Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.130
Filter
1.
Vet Microbiol ; 297: 110203, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089141

ABSTRACT

Many cattle infected with Mycoplasma bovis remain healthy while others develop severe chronic respiratory disease. We hypothesized that inflammatory stimuli such as co-pathogens worsen disease outcomes in M. bovis-infected calves. Calves (n=24) were intrabronchially inoculated with M. bovis and either killed bacterial lysate, transient M. haemolytica infection, or saline. Caseonecrotic lesions developed in 7/7 animals given M. haemolytica and M. bovis compared to 2/8 given M. bovis with no inflammatory stimulus, and 6/9 animals given bacterial lysate and M. bovis (P=0.01). Animals receiving M. haemolytica and M. bovis had more caseonecrotic foci in lungs than those receiving M. bovis with no inflammatory stimulus (median = 21 vs 0; P = 0.01), with an intermediate response (median = 5) in animals given bacterial lysate. In addition to caseonecrotic foci, infected animals developed neutrophilic bronchiolitis that appeared to develop into caseonecrotic foci, peribronchiolar lymphocytic cuffs that were not associated with the other lesions, and 4 animals with bronchiolitis obliterans. The data showed that transient lung inflammation at the time of M. bovis infection provoked the development of caseonecrotic bronchopneumonia, and the severity of inflammation influenced the number of caseonecrotic foci that developed. In contrast, caseonecrotic lesions were few or absent in M. bovis-infected calves without a concurrent inflammatory stimulus. These studies provide insight into how caseonecrotic lesions develop within the lung of M. bovis-infected calves. This and other studies suggest that controlling co-pathogens and harmful inflammatory responses in animals infected with M. bovis could potentially minimize development of M. bovis caseonecrotic bronchopneumonia.

2.
Front Pediatr ; 12: 1374571, 2024.
Article in English | MEDLINE | ID: mdl-39086626

ABSTRACT

Objective: To address the research gap in the epidemiology of pediatric respiratory tract infections (RTIs) in Luzhou, Southern Sichuan, China, by analyzing respiratory pathogens in a large pediatric cohort from 2018 to 2021, covering the pre- and during-COVID-19 periods. Methods: This study conducted a retrospective analysis of children with RTIs in Luzhou from July 2018 to January 2021. Strict exclusion criteria were applied to ensure an accurate representation of the pediatric population. Pathogen detection included viruses, bacteria, and atypical agents. Results: Pathogens were identified in 52.8% of 12,546 cases. Viruses accounted for 32.2% of infections, bacteria for 29.8%, and atypical agents for 29.7%, with significant findings of Staphylococcus aureus, Moraxella catarrhalis, and Mycoplasma pneumoniae. Age-related analysis indicated a higher incidence of bacterial infections in infants and viral infections in preschool-aged children, with atypical pathogens being most prevalent in 3-5-year-olds. Gender-based analysis, adjusted for age, revealed similar overall pathogen presence; however, females were more susceptible to viral infections, while males were more prone to Streptococcus pneumoniae. Notably, there was an unusual increase in pathogen cases during spring, potentially influenced by behavioral changes and public health measures related to COVID-19. Co-infections were identified as a significant risk factor for the development of pneumonia. Conclusion: The study provides essential insights into the epidemiology of respiratory pathogens in pediatric populations, emphasizing the need for healthcare strategies tailored to age, gender, and seasonality. The findings highlight the impact of environmental and public health factors, including COVID-19 measures, on respiratory pathogen prevalence, underscoring the importance of targeted diagnostic and treatment protocols in pediatric respiratory infections.

3.
mBio ; : e0038424, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087767

ABSTRACT

Serine protease inhibitors (serpins) constitute the largest family of protease inhibitors expressed in humans, but their role in infection remains largely unexplored. In infected macrophages, the mycobacterial ESX-1 type VII secretion system permeabilizes internal host membranes and causes leakage into the cytosol of host DNA, which induces type I interferon (IFN) production via the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) surveillance pathway, and promotes infection in vivo. Using the Mycobacterium marinum infection model, we show that ESX-1-mediated type I IFN signaling in macrophages selectively induces the expression of serpina3f and serpina3g, two cytosolic serpins of the clade A3. The membranolytic activity of ESX-1 also caused leakage of cathepsin B into the cytosol where it promoted cell death, suggesting that the induction of type I IFN comes at the cost of lysosomal rupture and toxicity. However, the production of cytosolic serpins suppressed the protease activity of cathepsin B in this compartment and thus limited cell death, a function that was associated with increased bacterial growth in infected mice. These results suggest that cytosolic serpins act in a type I IFN-dependent cytoprotective feedback loop to counteract the inevitable toxic effect of ESX-1-mediated host membrane rupture. IMPORTANCE: The ESX-1 type VII secretion system is a key virulence determinant of pathogenic mycobacteria. The ability to permeabilize host cell membranes is critical for several ESX-1-dependent virulence traits, including phagosomal escape and induction of the type I interferon (IFN) response. We find that it comes at the cost of lysosomal leakage and subsequent host cell death. However, our results suggest that ESX-1-mediated type I IFN signaling selectively upregulates serpina3f and serpina3g and that these cytosolic serpins limit cell death caused by cathepsin B that has leaked into the cytosol, a function that is associated with increased bacterial growth in vivo. The ability to rupture host membranes is widespread among bacterial pathogens, and it will be of interest to evaluate the role of cytosolic serpins and this type I IFN-dependent cytoprotective feedback loop in the context of human infection.

4.
Microb Pathog ; 194: 106831, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089512

ABSTRACT

Staphylococcus aureus, a common human pathogen, has long been the focus of scientific investigation due to its association with various infections. However, recent research has unveiled a tantalizing enigma surrounding this bacterium and its potential involvement in carcinogenesis. Chronic S. aureus infections have been linked to an elevated risk of certain cancers, including skin cancer and oral cancer. This review explores the current state of knowledge regarding this connection, examining epidemiological evidence, pathogenic mechanisms, and biological interactions that suggest a correlation. Although initial studies point to a possible link, the precise mechanisms through which S. aureus may contribute to cancer development remain elusive. Emerging evidence suggests that the chronic inflammation induced by persistent S. aureus infections may create a tumor-promoting environment. This inflammation can lead to DNA damage, disrupt cellular signaling pathways, and generate an immunosuppressive microenvironment conducive to cancer progression. Additionally, S. aureus produces a variety of toxins and metabolites that can directly interact with host cells, potentially inducing oncogenic transformations. Despite these insights, significant gaps remain in our understanding of the exact biological processes involved. This review emphasizes the urgent need for more comprehensive research to clarify these microbiological mysteries. Understanding the role of S. aureus in cancer development could lead to novel strategies for cancer prevention and treatment, potentially transforming therapeutic approaches.

5.
Curr Res Microb Sci ; 7: 100241, 2024.
Article in English | MEDLINE | ID: mdl-39091295

ABSTRACT

Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.

6.
Biosens Bioelectron ; 263: 116598, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39094292

ABSTRACT

Antibody pairs-based immunoassay platforms served as essential and effective tools in the field of pathogen detection. However, the cumbersome preparation and limited detection sensitivity of antibody pairs challenge in establishment of a highly sensitive detection platform. In this study, using COVID-19 testing as a case, we utilized readily accessible nanobodies as detection antibodies and further proposed an accurate design concept with a more scientific and efficient screening strategy to obtain ultrasensitive antibody pairs. We employed nanobodies capable of binding different antigenic epitopes of the nucleocapsid (NP) or receptor-binding domain (RBD) antigens sandwich as substitutes for monoclonal antibodies (mAbs) sandwich in fast detection formats and utilized time-resolved fluorescence (TRF) microspheres as the signal probe. Consequently, we developed a multi-epitope nanobody sandwich-based fluorescence lateral flow immunoassay (FLFA) strip. Our results suggest that the NP antigen had a detection limit of 12.01pg/mL, while the RBD antigen had a limit of 6.51 pg/mL using our FLFA strip. Based on double mAb sandwiches, the values presented herein demonstrated 4 to 32-fold enhancements in sensitivity, and 32 to 256-fold enhancements compared to commercially available antigen lateral flow assay kits. Furthermore, we demonstrated the excellent characteristics of the proposed test strip, including its specificity, stability, accuracy, and repeatability, which underscores its the prospective utility. Indeed, these findings indicate that our established screening strategy along with the multi-epitope nanobody sandwich mode provides an optimized strategy in the field of pathogen detection.

7.
Cell ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39094568

ABSTRACT

Innate immune responses to microbial pathogens are regulated by intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) in both the plant and animal kingdoms. Across plant innate immune systems, "helper" NLRs (hNLRs) work in coordination with "sensor" NLRs (sNLRs) to modulate disease resistance signaling pathways. Activation mechanisms of hNLRs based on structures are unknown. Our research reveals that the hNLR, known as NLR required for cell death 4 (NRC4), assembles into a hexameric resistosome upon activation by the sNLR Bs2 and the pathogenic effector AvrBs2. This conformational change triggers immune responses by facilitating the influx of calcium ions (Ca2+) into the cytosol. The activation mimic alleles of NRC2, NRC3, or NRC4 alone did not induce Ca2+ influx and cell death in animal cells, suggesting that unknown plant-specific factors regulate NRCs' activation in plants. These findings significantly advance our understanding of the regulatory mechanisms governing plant immune responses.

8.
J Eukaryot Microbiol ; : e13045, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095558

ABSTRACT

Microsporidia are opportunistic fungal-like pathogens that cause microsporidiosis, which results in significant economic losses and threatens public health. Infection of domesticated silkworms by the microsporidium Nosema bombycis causes pébrine disease, for which this species of microsporidia has received much attention. Research has been conducted extensively on this microsporidium over the past few decades to better understand its infection, transmission, host-parasite interaction, and detection. Several tools exist to study this species including the complete genome sequence of N. bombycis. In addition to the understanding of N. bombycis being important for the silkworm industry, this species has become a model organism for studying microsporidia. Research on biology of N. bombycis will contribute to the development of knowledge regarding microsporidia and potential antimicrosporidia drugs. Furthermore, this will provide insight into the molecular evolution and functioning of other fungal pathogens.

9.
BMC Plant Biol ; 24(1): 737, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095762

ABSTRACT

BACKGROUND: BAK1 (Brassinosteroid insensitive 1-associated receptor kinase 1) plays an important role in disease resistance in plants. However, the function of BAK1 family in cucumber and the decisive genes for disease-resistance remain elusive. RESULTS: Here, we identified 27 CsBAK1s in cucumber, and classified them into five subgroups based on phylogenetic analysis and gene structure. CsBAK1s in the same subgroup shared the similar motifs, but different gene structures. Cis-elements analysis revealed that CsBAK1s might respond to various stress and growth regulation. Three segmentally duplicated pairwise genes were identified in cucumber. In addition, Ka/Ks analysis indicated that CsBAK1s were under positive selection during evolution. Tissue expression profile showed that most CsBAK1s in Subgroup II and IV showed constitutive expression, members in other subgroups showed tissue-specific expression. To further explore whether CsBAK1s were involved in the resistance to pathogens, the expression patterns of CsBAK1s to five pathogens (gummy stem blight, powdery mildew, downy mildew, grey mildew, and fusarium wilt) reveled that different CsBAK1s had specific roles in different pathogen infections. The expression of CsBAK1-14 was induced/repressed significantly by five pathogens, CsBAK1-14 might play an important role in disease resistance in cucumber. CONCLUSIONS: 27 BAK1 genes were identified in cucumber from a full perspective, which have important functions in pathogen infection. Our study provided a theoretical basis to further clarify the function of BAK1s to disease resistance in cucumber.


Subject(s)
Cucumis sativus , Disease Resistance , Phylogeny , Plant Diseases , Plant Proteins , Cucumis sativus/genetics , Cucumis sativus/microbiology , Cucumis sativus/enzymology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Genes, Plant , Genome, Plant , Gene Expression Profiling
10.
Water Res ; 263: 122152, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39096810

ABSTRACT

Wastewater-based epidemiology (WBE) gained widespread use as a tool for supporting clinical disease surveillance during the COVID-19 pandemic. There is now significant interest in the continued development of WBE for other pathogens of clinical significance. In this study, approximately 3,200 samples of wastewater from across England, previously collected for quantification of SARS-CoV-2, were re-analysed for the quantification of norovirus genogroup I (GI) and II (GII). Overall, GI and GII were detected in 93% and 98% of samples respectively, and at least one of the genogroups was detected in 99% of samples. GI was found at significantly lower concentrations than GII, but the proportion of each genogroup varied over time, with GI becoming more prevalent than GII in some areas towards the end of the study period (May 2021 - March 2022). Using relative strength indices (RSI), it was possible to study the trends of each genogroup, and total norovirus over time. Increases in norovirus levels appeared to coincide with the removal of COVID-19 related lockdown restrictions within England. Local Moran's I analyses indicated several localised outbreaks of both GI and GII across England, notably the possible GI outbreak in the north of England in early 2022. Comparisons of national average norovirus concentrations in wastewater against concomitant norovirus reported case numbers showed a significant linear relationship. This highlights the potential for wastewater-based monitoring of norovirus as a valuable approach to support surveillance of norovirus in communities.

11.
J Med Syst ; 48(1): 71, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088151

ABSTRACT

The emergence of drug-resistant bacteria poses a significant challenge to modern medicine. In response, Artificial Intelligence (AI) and Machine Learning (ML) algorithms have emerged as powerful tools for combating antimicrobial resistance (AMR). This review aims to explore the role of AI/ML in AMR management, with a focus on identifying pathogens, understanding resistance patterns, predicting treatment outcomes, and discovering new antibiotic agents. Recent advancements in AI/ML have enabled the efficient analysis of large datasets, facilitating the reliable prediction of AMR trends and treatment responses with minimal human intervention. ML algorithms can analyze genomic data to identify genetic markers associated with antibiotic resistance, enabling the development of targeted treatment strategies. Additionally, AI/ML techniques show promise in optimizing drug administration and developing alternatives to traditional antibiotics. By analyzing patient data and clinical outcomes, these technologies can assist healthcare providers in diagnosing infections, evaluating their severity, and selecting appropriate antimicrobial therapies. While integration of AI/ML in clinical settings is still in its infancy, advancements in data quality and algorithm development suggest that widespread clinical adoption is forthcoming. In conclusion, AI/ML holds significant promise for improving AMR management and treatment outcome.


Subject(s)
Anti-Bacterial Agents , Artificial Intelligence , Machine Learning , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Algorithms , Drug Resistance, Bacterial/genetics
12.
Microb Pathog ; 194: 106832, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089511

ABSTRACT

Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) and Enterotoxigenic E. coli (ETEC) have been found to readily develop biofilms on cucumber (Cucumis sativus L.), presenting a significant risk to the safety of ready-to-eat vegetables. This study aimed to assess the effectiveness of the lytic bacteriophage vB_EcoM_SQ17 (SQ17) against EHEC O157:H7 and ETEC biofilms on cucumber. Here, we evaluated the efficacy of phage SQ17 on the formation and reduction of biofilms formed by EHEC O157:H7 and ETEC strains on various surfaces, including polystyrene, poly-d-lysine precoated films, and fresh-cut cucumber, at different temperatures. Phage SQ17 significantly inhibited ETEC biofilm formation, reducing the number of adhered cells by 0.15 log CFU/mL at 37 °C. Treatment with phage SQ17 also significantly decreased the number of adhered cells in established biofilms via SEM observation. Moreover, phage SQ17 effectively reduced the biomass of EHEC O157:H7 and ETEC biofilms by over 54.8 % at 37 °C after 24 h of incubation. Following phage treatment, the viability of adhered EHEC O157:H7 cells decreased by 1.37 log CFU/piece and 0.46 log CFU/piece in biofilms on cucumber at 4 °C and 25 °C, respectively. Similarly, the viability of ETEC cells decreased by 1.07 log CFU/piece and 0.61 log CFU/piece in biofilms on cucumber at 4 °C and 25 °C, respectively. These findings suggest that phage SQ17 shows promise as a potential strategy for eradicating pathogenic E. coli biofilms on cucumber.

13.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000143

ABSTRACT

Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.


Subject(s)
Caenorhabditis elegans , Host-Pathogen Interactions , Immunity, Innate , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Caenorhabditis elegans/microbiology , Caenorhabditis elegans/immunology , Pseudomonas aeruginosa/pathogenicity , Host-Pathogen Interactions/immunology , Pseudomonas Infections/microbiology , Pseudomonas Infections/immunology , Humans , Disease Models, Animal , Virulence
14.
Curr Res Microb Sci ; 7: 100248, 2024.
Article in English | MEDLINE | ID: mdl-38974671

ABSTRACT

The major facilitator superfamily (MFS) of proteins constitutes a large group of related solute transporters found across all known living taxa of organisms. The transporters of the MFS contain an extremely diverse array of substrates, including ions, molecules of intermediary metabolism, and structurally different antimicrobial agents. First discovered over 30 years ago, the MFS represents an important collection of integral membrane transporters. Bacterial microorganisms expressing multidrug efflux pumps belonging to the MFS are considered serious pathogens, accounting for alarming morbidity and mortality numbers annually. This review article considers recent advances in the structure-function relationships, the transport mechanism, and modulation of MFS multidrug efflux pumps within the context of drug resistance mechanisms of bacterial pathogens of public health concerns.

15.
Foodborne Pathog Dis ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049788

ABSTRACT

Clostridioides difficile and its endospores possess the characteristics of a foodborne pathogen and have been detected at several stages in the food chain. In the presence of an imbalance in host intestinal ecology, C. difficile can proliferate and cause intestinal infections. Multiple food source factors can substantially alter the host's gut ecosystem, including the consumption of baijiu. However, it remains to be known whether the gut ecological changes induced by the consumption of baijiu increase the risk of C. difficile invasion and infection. In this study, C. difficile cells were exposed to two commercially available baijiu to evaluate the effect of baijiu on C. difficile cells and to verify through a mouse model. The results showed that baijiu effectively inhibited the growth and biofilm production of C. difficile, downregulated the expression levels of tcdA and tcdB virulence genes but upregulated the expression level of spore-producing genes Spo0A, enhanced the spore production, as well as increased C. difficile cell adhesion to Caco-2 cells. The mouse model showed that the intake of baijiu promoted the invasion and infection of C. difficile spores, causing damage to the cecum tissue, accompanied by an increase in the gut lipid carrier protein-2 (Lcn-2) and TcdA toxin protein levels. Simultaneously, cholic acid was elevated, whereas deoxycholic acid was decreased. This study is the first to find a possible link between baijiu intake and C. difficile spore invasion and infection.

17.
Microb Genom ; 10(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39051872

ABSTRACT

Clostridioides difficile has significant clinical importance as a leading cause of healthcare-associated infections, with symptoms ranging from mild diarrhoea to severe colitis, and possible life-threatening complications. C. difficile ribotype (RT) 002, mainly associated with MLST sequence type (ST) 8, is one of the most common RTs found in humans. This study aimed at investigating the genetic characteristics of 537 C. difficile genomes of ST8/RT002. To this end, we sequenced 298 C. difficile strains representing a new European genome collection, with strains from Germany, Denmark, France and Portugal. These sequences were analysed against a global dataset consisting of 1,437 ST8 genomes available through Enterobase. Our results showed close genetic relatedness among the studied ST8 genomes, a diverse array of antimicrobial resistance (AMR) genes and the presence of multiple mobile elements. Notably, the pangenome analysis revealed an open genomic structure. ST8 shows relatively low overall variation. Thus, clonal isolates were found across different One Health sectors (humans, animals, environment and food), time periods, and geographical locations, suggesting the lineage's stability and a universal environmental source. Importantly, this stability did not hinder the acquisition of AMR genes, emphasizing the adaptability of this bacterium to different selective pressures. Although only 2.4 % (41/1,735) of the studied genomes originated from non-human sources, such as animals, food, or the environment, we identified 9 cross-sectoral core genome multilocus sequence typing (cgMLST) clusters. Our study highlights the importance of ST8 as a prominent lineage of C. difficile with critical implications in the context of One Health. In addition, these findings strongly support the need for continued surveillance and investigation of non-human samples to gain a more comprehensive understanding of the epidemiology of C. difficile.


Subject(s)
Clostridioides difficile , Clostridium Infections , Genome, Bacterial , Ribotyping , Clostridioides difficile/genetics , Clostridioides difficile/classification , Humans , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Multilocus Sequence Typing , Phylogeny , Animals , Europe , Denmark , Whole Genome Sequencing , Genomics , Drug Resistance, Bacterial/genetics
18.
Food Chem ; 460(Pt 1): 140573, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053273

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is a rapid and sensitive nucleic acid testing method for pathogen detection, yet the absence of a straightforward readout strategy remains challenging. We've successfully designed polyethyleneimine-stabilized gold nanoclusters (PEI-AuNCs) as a cationic AuNCs indicator tailored for distinguishing LAMP results, enabling direct visual inspection under UV light. Positive LAMP reactions with PEI-AuNCs, in combination with magnesium pyrophosphate crystals, yield red-fluorescent bulk precipitates visible to the naked eye. To address contamination concerns, we introduced a one-pot reaction by incorporating AuNCs into the lid recess. This one-pot LAMP assay demonstrates exceptional detection capability, identifying Salmonella enterica at concentrations as low as 101 CFU/mL within approximately 50 min, excluding nucleic acid extraction. The platform's versatility, achieved through customizable primers, positions it as a promising molecular diagnostic tool for rapid and visual pathogen detection across scientific disciplines.

19.
Fish Shellfish Immunol ; : 109789, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053585

ABSTRACT

Bacillus genus, particularly Bacillus velezensis, is increasingly considered as viable alternatives to antibiotics in aquaculture due to their safety and probiotic potential. However, the specific mechanisms through which probiotic B. velezensis confers protection against Aeromonas hydrophila infection in fish remain poorly understood. This study delved into the multifaceted impacts of B. velezensis BV1704-Y on diverse facets of zebrafish health, including gut barrier function, immune response, oxidative stress, gut environment, microbiome composition, and disease resistance. Our findings demonstrate that supplementation with B. velezensis BV1704-Y significantly alleviated symptoms and reduced mortality in zebrafish infected with A. hydrophila. Furthermore, a notable reduction in the expression of pivotal immune-related genes, such as IL-1ß, IL6, and TNF-α, was evident in the gut and head kidney of zebrafish upon infection. Moreover, B. velezensis BV1704-Y supplementation resulted in elevated activity levels of essential antioxidant enzymes, including SOD, CAT, and GSH, in gut tissue. Notably, B. velezensis BV1704-Y positively modulated the structure and function of the intestinal microbiome, potentially enhancing immune response and resilience in zebrafish. Specifically, supplementation with B. velezensis BV1704-Y promoted the relative abundance of beneficial bacteria, such as Cetobacterium, which showed a noteworthy negative correlation with the expression of pro-inflammatory genes and a positive correlation with gut barrier-related genes. Altogether, our study suggests that B. velezensis BV1704-Y holds promise as an effective probiotic for protecting zebrafish against A. hydrophila infection, offering potential benefits for the aquaculture industry.

SELECTION OF CITATIONS
SEARCH DETAIL