fluid samples from 23 ankles that underwent revision surgery for osteolysis following TAA were analyzed as the osteolysis group. As a control group, we included synovial fluid samples obtained from 23 ankles during primary TAA for osteoarthritis. The receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio in these samples was quantified using sandwich enzyme-linked immunosorbent assay techniques, and a bead-based multiplex immunoassay facilitated the detection of specific osteoclastogenesis-related cytokines. Results: RANKL levels averaged 487.9 pg/mL in 14 of 23 patients in the osteolysis group, with no detection in the control group's synovial fluid. Conversely, a significant reduction in OPG levels was observed in the osteolysis group (p = 0.002), resulting in a markedly higher mean RANKL/OPG ratio (0.23) relative to controls (p = 0.020). Moreover, the osteolysis group had increased concentrations of various osteoclastogenesis-related cytokines (tumor necrosis factor-α, interleukin [IL]-1ß, IL-6, IL-8, IP-10, and monocyte chemotactic protein-1) in the synovial fluid relative to the control group. Conclusions: Our results demonstrated that periprosthetic osteolysis was associated with osteoclastogenesis activation through an elevated RANKL/OPG ratio following TAA. We assume that RANKL and other osteoclastogenesis-related cytokines in the synovial fluid have clinical value as a potential marker for the development and progression of osteolysis following TAA.


Subject(s)
Arthroplasty, Replacement, Ankle , Biomarkers , Osteolysis , Osteoprotegerin , RANK Ligand , Synovial Fluid , Humans , Synovial Fluid/metabolism , Synovial Fluid/chemistry , Osteolysis/metabolism , Osteolysis/etiology , Male , Female , RANK Ligand/metabolism , Aged , Middle Aged , Arthroplasty, Replacement, Ankle/adverse effects , Osteoprotegerin/metabolism , Osteoprotegerin/analysis , Biomarkers/metabolism , Biomarkers/analysis , Aged, 80 and over , Cytokines/metabolism , Cytokines/analysis , Reoperation
12.
Cell Biochem Funct ; 42(6): e4107, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39154288

ABSTRACT

Despite their diverse physiologies and roles, the heart, skeletal muscles, and smooth muscles all derive from a common embryonic source as bones. Moreover, bone tissue, skeletal and smooth muscles, and the heart share conserved signaling pathways. The maintenance of skeletal health is precisely regulated by osteocytes, osteoblasts, and osteoclasts through coordinated secretion of bone-derived factors known as osteokines. Increasing evidence suggests the involvement of osteokines in regulating atherosclerotic vascular disease. Therefore, this review aims to examine the evidence for the role of osteokines in atherosclerosis development and progression comprehensively. Specifically discussed are extensively studied osteokines in atherosclerosis such as osteocalcin, osteopontin, osteoprotegerin, and fibroblast growth factor 23. Additionally, we highlighted the effects of exercise on modulating these key regulators derived from bone tissue metabolism. We believe that gaining an enhanced understanding of how osteocalcin contributes to the process of atherosclerosis will enable us to develop targeted and comprehensive therapeutic strategies against diseases associated with its progression.


Subject(s)
Atherosclerosis , Osteocalcin , Humans , Atherosclerosis/metabolism , Atherosclerosis/pathology , Animals , Osteocalcin/metabolism , Osteopontin/metabolism , Fibroblast Growth Factors/metabolism , Osteoprotegerin/metabolism , Bone and Bones/metabolism , Bone and Bones/pathology
13.
medRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39108527

ABSTRACT

Osteoprotegerin (OPG) is a soluble decoy receptor for receptor activator of NF-ƙB ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL), and is increasingly recognised as a marker of poor prognosis in a number of diseases. Here we demonstrate that in Malaysian adults with falciparum and vivax malaria, OPG is increased, and its ligands TRAIL and RANKL decreased, in proportion to disease severity. In volunteers experimentally infected with P. falciparum and P. vivax, RANKL was suppressed, while TRAIL was unexpectedly increased, suggesting binding of OPG to RANKL prior to TRAIL. We also demonstrate that P. falciparum stimulates B cells to produce OPG in vitro, and that B cell OPG production is increased ex vivo in patients with falciparum, vivax and knowlesi malaria. Our findings provide further evidence of the importance of the OPG/RANKL/TRAIL pathway in pathogenesis of diseases involving systemic inflammation, and may have implications for adjunctive therapies. Further evaluation of the role of B cell production of OPG in host responses to malaria and other inflammatory diseases is warranted.

14.
Health Sci Rep ; 7(7): e2253, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39044846

ABSTRACT

Background: Osteoprotegerin (OPG) is a secretory glycoprotein known for its involvement in bone metabolism and immune regulation. Research has extended OPG's significance in cardiovascular diseases (CVDs). Elevated OPG levels have been associated with increased cardiovascular risks, prompting interest in its role as a potential biomarker. Main Body: This study summarizes several studies that investigated the relationship between OPG levels and the incidence of CVD. The studies indicate that higher plasma levels of OPG are associated with an increased incidence of all-cause death, cardiovascular death, and heart failure, even after adjusting for clinical confounders. Moreover, the findings suggest that OPG has the potential to serve as a predictive biomarker for adverse cardiovascular events in the patient population studied. The findings suggest that OPG could aid in risk stratification, allowing clinicians to identify high-risk patients who might benefit from intensified preventive measures or tailored therapeutic interventions. Therefore, early identification of individuals at risk for adverse cardiovascular events could lead to improved patient outcomes and reduced disease burden. Conclusions: OPG's role in bone health and immune regulation has expanded to potential use as a biomarker for adverse cardiovascular events in stable coronary artery disease (CAD) patients. Despite limitations, its association with cardiovascular risks highlights its importance in risk assessment and personalized interventions.

15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 777-782, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948285

ABSTRACT

As a member of the tumor necrosis factor receptor family, osteoprotegerin (OPG) is highly expressed in adults in the lung, heart, kidney, liver, spleen, thymus, prostate, ovary, small intestines, thyroid gland, lymph nodes, trachea, adrenal gland, the testis, and bone marrow. Together with the receptor activator of nuclear factor-κB (RANK) and the receptor activator of nuclear factor-κB ligand (RANKL), it forms the RANK/RANKL/OPG pathway, which plays an important role in the molecular mechanism of the development of various diseases. MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs performing regulatory functions in eukaryotes, with a size of about 20-25 nucleotides. miRNA genes are transcribed into primary transcripts by RNA polymerase, bind to RNA-induced silencing complexes, identify target mRNAs through complementary base pairing, with a single miRNA being capable of targeting hundreds of mRNAs, and influence the expression of many genes through pathways involved in functional interactions. In recent years, a large number of studies have been done to explore the mechanism of action of miRNA in diseases through miRNA isolation, miRNA quantification, miRNA spectrum analysis, miRNA target detection, in vitro and in vivo regulation of miRNA levels, and other technologies. It was found that miRNA can play a key role in the pathogenesis of osteoporosis, rheumatoid arthritis, and other diseases by targeting OPG. The purpose of this review is to explore the interaction between miRNA and OPG in various diseases, and to propose new ideas for studying the mechanism of action of OPG in diseases.


Subject(s)
MicroRNAs , Osteoprotegerin , Receptor Activator of Nuclear Factor-kappa B , Osteoprotegerin/metabolism , Osteoprotegerin/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptor Activator of Nuclear Factor-kappa B/genetics , RANK Ligand/metabolism , RANK Ligand/genetics , Neoplasms/genetics , Neoplasms/metabolism , Animals , Signal Transduction , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism
16.
Exp Ther Med ; 28(2): 325, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38979019

ABSTRACT

Osteoprotegerin (OPG) is a soluble decoy receptor for receptor activator of nuclear factor kB ligand (RANKL), and is implicated in the pathogenesis of atherosclerosis. The aim of the present study was to examine the hypothesis that serum OPG concentrations are increased in patients with stable coronary artery disease (CAD) at different serum levels of soluble RANKL (sRANKL). The study used a case-control design in which consecutively hospitalized individuals were recruited. Fasting blood samples were taken upon admission for serum testing. Participants with previously diagnosed CAD that was asymptomatic or had controlled symptoms constituted the stable CAD group, whereas patients with negative coronary computed tomography angiography results constituted the control non-CAD group. Exclusion criteria included recent acute coronary syndrome, severe heart failure, CAD-complicating autoimmune, blood or thyroid diseases, cancer, elevated temperature with or without infection, severe liver or kidney dysfunction, abnormal calcium metabolism, recent surgery and trauma history. A total of 118 individuals were included in the study. Smoothed plots generated using the recursive method and multivariate models showed that the incidence of stable CAD increased with serum OPG level up to the turning point of 18 pg/ml. This trend was observed at both high [odds ratio (OR), 1.61; 95% confidence interval (CI), 1.04-2.50; P=0.032) and low sRANKL concentrations (OR, 1.52; 95% CI, 1.06-2.17; P=0.022) after adjustment for cardiovascular risk factors. In conclusion, serum OPG levels ≤18 pg/ml are positively associated with stable CAD, regardless of sRANKL levels. In addition, at the same serum OPG level, higher sRANKL levels are associated with a greater incidence of stable CAD compared with lower sRANKL levels. This study identified the relationship between OPG, sRANKL, and stable CAD, and established the reference range for future clinical use.

17.
J Adv Res ; 62: 245-255, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906326

ABSTRACT

INTRODUCTION: Adipogenesis, the process of white adipose tissue expansion, plays a critical role in the development of obesity. Osteoprotegerin (OPG), known for its role in bone metabolism regulation, emerges as a potential regulator in mediating adipogenesis during obesity onset. OBJECTIVES: This study aims to elucidate the involvement of OPG in adipogenesis during the early phases of diet-induced obesity and explore its therapeutic potential in obesity management. METHODS: Using a diet-induced obesity model, we investigated OPG expression patterns in adipocytes and explored the mechanisms underlying its involvement in adipogenesis. We also assessed the effects of targeted silencing of OPG and recombinant OPG administration on obesity progression and insulin resistance. Additionally, the impact of electroacupuncture treatment on OPG levels and obesity management was evaluated in both animal models and human participants. RESULTS: OPG expression was prominently activated in adipocytes of white adipose tissues during the early phase of diet-induced obesity. Hyperlipidemia induced Cbfa1-dependent OPG transcription, initiating and promoting adipogenesis, leading to cell-size expansion and lipid storage. Intracellular OPG physically bound to RAR and released the PPARɤ/RXR complex, activating adipogenesis-associated gene expression. Targeted silencing of OPG suppressed obesity development, while recombinant OPG administration promoted disease progression and insulin resistance in obese mice. Electroacupuncture treatment suppressed obesity development in an OPG-dependent manner and improved obesity parameters in obese human participants. CONCLUSION: OPG emerges as a key regulator in mediating adipogenesis during obesity development. Targeting OPG holds promise for the prevention and treatment of obesity, as evidenced by the efficacy of electroacupuncture treatment in modulating OPG levels and managing obesity-related outcomes.


Subject(s)
Adipocytes , Adipogenesis , Obesity , Osteoprotegerin , Obesity/metabolism , Animals , Humans , Osteoprotegerin/metabolism , Mice , Male , Adipocytes/metabolism , Insulin Resistance , Mice, Inbred C57BL , Adipose Tissue, White/metabolism , Diet, High-Fat/adverse effects , Female , Adult
18.
Adv Healthc Mater ; : e2401037, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885525

ABSTRACT

Precision material design directed by cell biological processes represents a frontier in developing clinically translatable regenerative technologies. While understanding cell-material interactions on multipotent progenitor cells yields insights on target tissue differentiation, equally if not more important is the quantification of indirect multicellular interactions. In this work, the relationship of two material properties, phosphate content and stiffness, of a nanoparticulate mineralized collagen glycosaminoglycan scaffold (MC-GAG) in the expression of an endogenous anti-osteoclastogenic secreted protein, osteoprotegerin (OPG) by primary human mesenchymal stem cells (hMSCs) is evaluated. The phosphate content of MC-GAG requires the type III sodium phosphate symporter PiT-1/SLC20A1 for OPG expression, correlating with ß-catenin downregulation, but is independent of the effects of phosphate ion on osteogenic differentiation. Using three stiffness MC-GAG variants that do not differ significantly by osteogenic differentiation, it is observed that the softest material elicited ≈1.6-2 times higher OPG expression than the stiffer materials. Knockdown of the mechanosensitive signaling axis of YAP, TAZ, ß-catenin and combinations thereof in hMSCs on MC-GAG demonstrates that ß-catenin downregulation increases OPG expression by 1.5-fold. Taken together, these data constitute a roadmap for material properties that can used to suppress osteoclast activation via osteoprotegerin expression separately from the anabolic processes of osteogenesis.

19.
Calcif Tissue Int ; 115(2): 124-131, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878178

ABSTRACT

Depression and osteoporosis are common diseases in dialysis patients. In addition, patients with osteoporosis are more susceptible to depression. Contrary to previous anti-osteoporosis agents, denosumab and romosozumab could be used in dialysis patients and have similar action mechanisms for blocking RANKL. RANKL causes bone resorption after binding RANKL, but binding with OPG leads to suppress of bone resorption. In recent mice study, inhibition of RANKL with denosumab improved depressive-like phenotype. Besides, it was found that OPG was associated with depression. Therefore, this study aimed to investigate the association of depressive symptoms with RANKL and OPG in hemodialysis patients. We conducted a cross-sectional study with a total of 172 hemodialysis patients. The participants were measured for plasma RANKL, OPG, MMP-2, and MMP-9 levels. Logistic regression analysis was performed to evaluate the effect of RANKL and OPG on the presence of depressive symptoms. The depressive symptoms were observed in 90 (52.3%) subjects. RANKL tertile 3 had negative association with BDI score (ß - 4.527, 95% CI - 8.310 to - 0.743) in univariate analysis, and this association persisted even after multivariate adjustments (ß - 5.603, 95% CI - 9.715 to -1.491) in linear regression. In logistic regression between RANKL tertiles and depressive symptoms, RANKL tertile 3 had significantly lower unadjusted OR (0.40, 95% CI 0.19-0.86), and multivariate-adjusted OR (0.31, 95% CI 0.12-0.82) for depressive symptoms. OPG was not significantly associated with depressive symptoms. Higher plasma RANKL concentrations were significantly associated with lower depressive symptoms in HD patients.Trial registration WHO registry, No. KCT0003281, date: January 12, 2017.


Subject(s)
Depression , RANK Ligand , Renal Dialysis , Humans , RANK Ligand/blood , Female , Male , Renal Dialysis/adverse effects , Middle Aged , Depression/blood , Cross-Sectional Studies , Aged , Osteoprotegerin/blood , Osteoporosis/blood
20.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928140

ABSTRACT

Opinions on the effects of osteoprotegerin (OPG) have evolved over the years from a protein protecting the vasculature from calcification to a cardiovascular risk factor contributing to inflammation within the vascular wall. Nowadays, the link between OPG and angiotensin II (Ang II) appears to be particularly important. In this study, the endothelial function was investigated in OPG-knockout mice (B6.129.S4-OPG, OPG-) and wild-type (C57BL/6J, OPG+) mice under basic conditions and after Ang II exposure by assessing the endothelium-dependent diastolic response of aortic rings to acetylcholine in vitro. A further aim of the study was to compare the effect of Ang II on the expression of cytokines in the aortic wall of both groups of mice. Our study shows that rings from OPG- mice had their normal endothelial function preserved after incubation with Ang II, whereas those from OPG+ mice showed significant endothelial dysfunction. We conclude that the absence of OPG, although associated with a pro-inflammatory cytokine profile in the vascular wall, simultaneously protects against Ang II-induced increases in pro-inflammatory cytokines in the murine vascular wall. Our study also demonstrates that the absence of OPG can result in a decrease in the concentration of pro-inflammatory cytokines in the vascular wall after Ang II exposure. The presence of OPG is therefore crucial for the development of Ang II-induced inflammation in the vascular wall and for the development of Ang II-induced endothelial dysfunction.


Subject(s)
Angiotensin II , Endothelium, Vascular , Osteoprotegerin , Animals , Male , Mice , Acetylcholine/pharmacology , Angiotensin II/pharmacology , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Cytokines/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Mice, Inbred C57BL , Mice, Knockout , Osteoprotegerin/metabolism , Osteoprotegerin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL