Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
1.
Arch Oral Biol ; 166: 106048, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39002180

ABSTRACT

OBJECTIVE: Loss of ovarian function in menopause is commonly associated with salivary gland dysfunction. The aim is to study the possible therapeutic effect of bone marrow mesenchymal stem cells (BM-MSCs) on the altered structure of the submandibular salivary glands (SMGs) of ovariectomized rats. DESIGN: Twenty-four female, adult, Wistar rats were used and distributed into three groups (8 rats/group). The control group included sham-operated rats. The ovariectomized group consisted of rats with removed ovaries. The third group consisted of ovariectomized rats received injections, via tail, of MSCs extracted from bone marrow of 3-weeks-old rat hind limb (BM-MSC group). Four weeks after BM-MSC transplantation, the bone mineral density (BMD) of the femur was detected. The SMG was dissected and processed for histological, immunohistochemical, and histomorphometric analyses. RESULTS: The ovariectomized rats depicted low BMD in the femur. The SMG acini revealed atrophy. The ductal and acinar cells depicted vacuolization and abnormal nuclear histology. GLUT1 immunostaining was decreased in SMG ducts. The BM-MSC group resumed the normal SMG histology and GLUT1 immunolabelling. CONCLUSIONS: BM-MSC therapy restored the normal SMG structure and GLUT1 immunostaining in the treated ovariectomized rats, suggesting improved glucose transporting function.


Subject(s)
Bone Density , Glucose Transporter Type 1 , Mesenchymal Stem Cell Transplantation , Ovariectomy , Rats, Wistar , Submandibular Gland , Animals , Female , Rats , Mesenchymal Stem Cell Transplantation/methods , Submandibular Gland/metabolism , Glucose Transporter Type 1/metabolism , Mesenchymal Stem Cells/metabolism , Immunohistochemistry , Femur , Bone Marrow Cells
2.
Eur J Med Chem ; 276: 116679, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39018923

ABSTRACT

The primary focus of bisphosphonate medications is on targeting human farnesyl pyrophosphate synthase (hFPPS), an essential regulator of mammalian isoprenoids. Yet, these drugs encounter limitations due to their restricted "druglike" properties and their effectiveness primarily in treating skeletal disorders. In this study, we synthesized novel non-bisphosphonate compounds, using 4,4'-(ethane-1,2-diylbis(oxy))bis(3-methoxybenzaldehyde) (1) as a starting compound, with the aim of targeting hFPPS through a mixed binding approach. Among the various compounds tested, compounds 4a and 4b exhibited significant inhibition of hFPPS activity, with IC50 values of 1.108 and 1.24 µM, respectively. Docking studies further revealed that both compounds bound within the allylic binding site and near the isopentenyl diphosphate (IPP) site within the hFPPS pocket. Molecular dynamic simulations were performed on the best docking pose of the most potent compound 4a to confirm the formation of a stable complex with hFPPS. In an in vivo study conducted on ovariectomized rats, various biochemical markers including osteocalcin, estradiol, osteoprotegerin, bone mineral content, and density were negatively impacted, while levels of bone specific alkaline phosphatase, receptor activator of nuclear factor kappa-Β ligand, serum/urinary calcium, and phosphate increased. Notably, compound 4a exhibited antiresorptive properties similar to zoledronate, effectively restoring most of the perturbed biochemical estimations. These findings suggest the potential of compound 4a, a non-bisphosphonate compound, as alternative therapeutic agents for combating osteoporosis.


Subject(s)
Enzyme Inhibitors , Geranyltranstransferase , Osteoporosis , Ovariectomy , Animals , Rats , Geranyltranstransferase/antagonists & inhibitors , Geranyltranstransferase/metabolism , Female , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Humans , Osteoporosis/drug therapy , Osteoporosis/metabolism , Structure-Activity Relationship , Molecular Docking Simulation , Diphosphonates/pharmacology , Diphosphonates/chemistry , Diphosphonates/chemical synthesis , Molecular Structure , Rats, Sprague-Dawley , Dose-Response Relationship, Drug
3.
J Food Sci ; 89(3): 1791-1803, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38317402

ABSTRACT

Bone broth has recently gained worldwide recognition as a superfood that supplements several nutrients lacking in modern human diets; however, little is known of its efficacy on osteoporosis. Therefore, we aimed to identify the components of chicken-vegetable bone broth (CVBB) that are associated with osteoporosis prevention and verified the efficacy of these components using in vivo studies. In biochemical and cell biological experiments, CVBB was fractionated using ion exchange chromatography (IEC), and the effect of each IEC fraction on osteoclast differentiation was evaluated based on tartrate-resistant acid phosphatase (TRAP) activity, TRAP staining, and quantitative polymerase chain reaction analysis using mouse macrophage-like cells (RAW264 cell). In animal experiments, an ovariectomized (OVX) rat model was generated, followed by whole bone broth (OVX/CVBB) or IEC fraction (OVX/CVBB-Ext) administration and bone structural parameter characterization of OVX rat tibia based on micro-CT. Four CVBB fractions were obtained using IEC, and the fraction containing both hyaluronan and chondroitin sulfate (CVBB-Ext) led to the maximum inhibition of RAW264 cell differentiation. CVBB-Ext downregulated the expression of osteoclast differentiation marker genes. In animal experiments, the OVX group showed a clear decrease in bone density compared to that in the Sham operation group. The OVX/CVBB and OVX/CVBB-Ext groups showed increased bone mineral density and bone volume/tissue volume values compared to those in the OVX/control group. These results suggested that CVBB and CVBB-Ext slowed osteoporosis progression. Therefore, we conclude that hyaluronan and chondroitin sulfate in CVBB are key substances that impede osteoporosis progression. PRACTICAL APPLICATION: This study provides practical information on the effects of bone broth ingredients on osteoporosis to expand the current knowledge on the efficacy of bone broth, which is a widely consumed food. These results may help in the future development of bone broth as a dietary supplement for managing osteoporosis.


Subject(s)
Osteoporosis , Vegetables , Mice , Humans , Rats , Animals , Chondroitin Sulfates/pharmacology , Hyaluronic Acid/pharmacology , Chickens , Osteoporosis/metabolism , Bone Density
4.
J Pharm Biomed Anal ; 241: 115980, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38266455

ABSTRACT

Ovariectomy (OVX) is usually accompanied by the occurrence of metabolic syndrome. Previous studies have shown that Geng-Nian-Shu (GNS) plays an important regulatory role in perimenopausal syndrome (PMS) rats. GNS is a traditional Chinese medicine (TCM) prescription which composed of Suanzaoren Decoction and Ganmai Dazao Decoction in "Jingui Yaolue" and Siwu Decoction in "Heji Jufang". Recently, metabolomics analysis has been used to identify slight changes in the metabolic profile and to help understand disease progression and therapeutic interventions in PMS. However, the mechanism of GNS in the treatment of PMS is still unknown. We purposed to study the metabolic characteristics of PMS by serum and fecal metabolomics, and revealed the internal mechanism of GNS regulating ferroptosis against PMS. The PMS model was established by surgical removal of 4/5 ovaries of rats. HPLC-Q-TOF/MS was used to analyze the metabolomics of rat plasma and feces to explore the potential mechanism of GNS in PMS. The expression of ferroptosis-related proteins in rat ovaries was detected by tissue Prussian blue staining, Elisa kit and Western blotting. Cluster analysis of differential metabolites in plasma and feces between the control group and the model group showed that organic acids and their derivatives, lipids and lipid molecules were mainly disturbed during PMS in rats. After GNS administration, 17 differential metabolites were adjusted, involving several major pathways, such as the tricarboxylic acid (TCA) cycle, biosynthesis of amino acids and biosynthesis of unsaturated fatty acids. Further, we found that GNS affected ferroptosis in ovarian cells by regulating endogenous substances in OVX rats. Our study provides new insights into the mechanism of OVX-induced metabolic syndrome based on non-targeted metabolomics. It provides new ideas for the development and application of GNS and the diagnosis and treatment of PMS.


Subject(s)
Drugs, Chinese Herbal , Ferroptosis , Metabolic Syndrome , Female , Rats , Animals , Perimenopause , Metabolomics , Metabolome , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
5.
J Orthop Surg Res ; 18(1): 811, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904187

ABSTRACT

PURPOSE: In osteoporosis, the balance between osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) is disrupted. The osteogenic differentiation of bone marrow MSCs (BMSCs) is important for improving osteoporosis. The aim of this study was to explore the role and molecular mechanism of miR-210 in the balance of osteogenic/adipogenic differentiation of BMSCs in postmenopausal osteoporosis. METHODS: Postmenopausal osteoporosis rat models were constructed by ovariectomy (OVX). BMSCs were isolated from the femur in rats of Sham and OVX groups. MiR-210 was overexpressed and suppressed by miR-210 mimics and inhibitor, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the relative mRNA expression of miR-210, ephrin type-A receptor 2 (EPHA2), alkaline phosphatase (ALP), osterix (OSX), osteocalcin (Bglap), Runt-related transcription factor 2 (Runx2), peroxisome proliferator activated receptor gamma, and fatty acid binding protein 4 (FABP4) in each group of rat femoral tissues or BMSCs. Western blot was applied to detect the protein expression level of EPHA2 in rat femoral tissues and cells. Alizarin red S staining and oil red O staining were performed to assess the osteogenic and adipogenic differentiation of BMSCs, respectively. In addition, the targeting relationship between miR-210 and EPHA2 was verified by a dual luciferase gene reporter assay. RESULTS: The expression of miR-210 was significantly reduced in femoral tissues and BMSCs of OVX rats, and its low expression was associated with reduced bone formation. The osteogenic differentiation was enhanced in OVX rats treated with miR-210 mimic. Overexpression of miR-210 in transfected BMSCs was also found to significantly promote osteogenic differentiation and even inhibit adipogenic differentiation in BMSCs, while knockdown of miR-210 did the opposite. Further mechanistic studies showed that miR-210 could target and inhibit the expression of EPHA2 in BMSCs, thus promoting osteogenic differentiation and inhibiting adipogenic differentiation of BMSCs. CONCLUSION: MiR-210 promotes osteogenic differentiation and inhibits adipogenic differentiation of BMSCs by down-regulating EPHA2 expression. As it plays an important role in the osteogenic/adipogenic differentiation of osteoporosis, miR-210 can serve as a potential miRNA biomarker for osteoporosis.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Osteoporosis, Postmenopausal , Osteoporosis , Animals , Female , Rats , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cells, Cultured , Down-Regulation , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Receptor, EphA2/metabolism
6.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2749-2756, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282935

ABSTRACT

The present study aimed to investigate the effect of various adjuvant rice on the quality of rice-steamed Rehmanniae Radix(RSRR) with Japonica rice, millet, yellow rice, black rice, and glutinous rice as raw materials, and analyze the anti-osteoporosis effect of RSRR by the optimal adjuvant rice. On the basis of the established UPLC-MS/MS method for the determination of the content of catalpol and rehmannioside D, comprehensive weighted scoring method was employed to evaluate the effect of various auxiliary rice on the quality of RSRR with the content of catalpol and rehmannioside D, character score, and taste score as indicators to optimize adjuvant rice. The osteoporosis model was induced by ovariectomy in rats. SD rats were randomly divided into a sham operation group, a model group, a positive control group, and low-dose and high-dose groups of Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, and Epimedii Folium-RSRR. After treatment for 12 weeks, body weight, bone calcium content, and bone mineral density were mea-sured. The results showed that Japonica rice was selected as the optimal adjuvant due to the highest comprehensive score of RSRR steamed by Japonica rice. Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, as well as Epimedii Folium-RSRR, could improve osteoporosis by increasing bone calcium content and bone mineral density. RSRR was superior to Rehmanniae Radix in improving osteo-porosis. However, there was no significant difference between RSRR and steamed Rehmanniae Radix. This study confirmed that Japo-nica rice was the optimal adjuvant rice of RSRR and verified the anti-osteoporosis effect of RSRR, which laid a foundation for further research on the pharmacological action and mechanism of RSRR.


Subject(s)
Drugs, Chinese Herbal , Oryza , Osteoporosis , Rehmannia , Female , Rats , Animals , Chromatography, Liquid , Calcium , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Drugs, Chinese Herbal/pharmacology , Osteoporosis/drug therapy , Adjuvants, Pharmaceutic
7.
Gene ; 869: 147383, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37001571

ABSTRACT

Diosgenin (DIO) is an aglycone of steroid saponins acquired from plants, including Dioscorea alata, Smilax China, and Trigonella foenum graecum, acting as an anti-osteoporosis, anti-diabetic, anti-hyperlipidemic, anti-inflammatory. Recent studies have demonstrated that DIO reduces bone loss. This study aimed to investigate the effects of DIO on the gut microbiota (GM) of ovariectomized (OVX) osteoporotic rats. Female Sprague-Dawley rats were randomly divided into sham operation (sham + vehicle group) or ovariectomy. For 12 weeks, OVX rats were treated using a vehicle (OVX + vehicle group) and DIO (OVX + DIO group). Subsequently, ELISA was conducted to determine serum estradiol levels, micro-CT scanning was performed to evaluate bone quality, and feces were collected for metagenomics sequencing to examine the structure and function of GM. Raw reads were filtered to remove chimera sequences. Operational taxonomic units (OTUs) were clustered in the filtered reads. A Venn diagram analysis was conducted to study the common and unique OTUs in the sham + vehicle, OVX + vehicle, and OVX + DIO groups. LEfSe analysis was conducted to evaluate the specific GM of the three groups. The GM functions were analyzed using the KEGG and CAZy databases. After a 12-week treatment, DIO administration prevented OVX-induced weight gain and increased the estradiol levels. DIO treatment improved the bone microstructure and structural parameters of rat tibias. Metagenomics sequencing results identified 1139, 1207, and 1235 operational taxonomic units (OTUs) in the sham + vehicle, OVX + vehicle, and OVX + DIO groups, respectively. The percentage of common OTUs was 41.2%. Treatment with DIO restored the composition of GM in OVX rats by increasing the abundance of Coriobacteriia Adlercreutzia, Romboutsia, and Romboutsia_idealis and reducing the abundance of Betaproteobacteria, Gammaproteobacteria, Methanobacteria, Bacteroides, Phocaeicola, Alistipes, Bacteroids_uniformis, Bacteroids_xylanisolvens. The anti-osteoporosis effect of DIO can be regulated through environmental information processing, organismal Systems, Cellular Processes, human diseases, metabolism, and genetic information processing. Meanwhile, treatment with DIO improved GM homeostasis by increasing the metabolism of carbohydrates, other amino acids, and glycans and reducing translation, energy metabolism, and nucleotide metabolism. DIO can reduce bone loss by regulating the structural composition and function of GM, a novel strategy for preventing osteoporosis.


Subject(s)
Bone Diseases, Metabolic , Diosgenin , Gastrointestinal Microbiome , Osteoporosis , Female , Rats , Animals , Humans , Rats, Sprague-Dawley , Bone Density , Diosgenin/pharmacology , Diosgenin/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/metabolism , Estradiol/pharmacology , Ovariectomy
8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981378

ABSTRACT

The present study aimed to investigate the effect of various adjuvant rice on the quality of rice-steamed Rehmanniae Radix(RSRR) with Japonica rice, millet, yellow rice, black rice, and glutinous rice as raw materials, and analyze the anti-osteoporosis effect of RSRR by the optimal adjuvant rice. On the basis of the established UPLC-MS/MS method for the determination of the content of catalpol and rehmannioside D, comprehensive weighted scoring method was employed to evaluate the effect of various auxiliary rice on the quality of RSRR with the content of catalpol and rehmannioside D, character score, and taste score as indicators to optimize adjuvant rice. The osteoporosis model was induced by ovariectomy in rats. SD rats were randomly divided into a sham operation group, a model group, a positive control group, and low-dose and high-dose groups of Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, and Epimedii Folium-RSRR. After treatment for 12 weeks, body weight, bone calcium content, and bone mineral density were mea-sured. The results showed that Japonica rice was selected as the optimal adjuvant due to the highest comprehensive score of RSRR steamed by Japonica rice. Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, as well as Epimedii Folium-RSRR, could improve osteoporosis by increasing bone calcium content and bone mineral density. RSRR was superior to Rehmanniae Radix in improving osteo-porosis. However, there was no significant difference between RSRR and steamed Rehmanniae Radix. This study confirmed that Japo-nica rice was the optimal adjuvant rice of RSRR and verified the anti-osteoporosis effect of RSRR, which laid a foundation for further research on the pharmacological action and mechanism of RSRR.


Subject(s)
Female , Rats , Animals , Oryza , Chromatography, Liquid , Calcium , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Drugs, Chinese Herbal/pharmacology , Osteoporosis/drug therapy , Rehmannia , Adjuvants, Pharmaceutic
9.
Journal of Medical Biomechanics ; (6): E514-E520, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-987979

ABSTRACT

Objective To study changes in bone microstructure of osteoporotic rats by multiscale analysis. Methods A total of 20 5-month-old female SD rats were randomly divided into two groups, i.e., ovariectomy (OVX) group (n=12) and the SHAM group (n=8), respectively. The rats in OVX group were subjected to bilateral ovariectomy and became osteoporosis models after 8 weeks, while sham operation was performed for the SHAM group. Changes in microstructure of cortical bone and cancellous bone at tissue scale, and osteocyte lacunar-canalicular network (LCN) and extracellular matrix (ECM) at cell scale were quantitatively analyzed using Micro-CT and SR-Nano-CT. Results At tissue scale, the cross-sectional area of cortical bone in OVX group was significantly higher than that in SHAM group (P<0.05), and the bone mineral density (BMD) and thickness of cortical bone were not significantly different from those in SHAM group. The trabecular BMD, bone volume fraction, trabecular thickness and trabecular number in OVX group were significantly decreased in comparison with SHAM group (P<0.01), while the trabecular separation was significantly increased (P<0.01). At cell scale, there was no significant difference in the semiaxes of lacunae between OVX group and SHAM group, but the thickness of lacunae and the diameter of canaliculi in OVX group were significantly increased in comparison with SHAM group (P<0.05). At the same time, the porosity of cortical bone in OVX group was significantly higher than that in SHAM group at cell scale (P<0.05). Conclusions The bone microstructure in OVX group varied to different extents at tissue and cell scales. At tissue scale, the cancellous bone loss was severe, while the cortical bone had fewer changes. At cell scale, porosity of the lacunar-canalicular network significantly increased, which directly affected the BMD and strength of cortical bone. Multiscale analysis on changes in bone microstructure of OP rats has potential application value for clinical diagnosis and pathological analysis of osteoporosis.

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-988187

ABSTRACT

ObjectiveTo investigate the changes of endogenous metabolites in serum of ovariectomized rats and the effect of Erxiantang on them based on liquid chromatography-mass spectrometry(LC-MS). MethodTwenty-four healthy female SD rats were randomly divided into sham-operated group, model group and Erxiantang group(7.5 g·kg-1), with 8 rats in each group. Bilateral ovarian tissues were excised in the model and Erxiantang groups, and small pieces of adipose tissues were excised in the abdominal cavity of the sham-operated group bilaterally, and gastric administration was started 2 weeks after surgery, and equal volumes of distilled water were gavaged in the sham-operated and model groups. After 12 weeks of administration, blood was collected from abdominal aorta, and non-targeted metabonomics was performed on rat serum by LC-MS, and orthogonal partial least squares-discriminant analysis(OPLS-DA) was used to screen differential metabolites. Metabolic pathway analysis was performed based on Kyoto Encyclopedia of Genes and Genomes(KEGG), and the levels of key enzymes of metabolic pathways were verified by enzyme-linked immunosorbent assay(ELISA). ResultThe results of metabonomics showed that 82 differential metabolites between the model group and the sham-operated group were glycerophospholipids, fatty acyls, steroids and steroid derivatives, of which the most significant difference was glycerophospholipids. At the same time, Erxiantang could call back 65 out of 82 differential metabolites, of which 11 were statistically significant, mainly phosphatidylcholine(PC) and lysophosphatidylcholine(LysoPC) in glycerophospholipids, followed by corticosterone and 11-deoxycortisol in steroids and steroid derivatives. Metabolic pathway analysis showed that the pathways of glycerophospholipid metabolism and steroid hormone biosynthesis in model group were changed, and were recovered after the administration of Erxiantang. ELISA results showed that compared with the sham-operated group, serum levels of cholinephosphate cytidylytransferase(CCT), secretory phospholipase A2(sPLA2) and lysophosphatidylcholine acyltransferase(LPCAT), which were the key metabolic enzymes of glycerophospholipid metabolite PC and LysoPC, were significantly decreased in the model group(P<0.05, P<0.01), and choline phosphotransferase 1(CPT1) levels decreased but the difference was not statistically significant, compared with the model group, the levels of CCT, sPLA2 and CPT1 were significantly increased in Erxiantang group(P<0.01). In addition, compared with the sham-operated group, the levels of cholesterol(TC), triglyceride(TG) and low density lipoprotein cholesterol(LDL-C) were significantly increased in the model group(P<0.01), the high density lipoprotein cholesterol(HDL-C) level was decreased(P<0.05), compared with the model group, the levels of TC, TG and LDL-C were significantly decreased and the level of HDL-C was significantly increased in Erxiantang group(P<0.01). ConclusionEndogenous metabolites and related metabolic pathways in ovariectomized rats were altered, and Erxiantang can reverse some of the different metabolites and related pathways, such as regulating glycerophospholipid metabolism by regulating metabolic enzymes CCT, sPLA2 and CPT1 to increase the levels of PC and LysoPC, and then improve the pathological changes such as lipid metabolism disorder in ovariectomized rats.

SELECTION OF CITATIONS
SEARCH DETAIL