Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Protein Sci ; 33(7): e5064, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864722

ABSTRACT

Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.


Subject(s)
Bacterial Proteins , Pseudoalteromonas , Truncated Hemoglobins , Pseudoalteromonas/metabolism , Pseudoalteromonas/genetics , Pseudoalteromonas/chemistry , Kinetics , Truncated Hemoglobins/chemistry , Truncated Hemoglobins/metabolism , Truncated Hemoglobins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Molecular Dynamics Simulation , Antarctic Regions , Ligands
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928283

ABSTRACT

Epidemiological data suggest that moderate hyperoxemia may be associated with an improved outcome after traumatic brain injury. In a prospective, randomized investigation of long-term, resuscitated acute subdural hematoma plus hemorrhagic shock (ASDH + HS) in 14 adult, human-sized pigs, targeted hyperoxemia (200 < PaO2 < 250 mmHg vs. normoxemia 80 < PaO2 < 120 mmHg) coincided with improved neurological function. Since brain perfusion, oxygenation and metabolism did not differ, this post hoc study analyzed the available material for the effects of targeted hyperoxemia on cerebral tissue markers of oxidative/nitrosative stress (nitrotyrosine expression), blood-brain barrier integrity (extravascular albumin accumulation) and fluid homeostasis (oxytocin, its receptor and the H2S-producing enzymes cystathionine-ß-synthase and cystathionine-γ-lyase). After 2 h of ASDH + HS (0.1 mL/kgBW autologous blood injected into the subdural space and passive removal of 30% of the blood volume), animals were resuscitated for up to 53 h by re-transfusion of shed blood, noradrenaline infusion to maintain cerebral perfusion pressure at baseline levels and hyper-/normoxemia during the first 24 h. Immediate postmortem, bi-hemispheric (i.e., blood-injected and contra-lateral) prefrontal cortex specimens from the base of the sulci underwent immunohistochemistry (% positive tissue staining) analysis of oxidative/nitrosative stress, blood-brain barrier integrity and fluid homeostasis. None of these tissue markers explained any differences in hyperoxemia-related neurological function. Likewise, hyperoxemia exerted no deleterious effects.


Subject(s)
Brain , Hematoma, Subdural, Acute , Shock, Hemorrhagic , Animals , Swine , Hematoma, Subdural, Acute/metabolism , Hematoma, Subdural, Acute/etiology , Hematoma, Subdural, Acute/pathology , Shock, Hemorrhagic/metabolism , Brain/metabolism , Brain/pathology , Blood-Brain Barrier/metabolism , Immunohistochemistry , Oxidative Stress , Resuscitation/methods , Disease Models, Animal , Oxygen/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism
3.
Antioxidants (Basel) ; 13(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38671937

ABSTRACT

To date, little is known concerning the circulating levels of biochemically relevant metabolites (antioxidants, oxidative/nitrosative stress biomarkers, purines, and pyrimidines) in patients with primary myelofibrosis (PMF), a rare form of myeloproliferative tumor causing a dramatic decrease in erythropoiesis and angiogenesis. In this study, using a targeted metabolomic approach, serum samples of 22 PMF patients and of 22 control healthy donors were analyzed to quantify the circulating concentrations of hypoxanthine, xanthine, uric acid (as representative purines), uracil, ß-pseudouridine, uridine (as representative pyrimidines), reduced glutathione (GSH), ascorbic acid (as two of the main water-soluble antioxidants), malondialdehyde, nitrite, nitrate (as oxidative/nitrosative stress biomarkers) and creatinine, using well-established HPLC method for their determination. Results showed that PMF patients have dramatic depletions of both ascorbic acid and GSH (37.3- and 3.81-times lower circulating concentrations, respectively, than those recorded in healthy controls, p < 0.0001), accompanied by significant increases in malondialdehyde (MDA) and nitrite + nitrate (4.73- and 1.66-times higher circulating concentrations, respectively, than those recorded in healthy controls, p < 0.0001). Additionally, PMF patients have remarkable alterations of circulating purines, pyrimidines, and creatinine, suggesting potential mitochondrial dysfunctions causing energy metabolism imbalance and consequent increases in these cell energy-related compounds. Overall, these results, besides evidencing previously unknown serum metabolic alterations in PMF patients, suggest that the determination of serum levels of the aforementioned compounds may be useful to evaluate PMF patients on hospital admission for adjunctive therapies aimed at recovering their correct antioxidant status, as well as to monitor patients' status and potential pharmacological treatments.

4.
Int J Fertil Steril ; 18(2): 108-114, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38368512

ABSTRACT

BACKGROUND: Oxidative/nitrosative stress in the oocyte microenvironment could have an impact on intracytoplasmic sperm injection (ICSI) outcomes. The presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) can stimulate the secretion of pro-inflammatory cytokines, leading to chronic inflammation and potentially affecting embryo as well as oocyte quality. This study aimed to examine the relationship of lipid peroxidation [measured by the malondialdehyde (MDA) assay] with protein carbonyl [measured by the 2,4 dinitrophenylhydrazine (DNPH) assay] levels in cumulus cells (CCs), as well as nitric oxide (NO), peroxynitrite (ONOO-), and C-reactive protein (CRP) levels in follicular fluid (FF). The potential relationship of these levels with ICSI outcome was also evaluated. MATERIALS AND METHODS: In this prospective study, 63 FF samples and their corresponding CCs were collected for ICSI procedures. Spectrophotometry was used to assess levels of DNPH, MDA, NO, and ONOO-. CRP levels were evaluated using an immunoturbidimetric assay. RESULTS: The patients under 37 years with normal ovarian reserve had significantly lower levels of MDA, DNPH, NO, ONOO-, and CRP compared to those over 37 years. Additionally, we observed higher levels of MDA, DNPH, NO, ONOO-, and CRP in the group with an oocyte maturity rate of less than 60%. No significant difference was observed between the DNPH levels and factors such as infertility duration, embryo quality, pregnancy, or the number of retrieved oocytes. A higher level of MDA, NO, ONOO-, and CRP was found to be significantly related to the lower number of retrieved oocytes, longer periods of infertility, poor embryo quality, and negative pregnancy outcomes. CONCLUSION: Oxidative/nitrosative stress, linking to inflammation in the oocyte microenvironment, can be considered as a potentially useful biomarker for assessing the development and competence of oocytes and embryos and predicting ICSI outcomes.

5.
Pharmacol Res ; 196: 106931, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37722519

ABSTRACT

Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.


Subject(s)
Heart Failure , Humans , Heart Failure/drug therapy , Nitric Oxide/metabolism , Stroke Volume , Heart , Cyclic GMP/metabolism
6.
Life Sci ; 328: 121893, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37392778

ABSTRACT

Growing evidences suggest that excess generation of highly reactive free oxygen/nitrogen radicals (ROS/RNS) are largely due to hyperglycemia causes oxidative stress. Further, excess accumulation of ROS/RNS in cellular compartments aggravates the development and progression of diabetes and its associated complications. Impaired wound healing in diabetic condition is a known vital complication all around the world. Thus, an antioxidant agent having the potential for hindering the oxidative/nitrosative stress triggered diabetic skin complication is required. The present investigation was carried out to understand the impact of silica coated gold nanoparticle (Au@SiO2 NPs) on high glucose (HG)-induced keratinocyte complications. We demonstrated that HG environment enhanced the ROS and RNS accumulations and reduced in cellular antioxidant capacities in keratinocte cells, however, Au@SiO2 NPs treatment restored the HG effect. Furthermore, excess production of ROS/RNS was associated with mitochondrial dysfunction, characterized by loss of mitochondrial membrane potential (ΔΨm), and increased in mitochondrial mass, which was restored by Au@SiO2 NPs treatment in keratinocyte cells. In addition, HG-induced excess production of ROS/RNA caused an increased in the biomolecules damage including lipid peroxidation (LPO), and protein carbonylation (PC), 8-oxoguanine DNA glycosylase-1 (OGG1) expression and increased 8-hydroxydeoxyguanosine (8-OHdG) accumulations in DNA, leading to activation of ERK1/2MAPK, AKT and tuberin pathway, inflammatory reaction, and finally apoptotic cell death. In conclusion, our findings showed that Au@SiO2 NPs treatment improved the HG-induced keratinocytes injury by suppressing the oxidative/nitrosative stress, elevating the antioxidant defence system, thereby inhibiting the inflammatory mediators and apoptosis, which may be a therapeutic cure for the diabetic keratinocyte problems.


Subject(s)
Diabetes Mellitus , Metal Nanoparticles , Nanoparticles , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Silicon Dioxide/toxicity , Silicon Dioxide/metabolism , Gold/pharmacology , Signal Transduction , Metal Nanoparticles/toxicity , Oxidative Stress , Diabetes Mellitus/metabolism , Keratinocytes/metabolism , Apoptosis
7.
Heliyon ; 9(7): e17385, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449181

ABSTRACT

The main aim of this study was to evaluate the cytotoxic effects of chronic alcohol consumption on various regions of diabetic brain and preventive role of GTE. Clinical, experimental and histopathological observations indicate chronic, excessive alcohol consumption aggravates the free radical-mediated oxidative and nitrosative stress in several tissues including brain. Treatment with Epigallocatechin gallate (EGCG) significantly reduced the levels of oxidative/nitrosative stress paradigms, increased glutathione (GSH) levels and enhanced the activities of antioxidant enzymes. Histopathology evaluation revealed the possible influence of EGCG in reversing alcohol exacerbated diabetes-induced damage in cortex, cerebellum and hippocampus of brain. Furthermore, these studies have provided evidence to show how EGCG can exactly occupy the position in functional sites of nNOS (neuronal nitric oxide synthase) and induce a conformational change, inhibition of enzymatic activity and prevention of neurodegeneration/necrotic changes of tissue, in comparison with the rosiglitazone and glibenclamide. To summarise, this research has offered useful information on the action of EGCG that would provide potential protection against ethanol exacerbated diabetic brain damageand additional evidence for the use of EGCG as a lead compound for drug discovery.

8.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445884

ABSTRACT

In a previous study, we showed that various low-molecular-weight compounds in follicular fluid (FF) samples of control fertile females (CFF) have different concentrations compared to those found in FF of infertile females (IF), before and after their categorization into different subgroups, according to their clinical diagnosis of infertility. Using the same FF samples of this previous study, we here analyzed the FF concentrations of free and bound bilirubin and compared the results obtained in CFF, IF and the different subgroups of IF (endometriosis, EM, polycystic ovary syndrome, PCOS, age-related reduced ovarian reserve, AR-ROR, reduced ovarian reserve, ROR, genetic infertility, GI and unexplained infertility, UI). The results clearly indicated that CFF had lower values of free, bound and total bilirubin compared to the respective values measured in pooled IF. These differences were observed even when IF were categorized into EM, PCOS, AR-ROR, ROR, GI and UI, with EM and PCOS showing the highest values of free, bound and total bilirubin among the six subgroups. Using previous results of ascorbic acid, GSH and nitrite + nitrate measured in the same FF samples of the same FF donors, we found that total bilirubin in FF increased as a function of decreased values of ascorbic acid and GSH, and increased concentrations of nitrite + nitrate. The values of total bilirubin negatively correlated with the clinical parameters of fertilization procedures (number of retrieved oocytes, mature oocytes, fertilized oocytes, blastocysts, high-quality blastocysts) and with clinical pregnancies and birth rates. Bilirubin concentrations in FF were not linked to those found in serum samples of FF donors, thereby strongly suggesting that its over production was due to higher activity of heme oxygenase-1 (HO-1), the key enzyme responsible for bilirubin formation, in granulosa cells, or cumulus cells or oocytes of IF and ultimately leading to bilirubin accumulation in FF. Since increased activity of HO-1 is one of the main enzymatic intracellular mechanisms of defense towards external insults (oxidative/nitrosative stress, inflammation), and since we found correlations among bilirubin and oxidative/nitrosative stress in these FF samples, it may reasonably be supposed that bilirubin increase in FF of IF is the result of protracted exposures to the aforementioned insults evidently playing relevant roles in female infertility.


Subject(s)
Infertility, Female , Polycystic Ovary Syndrome , Pregnancy , Humans , Female , Infertility, Female/metabolism , Follicular Fluid/metabolism , Antioxidants/metabolism , Nitric Oxide/metabolism , Polycystic Ovary Syndrome/metabolism , Nitrates/metabolism , Nitrites/metabolism , Fertilization in Vitro , Oocytes/metabolism , Outcome Assessment, Health Care , Bilirubin/metabolism , Ascorbic Acid/metabolism
9.
Mol Biol Rep ; 50(6): 5273-5282, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37145211

ABSTRACT

BACKGROUND: Commensal bacteria secrete metabolites that reach distant cancer cells through the circulation and influence cancer behavior. Deoxycholic acid (DCA), a hormone-like metabolite, is a secondary bile acid specifically synthesized by intestinal microbes. DCA may have both pro- and antineoplastic effects in cancers. METHODS AND RESULTS: The pancreatic adenocarcinoma cell lines, Capan-2 and BxPC-3, were treated with 0.7 µM DCA, which corresponds to the reference concentration of DCA in human serum. DCA influenced the expression of epithelial to mesenchymal transition (EMT)-related genes, significantly decreased the expression level of the mesenchymal markers, transcription factor 7- like 2 (TCF7L2), snail family transcriptional repressor 2 (SLUG), CLAUDIN-1, and increased the expression of the epithelial genes, zona occludens 1 (ZO-1) and E-CADHERIN, as shown by real-time PCR and Western blotting. Consequently, DCA reduced the invasion capacity of pancreatic adenocarcinoma cells in Boyden chamber experiments. DCA induced the protein expression of oxidative/nitrosative stress markers. Moreover, DCA reduced aldehyde dehydrogenase 1 (ALDH1) activity in an Aldefluor assay and ALDH1 protein level, suggesting that DCA reduced stemness in pancreatic adenocarcinoma. In Seahorse experiments, DCA induced all fractions of mitochondrial respiration and glycolytic flux. The ratio of mitochondrial oxidation and glycolysis did not change after DCA treatment, suggesting that cells became hypermetabolic. CONCLUSION: DCA induced antineoplastic effects in pancreatic adenocarcinoma cells by inhibiting EMT, reducing cancer stemness, and inducing oxidative/nitrosative stress and procarcinogenic effects such as hypermetabolic bioenergetics.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Epithelial-Mesenchymal Transition , Antineoplastic Agents/pharmacology , Deoxycholic Acid/pharmacology , Cell Line, Tumor , Pancreatic Neoplasms
11.
Front Cell Neurosci ; 17: 1133400, 2023.
Article in English | MEDLINE | ID: mdl-37020845

ABSTRACT

Introduction: Vitamin D3 (VD3) is a potent para/autocrine regulator and neurosteroid that can strongly influence nerve cell function and counteract the negative effects of glucocorticoid (GC) therapy. The aim of the study was to reveal the relationship between VD3 status and behavioral, structural-functional and molecular changes associated with GC-induced neurotoxicity. Methods: Female Wistar rats received synthetic GC prednisolone (5 mg/kg b.w.) with or without VD3 (1000 IU/kg b.w.) for 30 days. Behavioral, histological, physiological, biochemical, molecular biological (RT-PCR, Western blotting) methods, and ELISA were used. Results and discussion: There was no difference in open field test (OFT), while forced swim test (FST) showed an increase in immobility time and a decrease in active behavior in prednisolone-treated rats, indicative of depressive changes. GC increased the perikaryon area, enlarged the size of the nuclei, and caused a slight reduction of cell density in CA1-CA3 hippocampal sections. We established a GC-induced decrease in the long-term potentiation (LTP) in CA1-CA3 hippocampal synapses, the amplitude of high K+-stimulated exocytosis, and the rate of Ca2+-dependent fusion of synaptic vesicles with synaptic plasma membranes. These changes were accompanied by an increase in nitration and poly(ADP)-ribosylation of cerebral proteins, suggesting the development of oxidative-nitrosative stress. Prednisolone upregulated the expression and phosphorylation of NF-κB p65 subunit at Ser311, whereas downregulating IκB. GC loading depleted the circulating pool of 25OHD3 in serum and CSF, elevated VDR mRNA and protein levels but had an inhibitory effect on CYP24A1 and VDBP expression. Vitamin D3 supplementation had an antidepressant-like effect, decreasing the immobility time and stimulating active behavior. VD3 caused a decrease in the size of the perikaryon and nucleus in CA1 hippocampal area. We found a recovery in depolarization-induced fusion of synaptic vesicles and long-term synaptic plasticity after VD3 treatment. VD3 diminished the intensity of oxidative-nitrosative stress, and suppressed the NF-κB activation. Its ameliorative effect on GC-induced neuroanatomical and behavioral abnormalities was accompanied by the 25OHD3 repletion and partial restoration of the VD3-auto/paracrine system. Conclusion: GC-induced neurotoxicity and behavioral disturbances are associated with increased oxidative-nitrosative stress and impairments of VD3 metabolism. Thus, VD3 can be effective in preventing structural and functional abnormalities in the brain and behavior changes caused by long-term GC administration.

12.
Metab Brain Dis ; 38(4): 1127-1142, 2023 04.
Article in English | MEDLINE | ID: mdl-36723832

ABSTRACT

Metformin is an antidiabetic medicine widely used for management of type 2 diabetes with neuroprotective effects and promising potential to attenuate cognitive impairment. The efficacy of metformin in attenuation of Alzheimer's disease (AD) pathology has not been well-documented. Thus, this study was designed to assess protective effect of metformin against Aß1-40-instigared cognitive impairment. After intra-CA1 microinjection of aggregated Aß1-40, rats received oral metformin (50 and/or 200 mg/kg/day) for two weeks. Cognition function was analyzed in various behavioral tasks besides measurement of hippocampal oxidative stress, apoptosis, and inflammation along with H&E staining and 3-nitrotyrosine (3-NT) immunohistochemistry. Obtained data showed significant improvement of discrimination score in novel object recognition test, higher alternation score in Y maze, greater latency in passive avoidance task, and lower working and reference memory errors in radial arm maze in metformin-treated Aß-injured group. Moreover, metformin treatment attenuated hippocampal levels of nitrite, MDA, protein carbonyl, ROS, TNFα, GFAP, DNA fragmentation intensity, caspase 3 activity, AChE activity, and increased SOD activity and level of IL-10 as an anti-inflammatory factor. In addition, metformin treatment was associated with lower CA1 neuronal loss and it also decreased intensity of 3-NT immunoreactivity as an indicator of nitrosative stress. Taken together, obtained findings showed neuroprotective and anti-dementia property of metformin in male rats and this may have potential benefit in attenuation of cognitive decline and related complications in patients with neurodegenerative disorders such as AD besides diabetes mellitus.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Metformin , Rats , Male , Animals , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Nitrosative Stress , Rats, Wistar , Neuroinflammatory Diseases , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/complications , Oxidative Stress , Hippocampus/metabolism , Peptide Fragments/pharmacology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/complications , Maze Learning
13.
Biomolecules ; 13(2)2023 02 19.
Article in English | MEDLINE | ID: mdl-36830765

ABSTRACT

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome derived from metabolic disorders due to various liver failures. Clinically, HE is characterized by hyperammonemia, EEG abnormalities, and different degrees of disturbance in sensory, motor, and cognitive functions. The molecular mechanism of HE has not been fully elucidated, although it is generally accepted that HE occurs under the influence of miscellaneous factors, especially the synergistic effect of toxin accumulation and severe metabolism disturbance. This review summarizes the recently discovered cellular mechanisms involved in the pathogenesis of HE. Among the existing hypotheses, ammonia poisoning and the subsequent oxidative/nitrosative stress remain the mainstream theories, and reducing blood ammonia is thus the main strategy for the treatment of HE. Other pathological mechanisms mainly include manganese toxicity, autophagy inhibition, mitochondrial damage, inflammation, and senescence, proposing new avenues for future therapeutic interventions.


Subject(s)
Hepatic Encephalopathy , Hyperammonemia , Liver Failure , Humans , Hepatic Encephalopathy/drug therapy , Ammonia/metabolism , Liver Failure/complications , Autophagy , Hyperammonemia/metabolism
14.
CNS Neurol Disord Drug Targets ; 22(1): 125-136, 2023.
Article in English | MEDLINE | ID: mdl-35232368

ABSTRACT

BACKGROUND: A substantial amount of evidence indicates that long-term arsenic exposure leads to various types of pathological complications, especially cognitive dysfunction. OBJECTIVE: The present study was designed to assess the neuroprotective potential of edaravone (a potent free radical scavenger) against arsenic-induced neurotoxicity in Wistar rats. METHODS: Adult male Wistar rats were randomly divided into five groups. Arsenic (20 mg/kg/day; p.o.) and Edaravone (5 and 10 mg/kg/day; i.p.) were administered in different experimental groups for 28 days. RESULTS: The results of various behavioral test paradigms revealed that arsenic caused significant learning and memory deficits, along with anxiety-like behavior. In biochemical analysis, we found marked elevations of oxidative-nitrosative stress (indicated by augmentation of lipid peroxidation and nitrite) and a reduction of glutathione levels in the hippocampus and frontal cortex region of arsenictreated rats. Moreover, arsenic administration caused mitochondrial complexes impairment and reduction of acetylcholinesterase level. On the other hand, chronic treatment with edaravone (10 mg/kg) significantly ameliorated the arsenic-induced behavioral deficits and neurochemical anomalies. CONCLUSION: This study suggests that edaravone confers neuroprotection against arsenic-induced memory impairment and anxiety-like behavior, which may be attributed to the inhibition of oxidativenitrosative stress and amelioration of cholinergic and mitochondrial functions.


Subject(s)
Arsenic , Male , Rats , Animals , Edaravone , Rats, Wistar , Acetylcholinesterase , Cholinergic Agents , Mitochondria
16.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955592

ABSTRACT

In a previous study, we found that administration of ILB®, a new low molecular weight dextran sulphate, significantly improved mitochondrial functions and energy metabolism, as well as decreased oxidative/nitrosative stress, of brain tissue of rats exposed to severe traumatic brain injury (sTBI), induced by the closed-head weight-drop model of diffused TBI. Using aliquots of deproteinized brain tissue of the same animals of this former study, we here determined the concentrations of 24 amino acids of control rats, untreated sTBI rats (sacrificed at 2 and 7 days post-injury) and sTBI rats receiving a subcutaneous ILB® administration (at the dose levels of 1, 5 and 15 mg/kg b.w.) 30 min post-impact (sacrificed at 2 and 7 days post-injury). Additionally, in a different set of experiments, new groups of control rats, untreated sTBI rats and ILB®-treated rats (administered 30 min after sTBI at the dose levels of 1 or 5 mg/kg b.w.) were studied for their neurocognitive functions (anxiety, locomotor capacities, short- and long-term memory) at 7 days after the induction of sTBI. Compared to untreated sTBI animals, ILB® significantly decreased whole brain glutamate (normalizing the glutamate/glutamine ratio), glycine, serine and γ-aminobutyric acid. Furthermore, ILB® administration restored arginine metabolism (preventing nitrosative stress), levels of amino acids involved in methylation reactions (methionine, L-cystathionine, S-adenosylhomocysteine), and N-acetylaspartate homeostasis. The macroscopic evidences of the beneficial effects on brain metabolism induced by ILB® were the relevant improvement in neurocognitive functions of the group of animals treated with ILB® 5 mg/kg b.w., compared to the marked cognitive decline measured in untreated sTBI animals. These results demonstrate that ILB® administration 30 min after sTBI prevents glutamate excitotoxicity and normalizes levels of amino acids involved in crucial brain metabolic functions. The ameliorations of amino acid metabolism, mitochondrial functions and energy metabolism in ILB®-treated rats exposed to sTBI produced significant improvement in neurocognitive functions, reinforcing the concept that ILB® is a new effective therapeutic tool for the treatment of sTBI, worth being tested in the clinical setting.


Subject(s)
Brain Injuries, Traumatic , Sulfates , Amino Acids/metabolism , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Dextran Sulfate , Glutamic Acid , Homeostasis , Molecular Weight , Rats
17.
Front Pharmacol ; 13: 886514, 2022.
Article in English | MEDLINE | ID: mdl-35959428

ABSTRACT

There is evidence that in schizophrenia, imbalances in inflammatory and oxidative processes occur during pregnancy and in the early postnatal period, generating interest in the potential therapeutic efficacy of anti-inflammatory and antioxidant compounds. Mangiferin is a polyphenolic compound abundant in the leaves of Mangifera indica L. that has robust antioxidant and anti-inflammatory properties, making it a potential candidate for preventive or co-adjuvant therapy in schizophrenia. Hence, this study set-out to evaluate the effect of mango leaf extract (MLE) in a model of schizophrenia based on maternal immune activation, in which Poly I:C (4 mg/kg) is administered intravenously to pregnant rats. Young adult (postnatal day 60-70) or adolescent (postnatal day 35-49) male offspring received MLE (50 mg/kg of mangiferin) daily, and the effects of MLE in adolescence were compared to those of risperidone, assessing behavior, brain magnetic resonance imaging (MRI), and oxidative/inflammatory and antioxidant mediators in the adult offspring. MLE treatment in adulthood reversed the deficit in prepulse inhibition (PPI) but it failed to attenuate the sensitivity to amphetamine and the deficit in novel object recognition (NOR) induced. By contrast, adolescent MLE treatment prevented the sensorimotor gating deficit in the PPI test, producing an effect similar to that of risperidone. This MLE treatment also produced a reduction in grooming behavior, but it had no effect on anxiety or novel object recognition memory. MRI studies revealed that adolescent MLE administration partially counteracted the cortical shrinkage, and cerebellum and ventricle enlargement. In addition, MLE administration in adolescence reduced iNOS mediated inflammatory activation and it promoted the expression of biomarkers of compensatory antioxidant activity in the prefrontal cortex and hippocampus, as witnessed through the reduction of Keap1 and the accumulation of NRF2 and HO1. Together, these findings suggest that MLE might be an alternative therapeutic or preventive add-on strategy to improve the clinical expression of schizophrenia in adulthood, while also modifying the time course of this disease at earlier stages in populations at high-risk.

18.
Antioxidants (Basel) ; 11(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35740106

ABSTRACT

Down Syndrome (DS) is a neurodevelopmental disorder that is characterized by an accelerated aging process, frequently associated with the development of Alzheimer's disease (AD). Previous studies evidenced that DS patients have various metabolic anomalies, easily measurable in their serum samples, although values that were found in DS patients were compared with those of age-matched non-DS patients, thus hampering to discriminate the physiologic age-related changes of serum metabolites from those that are truly caused by the pathologic processes associated with DS. In the present study we performed a targeted metabolomic evaluation of serum samples from DS patients without dementia of two age classes (Younger DS Patients, YDSP, aging 20-40 years; Aged DS Patients, ADSP, aging 41-60 years), comparing the results with those that were obtained in two age classes of non-DS patients (Younger non-DS Patients, YnonDSP, aging 30-60 years; Aged-nonDS Patients, AnonDSP, aging 75-90 years). Of the 36 compounds assayed, 30 had significantly different concentrations in Pooled non-DS Patients (PnonDSP), compared to Pooled DS Patients (PDSP). Age categorization revealed that 11/30 compounds were significantly different in AnonDSP, compared to YnonDSP, indicating physiologic, age-related changes of their circulating concentrations. A comparison between YDSP and ADSP showed that 19/30 metabolites had significantly different values from those found in the corresponding classes of non-DS patients, strongly suggesting pathologic, DS-associated alterations of their serum levels. Twelve compounds selectively and specifically discriminated PnonDSP from PDSP, whilst only three discriminated YDSP from ADSP. The results allowed to determine, for the first time and to the best of our knowledge, the true, age-independent alterations of metabolism that are measurable in serum and attributable only to DS. These findings may be of high relevance for better strategies (pharmacological, nutritional) aiming to specifically target the dysmetabolism and decreased antioxidant defenses that are associated with DS.

19.
Skelet Muscle ; 12(1): 8, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414122

ABSTRACT

BACKGROUND: Radiotherapy is commonly used to treat childhood cancers and can have adverse effects on muscle function, but the underlying mechanisms have yet to be fully elucidated. We hypothesized that endurance exercise following radiation treatment would improve skeletal muscle function. METHODS: We utilized the Small Animal Radiation Research Platform (SARRP) to irradiate juvenile male mice with a clinically relevant fractionated dose of 3× (every other day over 5 days) 8.2 Gy X-ray irradiation locally from the knee to footpad region of the right hindlimb. Mice were then singly housed for 1 month in cages equipped with either locked or free-spinning voluntary running wheels. Ex vivo muscle contractile function, RT-qPCR analyses, resting cytosolic and sarcoplasmic reticulum (SR) store Ca2+ levels, mitochondrial reactive oxygen species levels (MitoSOX), and immunohistochemical and biochemical analyses of muscle samples were conducted to assess the muscle pathology and the relative therapeutic impact of voluntary wheel running (VWR). RESULTS: Irradiation reduced fast-twitch extensor digitorum longus (EDL) muscle-specific force by 27% compared to that of non-irradiated mice, while VWR post-irradiation improved muscle-specific force by 37%. Radiation treatment similarly reduced slow-twitch soleus muscle-specific force by 14% compared to that of non-irradiated mice, while VWR post-irradiation improved specific force by 18%. We assessed intracellular Ca2+ regulation, oxidative stress, and mitochondrial homeostasis as potential mechanisms of radiation-induced pathology and exercise-mediated rescue. We found a significant reduction in resting cytosolic Ca2+ concentration following irradiation in sedentary mice. Intriguingly, however, SR Ca2+ store content was increased in myofibers from irradiated mice post-VWR compared to mice that remained sedentary. We observed a 73% elevation in the overall protein oxidization in muscle post-irradiation, while VWR reduced protein nitrosylation by 35% and mitochondrial reactive oxygen species (ROS) production by 50%. Finally, we found that VWR significantly increased the expression of PGC1α at both the transcript and protein levels, consistent with an exercise-dependent increase in mitochondrial biogenesis. CONCLUSIONS: Juvenile irradiation stunted muscle development, disrupted proper Ca2+ handling, damaged mitochondria, and increased oxidative and nitrosative stress, paralleling significant deficits in muscle force production. Exercise mitigated aberrant Ca2+ handling, mitochondrial homeostasis, and increased oxidative and nitrosative stress in a manner that correlated with improved skeletal muscle function after radiation.


Subject(s)
Motor Activity , Muscle, Skeletal , Animals , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Motor Activity/physiology , Muscle, Skeletal/metabolism , Reactive Oxygen Species/metabolism , Sarcoplasmic Reticulum/metabolism
20.
Free Radic Biol Med ; 184: 99-113, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35398201

ABSTRACT

Chronic mountain sickness (CMS) is a high-altitude (HA) maladaptation syndrome characterised by elevated systemic oxidative-nitrosative stress (OXNOS) due to a free radical-mediated reduction in vascular nitric oxide (NO) bioavailability. To better define underlying mechanisms and vascular consequences, this study compared healthy male lowlanders (80 m, n = 10) against age/sex-matched highlanders born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 10) and without (CMS-, n = 10) CMS. Cephalic venous blood was assayed using electron paramagnetic resonance spectroscopy and reductive ozone-based chemiluminescence. Nutritional intake was assessed via dietary recall. Systemic vascular function and structure were assessed via flow-mediated dilatation, aortic pulse wave velocity and carotid intima-media thickness using duplex ultrasound and applanation tonometry. Basal systemic OXNOS was permanently elevated in highlanders (P = <0.001 vs. lowlanders) and further exaggerated in CMS+, reflected by increased hydroxyl radical spin adduct formation (P = <0.001 vs. CMS-) subsequent to liberation of free 'catalytic' iron consistent with a Fenton and/or nucleophilic addition mechanism(s). This was accompanied by elevated global protein carbonylation (P = 0.046 vs. CMS-) and corresponding reduction in plasma nitrite (P = <0.001 vs. lowlanders). Dietary intake of vitamins C and E, carotene, magnesium and retinol were lower in highlanders and especially deficient in CMS + due to reduced consumption of fruit and vegetables (P = <0.001 to 0.028 vs. lowlanders/CMS-). Systemic vascular function and structure were also impaired in highlanders (P = <0.001 to 0.040 vs. lowlanders) with more marked dysfunction observed in CMS+ (P = 0.035 to 0.043 vs. CMS-) in direct proportion to systemic OXNOS (r = -0.692 to 0.595, P = <0.001 to 0.045). Collectively, these findings suggest that lifelong exposure to iron-catalysed systemic OXNOS, compounded by a dietary deficiency of antioxidant micronutrients, likely contributes to the systemic vascular complications and increased morbidity/mortality in CMS+. TRIAL REGISTRY: ClinicalTrials.gov; No: NCT01182792; URL: www.clinicaltrials.gov.


Subject(s)
Altitude Sickness , Altitude , Altitude Sickness/metabolism , Carotid Intima-Media Thickness , Chronic Disease , Electron Spin Resonance Spectroscopy , Free Radicals , Humans , Iron , Male , Pulse Wave Analysis
SELECTION OF CITATIONS
SEARCH DETAIL