Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Mar Pollut Bull ; 201: 116250, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479322

ABSTRACT

Lipophilic phycotoxins (LPTs) and domoic acid (DA) in Antarctic seawater, as well as parts of the South Pacific and the Southern Indian Oceans were systematically investigated. DA and six LPTs, namely pectenotoxin-2 (PTX2), okadaic acid (OA), yessotoxin (YTX), homo-yessotoxin (h-YTX), 13-desmethyl spirolide C (SPX1), and gymnodimine (GYM), were detected. PTX2, as the dominant LPTs, was widely distributed in seawater surrounding Antarctica, whereas OA, YTX, and h-YTX were irregularly distributed across the region. The total concentration of LPTs in surface seawater ranged from 0.10 to 13.57 ng/L (mean = 2.20 ng/L). ∑LPT levels were relatively higher in the eastern sea areas of Antarctica than in the western sea areas. PTX2 was the main LPT in the vertical profiles, and the PTX2 concentration was significantly higher in the epipelagic zone than water depths below 200 m. The predominant sources of PTX2 and OA in Antarctic sea areas are likely to be Dinophysis.


Subject(s)
Marine Toxins , Mollusk Venoms , Oxocins , Antarctic Regions , Okadaic Acid/analysis , Indian Ocean
2.
Toxicon X ; 19: 100166, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37448555

ABSTRACT

Oysters (Crassostrea virginica) were screened for 12 phycotoxins over two years in nearshore waters to collect baseline phycotoxin data and to determine prevalence of phycotoxin co-occurrence in the commercially and ecologically-relevant species. Trace to low concentrations of azaspiracid-1 and -2 (AZA1, AZA2), domoic acid (DA), okadaic acid (OA), and dinophysistoxin-1 (DTX1) were detected, orders of magnitude below seafood safety action levels. Microcystins (MCs), MC-RR and MC-YR, were also found in oysters (maximum: 7.12 µg MC-RR/kg shellfish meat wet weight), warranting consideration of developing action levels for freshwater phycotoxins in marine shellfish. Oysters contained phycotoxins that impair shellfish health: karlotoxin1-1 and 1-3 (KmTx1-1, KmTx1-3), goniodomin A (GDA), and pectenotoxin-2 (PTX2). Co-occurrence of phycotoxins in oysters was common (54%, n = 81). AZAs and DA co-occurred most frequently of the phycotoxins investigated that are a concern for human health (n = 13) and PTX2 and KmTxs co-occurred most frequently amongst the phycotoxins of concern for shellfish health (n = 9). Various harmful algal bloom (HAB) monitoring methods and tools were assessed for their effectiveness at indicating levels of phycotoxins in oysters. These included co-deployed solid phase adsorption toxin tracking (SPATT) devices, toxin levels in particulate organic matter (POM, >1.5 µm) and whole water samples and cell concentrations from water samples as determined by microscopy and quantitative real-time PCR (qPCR). The dominant phycotoxin varied between SPATTs and all other phycotoxin sample types, and out of the 11 phycotoxins detected in oysters, only four and seven were detected in POM and whole water respectively, indicating phycotoxin profile mismatch between ecosystem compartments. Nevertheless, there were correlations between DA in oysters and whole water (simple linear regression [LR]: R2 = 0.6, p < 0.0001, n = 40), and PTX2 in oysters and SPATTs (LR: R2 = 0.3, p = 0.001, n = 36), providing additional monitoring tools for these phycotoxins, but oyster samples remain the best overall indicators of seafood safety.

3.
J Mass Spectrom ; 58(10): e4963, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37431171

ABSTRACT

In the present study, 334 samples of mussels (Mytilus galloprovincialis) harvested along the coasts of the Central Adriatic Sea during the years 2020-2021 were analyzed for the presence of lipophilic marine biotoxins according to the European Harmonized Standard Operating Procedure. The results showed that 74 (22%) and 84 (25%) samples were positive to okadaic acid and yessotoxin groups, respectively. Among them, only 11 (3.3%) samples resulted as non-compliant, as they exceeded the maximum limits (160 µg okadaic acid equivalent/kg) established by the Regulation (EC) 853/2004. The method applied in this study was able to detect and quantify lipophilic marine biotoxins concentrations, in order to monitor their presence in molluscs and avoid the risk of consumer exposure.


Subject(s)
Marine Toxins , Mytilus , Animals , Okadaic Acid , Seafood , Italy
4.
Toxins (Basel) ; 15(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-37235353

ABSTRACT

The successful cultivation of Dinophysis norvegica Claparède & Lachmann, 1859, isolated from Japanese coastal waters, is presented in this study, which also includes an examination of its toxin content and production for the first time. Maintaining the strains at a high abundance (>2000 cells per mL-1) for more than 20 months was achieved by feeding them with the ciliate Mesodinium rubrum Lohmann, 1908, along with the addition of the cryptophyte Teleaulax amphioxeia (W.Conrad) D.R.A.Hill, 1992. Toxin production was examined using seven established strains. At the end of the one-month incubation period, the total amounts of pectenotoxin-2 (PTX2) and dinophysistoxin-1 (DTX1) ranged between 132.0 and 375.0 ng per mL-1 (n = 7), and 0.7 and 3.6 ng per mL-1 (n = 3), respectively. Furthermore, only one strain was found to contain a trace level of okadaic acid (OA). Similarly, the cell quota of pectenotoxin-2 (PTX2) and dinophysistoxin-1 (DTX1) ranged from 60.6 to 152.4 pg per cell-1 (n = 7) and 0.5 to 1.2 pg per cell-1 (n = 3), respectively. The results of this study indicate that toxin production in this species is subject to variation depending on the strain. According to the growth experiment, D. norvegica exhibited a long lag phase, as suggested by the slow growth observed during the first 12 days. In the growth experiment, D. norvegica grew very slowly for the first 12 days, suggesting they had a long lag phase. However, after that, they grew exponentially, with a maximum growth rate of 0.56 divisions per day (during Days 24-27), reaching a maximum concentration of 3000 cells per mL-1 at the end of the incubation (Day 36). In the toxin production study, the concentration of DTX1 and PTX2 increased following their vegetative growth, but the toxin production still increased exponentially on Day 36 (1.3 ng per mL-1 and 154.7 ng per mL-1 of DTX1 and PTX2, respectively). The concentration of OA remained below detectable levels (≤0.010 ng per mL-1) during the 36-day incubation period, with the exception of Day 6. This study presents new information on the toxin production and content of D. norvegica, as well as insights into the maintenance and culturing of this species.


Subject(s)
Ciliophora , Dinoflagellida , Marine Toxins , Japan , Bays , Okadaic Acid
5.
Aquat Toxicol ; 257: 106456, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36889127

ABSTRACT

Toxic species of the dinoflagellate genus Dinophysis can produce diarrheic toxins including okadaic acid (OA) and dinophysistoxins (DTXs), and the non-diarrheic pectenotoxins (PTXs). Okadaic acid and DTXs cause diarrheic shellfish poisoning (DSP) in human consumers, and also cause cytotoxic, immunotoxic and genotoxic effects in a variety of mollusks and fishes at different life stages in vitro. The possible effects of co-produced PTXs or live cells of Dinophysis to aquatic organisms, however, are less understood. Effects on an early life stage of sheepshead minnow (Cyprinodon variegatus), a common finfish in eastern USA estuaries, were evaluated using a 96-h toxicity bioassay. Three-week old larvae were exposed to PTX2 concentrations from 50 to 4000 nM, live Dinophysis acuminata culture (strain DAVA01), live cells resuspended in clean medium or culture filtrate. This D. acuminata strain produced mainly intracellular PTX2 (≈ 21 pg cell-1), with much lower levels of OA and dinophysistoxin-1. No mortality or gill damages were observed in larvae exposed to D. acuminata (from 5 to 5500 cells mL-1), resuspended cells and culture filtrate. However, exposure to purified PTX2 at intermediate to high concentrations (from 250 to 4000 nM) resulted in 8 to 100% mortality after 96 h (24-h LC50 of 1231 nM). Histopathology and transmission electron microscopy of fish exposed to intermediate to high PTX2 concentrations revealed important gill damage, including intercellular edema, necrosis and sloughing of gill respiratory epithelia, and damage to the osmoregulatory epithelium, including hypertrophy, proliferation, redistribution and necrosis of chloride cells. Tissue damage in gills is likely caused by the interaction of PTX2 with the actin cytoskeleton of the affected gill epithelia. Overall, the severe gill pathology observed following the PTX2 exposure suggested death was due to loss of respiratory and osmoregulatory functions in C. variegatus larvae.


Subject(s)
Cyprinidae , Dinoflagellida , Killifishes , Water Pollutants, Chemical , Animals , Humans , Okadaic Acid , Marine Toxins/toxicity , Larva , Water Pollutants, Chemical/toxicity
6.
Toxins (Basel) ; 14(5)2022 05 10.
Article in English | MEDLINE | ID: mdl-35622582

ABSTRACT

Harmful algal bloom (HAB) species Alexandrium catenella and Dinophysis acuminata are associated with paralytic shellfish poisoning (PSP) and diarrhetic shellfish poisoning (DSP) in humans, respectively. While PSP and DSP have been studied extensively, less is known about the effects of these HAB species or their associated toxins on shellfish. This study investigated A. catenella and D. acuminata toxicity in a larval oyster (Crassostrea virginica) bioassay. Larval activity and mortality were examined through 96-h laboratory exposures to live HAB cells (10−1000 cells/mL), cell lysates (1000 cells/mL equivalents), and purified toxins (10,000 cells/mL equivalents). Exposure to 1000 cells/mL live or lysed D. acuminata caused larval mortality (21.9 ± 7.0%, 10.2 ± 4.0%, respectively) while exposure to any tested cell concentration of live A. catenella, but not lysate, caused swimming arrest and/or mortality in >50% of larvae. Exposure to high concentrations of saxitoxin (STX) or okadaic acid (OA), toxins traditionally associated with PSP and DSP, respectively, had no effect on larval activity or mortality. In contrast, pectenotoxin-2 (PTX2) caused rapid larval mortality (49.6 ± 5.8% by 48 h) and completely immobilized larval oysters. The results indicate that the toxic effects of A. catenella and D. acuminata on shellfish are not linked to the primary toxins associated with PSP and DSP in humans, and that PTX2 is acutely toxic to larval oysters.


Subject(s)
Dinoflagellida , Shellfish Poisoning , Toxins, Biological , Animals , Humans , Larva , Saxitoxin , Seafood , Shellfish
7.
Mar Drugs ; 20(3)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35323472

ABSTRACT

Under the name of lipophilic marine toxins, there are included more than 1000 toxic secondary metabolites, produced by phytoplankton, with the common chemical property of lipophilicity. Due to toxicological effects and geographical distribution, in European legislation relevant compounds are regulated, and their determination is accomplished with the reference liquid chromatography-tandem mass spectrometry method. In this study a modified ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the identification and quantification of EU-regulated lipophilic toxins. The method optimization included a refinement of SPE-C18 clean-up, in order to reduce matrix interferences. Improved LC conditions and upgraded chromatographic ammonia-based gradient ensured the best separation of all analytes and, in particular, of the two structural isomers (OA and DTX2). Also, different MS parameters were tested, and confirmation criteria finally established. The validation studies confirmed that all parameters were satisfactory. The requirements for precision (RSD% < 11.8% for each compound), trueness (recoveries from 73 to 101%) and sensitivity (limits of quantification in the range 3−8 µg kg−1) were fulfilled. The matrix effect, ranging from −9 to 19%, allowed the use of a calibration curve in solvent (3−320 µg kg−1 in matrix) for quantification of real samples. Method relative uncertainty ranged from 12 to 20.3%. Additionally, a total of 1000 shellfish samples was analysed, providing a first preliminary surveillance study that may contribute to the knowledge of lipophilic marine toxins contamination. Increase in algae proliferation events and intoxication cases, EFSA suggestions for modification of maximum permitted levels and toxicity equivalency factors, and new studies of important toxic effects underline that implementation of reference methods still represents an important task for health and food safety laboratories.


Subject(s)
Food Contamination/analysis , High-Throughput Screening Assays/methods , Marine Toxins/analysis , Shellfish/analysis , Animals , Chromatography, High Pressure Liquid , Environmental Monitoring , European Union , Food Contamination/legislation & jurisprudence , Food Handling , Government Regulation , Mollusca/chemistry , Reproducibility of Results , Tandem Mass Spectrometry
8.
Mar Drugs ; 20(2)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35200672

ABSTRACT

The analysis of marine lipophilic toxins in shellfish products still represents a challenging task due to the complexity and diversity of the sample matrix. Liquid chromatography coupled with mass spectrometry (LC-MS) is the technique of choice for accurate quantitative measurements in complex samples. By combining unambiguous identification with the high selectivity of tandem MS, it provides the required high sensitivity and specificity. However, LC-MS is prone to matrix effects (ME) that need to be evaluated during the development and validation of methods. Furthermore, the large sample-to-sample variability, even between samples of the same species and geographic origin, needs a procedure to evaluate and control ME continuously. Here, we analyzed the toxins okadaic acid (OA), dinophysistoxins (DTX-1 and DTX-2), pectenotoxin (PTX-2), yessotoxin (YTX) and azaspiracid-1 (AZA-1). Samples were mussels (Mytilus galloprovincialis), both fresh and processed, and a toxin-free mussel reference material. We developed an accurate mass-extracted ion chromatogram (AM-XIC) based quantitation method using an Orbitrap instrument, evaluated the ME for different types and extracts of mussel samples, characterized the main compounds co-eluting with the targeted molecules and quantified toxins in samples by following a standard addition method (SAM). An AM-XIC based quantitation of lipophilic toxins in mussel samples using high resolution and accuracy full scan profiles (LC-HR-MS) is a good alternative to multi reaction monitoring (MRM) for instruments with HR capabilities. ME depend on the starting sample matrix and the sample preparation. ME are particularly strong for OA and related toxins, showing values below 50% for fresh mussel samples. Results for other toxins (AZA-1, YTX and PTX-2) are between 75% and 110%. ME in unknown matrices can be evaluated by comparing their full scan LC-HR-MS profiles with those of known samples with known ME. ME can be corrected by following SAM with AM-XIC quantitation if necessary.


Subject(s)
Chromatography, Liquid/methods , Marine Toxins/isolation & purification , Mass Spectrometry/methods , Mytilus/metabolism , Animals , Marine Toxins/analysis , Marine Toxins/chemistry
9.
Harmful Algae ; 111: 102152, 2022 01.
Article in English | MEDLINE | ID: mdl-35016765

ABSTRACT

Marine phycotoxins associated with paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), ciguatera fish poisoning (CFP), tetrodotoxin (TTX), palytoxin (PLTX) and neurotoxin ß-N-methylamino-L-alanine (BMAA) have been investigated and routinely monitored along the coast of China. The mouse bioassay for monitoring of marine toxins has been progressively replaced by the enzyme-linked immunosorbent assay (ELISA) and liquid chromatography tandem mass spectrometry (LC-MS/MS), which led to the discovery of many new hydrophilic and lipophilic marine toxins. PSP toxins have been detected in the whole of coastal waters of China, where they are the most serious marine toxins. PSP events in the Northern Yellow Sea, the Bohai Sea and the East China Sea are a cause of severe public health concern. Okadaic acid (OA) and dinophysistoxin-1 (DTX1), which are major toxin components associated with DSP, were mainly found in coastal waters of Zhejiang and Fujian provinces, and other lipophilic toxins, such as pectenotoxins, yessotoxins, azaspiracids, cyclic imines, and dinophysistoxin-2(DTX2) were detected in bivalves, seawater, sediment, as well as phytoplankton. CFP events mainly occurred in the South China Sea, while TTX events mainly occurred in Jiangsu, Zhejiang and Fujian provinces. Microalgae that produce PLTX and BMAA were found in the phytoplankton community along the coastal waters of China.


Subject(s)
Shellfish Poisoning , Shellfish , Animals , Chromatography, Liquid/methods , Mice , Pyrans/analysis , Shellfish/analysis , Tandem Mass Spectrometry/methods
10.
Toxicol Lett ; 351: 89-98, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34461197

ABSTRACT

Lipophilic phycotoxins are secondary metabolites produced by phytoplankton. They can accumulate in edible filtering-shellfish and cause human intoxications, particularly gastrointestinal symptoms. Up to now, the in vitro intestinal effects of these toxins have been mainly investigated on simple monolayers of intestinal cells such as the enterocyte-like Caco-2 cell line. Recently, the combination of Caco-2 cells with mucus secreting HT29-MTX cell line has been also used to mimic the complexity of the human intestinal epithelium. Besides, enteric glial cells (EGC) from the enteric nervous system identified in the gut mucosa have been largely shown to be involved in gut functions. Therefore, using a novel model integrating Caco-2 and HT29-MTX cells co-cultured on inserts with EGC seeded in the basolateral compartment, we examined the toxicological effects of two phycotoxins, pectenotoxin-2 (PTX2) and okadaic acid (OA). Cell viability, morphology, barrier integrity, inflammation, barrier crossing, and the response of some specific glial markers were evaluated using a broad set of methodologies. The toxicity of PTX2 was depicted by a slight decrease of viability and integrity as well as a slight increase of inflammation of the Caco-2/HT29-MTX co-cultures. PTX2 induced some modifications of EGC morphology. OA induced IL-8 release and decreased viability and integrity of Caco-2/HT29-MTX cell monolayers. EGC viability was slightly affected by OA. The presence of EGC reinforced barrier integrity and reduced the inflammatory response of the epithelial barrier following OA exposure. The release of GDNF and BDNF gliomediators by EGC could be implicated in the protection observed.


Subject(s)
Coculture Techniques/methods , Furans/toxicity , Intestines/cytology , Macrolides/toxicity , Neuroglia/drug effects , Okadaic Acid/toxicity , Caco-2 Cells , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , HT29 Cells , Humans , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Neuroglia/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism
11.
Chemosphere ; 285: 131464, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34256204

ABSTRACT

Cyclodextrins, cyclic oligomers that form a conical structure with an internal cavity, are proposed as new and sustainable materials for passive sampling of lipophilic marine toxins. Two applicability scenarios have been tested. First, disks containing ß-cyclodextrin-hexamethylene diisocyanate (ß-CD-HDI) and ß-cyclodextrin-epichlorohydrin (ß-CD-EPI) polymers were immersed in Prorocentrum lima cultures for different days (2, 12 and 40). LC-MS/MS analysis showed capture of free okadaic acid (OA) and dinophysistoxin-1 (DTX1) by cyclodextrins at contents that increased with immersion time. Cyclodextrins resulted more efficient in capturing DTX1 than OA. In a second experiment, disks containing ß-CD-HDI, ß-CD-EPI, γ-CD-HDI and γ-CD-EPI were deployed in harbor waters of El Masnou (NW Mediterranean Sea) during a Dinophysis sacculus bloom in February 2020. Free OA and pectenotoxin-2 (PTX2) were captured by cyclodextrins. Toxin contents were higher at sampling points and sampling weeks with higher D. sacculus cell abundance. In this case, PTX2 capture with cyclodextrins was more efficient than OA capture. Therefore, cyclodextrins have provided information regarding the toxin profile of a P. lima strain and the spatial and temporal dynamics of a D. sacculus bloom, proven efficient as passive sampling materials for environmental monitoring.


Subject(s)
Cyclodextrins , Dinoflagellida , Chromatography, Liquid , Marine Toxins/analysis , Mediterranean Sea , Okadaic Acid/analysis , Polymers , Tandem Mass Spectrometry
12.
J Hazard Mater ; 418: 126285, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34119973

ABSTRACT

Marine phycotoxins severely threaten ecosystem health and mariculture. This study investigates the spatial distribution and source of diverse phycotoxins in the South China Sea (SCS), during four 2019/2020 cruises. Saxitoxin (STX) and okadaic acid (OA) -groups, azaspiracids, cyclic imines, pectenotoxins (PTX), yessotoxins, and domoic acid (DA) toxins were analyzed in microalgal samples. PTX2 occurred with the highest (93.5%) detection rate (DR) during all cruises, especially in the Pearl River Estuary (PRE) in June 2019. Homo-yessotoxin (hYTX) and DA were found during three cruises in August 2020, and high DR of hYTX (67.7%, 29.3%) and DA (29.0%, 29.3%) in the PRE and Guangdong coast, respectively, in June 2019 and 2020, peaking at concentrations of 777 pg hYTX L-1 and 38514 pg DA L-1. The phycotoxin distribution demonstrated that DA-producing microalgae gathered close to the PRE and Guangdong coast, while hYTX-producing microalgae distributed relatively far offshore. Microalgae producing PTX2- and STX-group toxins were more widely living in the SCS. High-throughput sequencing results suggested that Alexandrium pacificum and Gonyaulax spinifera were responsible for STX-group toxins and hYTX, respectively, while Pseudo-nitzschia cuspidata was the main source of DA. Widely distributed PTX2, hYTX, and DA were reported for the first time in the SCS.


Subject(s)
Diatoms , Dinoflagellida , China , Ecosystem , Okadaic Acid , Phytoplankton
13.
Harmful Algae ; 103: 101993, 2021 03.
Article in English | MEDLINE | ID: mdl-33980433

ABSTRACT

Harmful algal blooms (HABs), varying in intensity and causative species, have historically occurred throughout the Chesapeake Bay, U.S.; however, phycotoxin data are sparse. The spatiotemporal distribution of phycotoxins was investigated using solid-phase adsorption toxin tracking (SPATT) across 12 shallow, nearshore sites within the lower Chesapeake Bay and Virginia's coastal bays over one year (2017-2018). Eight toxins, azaspiracid-1 (AZA1), azaspiracid-2 (AZA2), microcystin-LR (MC-LR), domoic acid (DA), okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), and goniodomin A (GDA) were detected in SPATT extracts. Temporally, phycotoxins were always present in the region, with at least one phycotoxin group (i.e., consisting of OA and DTX1) detected at every time point. Co-occurrence of phycotoxins was also common; two or more toxin groups were observed in 76% of the samples analyzed. Toxin maximums: 0.03 ng AZA2/g resin/day, 0.25 ng DA/g resin/day, 15 ng DTX1/g resin/day, 61 ng OA/g resin/day, 72 ng PTX2/g resin/day, and 102,050 ng GDA/g resin/day were seasonal, with peaks occurring in summer and fall. Spatially, the southern tributary and coastal bay regions harbored the highest amount of total phycotoxins on SPATT over the year, and the former contained the greatest diversity of phycotoxins. The novel detection of AZAs in the region, before a causative species has been identified, supports the use of SPATT as an explorative tool in respect to emerging threats. The lack of karlotoxin in SPATT extracts, but detection of Karlodinium veneficum by microscopy, however, emphasizes that this tool should be considered complementary to, but not a replacement for, more traditional HAB management and monitoring methods.


Subject(s)
Dinoflagellida , Environmental Monitoring , Bays , Harmful Algal Bloom
14.
Anal Bioanal Chem ; 413(8): 2055-2069, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33661347

ABSTRACT

A freeze-dried mussel tissue-certified reference material (CRM-FDMT1) was prepared containing the marine algal toxin classes azaspiracids, okadaic acid and dinophysistoxins, yessotoxins, pectenotoxins, cyclic imines, and domoic acid. Thus far, only a limited number of analogues in CRM-FDMT1 have been assigned certified values; however, the complete toxin profile is significantly more complex. Liquid chromatography-high-resolution mass spectrometry was used to profile CRM-FDMT1. Full-scan data was searched against a list of previously reported toxin analogues, and characteristic product ions extracted from all-ion-fragmentation data were used to guide the extent of toxin profiling. A series of targeted and untargeted acquisition MS/MS experiments were then used to collect spectra for analogues. A number of toxins previously reported in the literature but not readily available as standards were tentatively identified including dihydroxy and carboxyhydroxyyessotoxin, azaspiracids-33 and -39, sulfonated pectenotoxin analogues, spirolide variants, and fatty acid acyl esters of okadaic acid and pectenotoxins. Previously unreported toxins were also observed including compounds from the pectenotoxin, azaspiracid, yessotoxin, and spirolide classes. More than one hundred toxin analogues present in CRM-FDMT1 are summarized along with a demonstration of the major acyl ester conjugates of several toxins. Retention index values were assigned for all confirmed or tentatively identified analogues to help with qualitative identification of the broad range of lipophilic toxins present in the material.


Subject(s)
Bivalvia/chemistry , Chromatography, High Pressure Liquid/methods , Marine Toxins/analysis , Tandem Mass Spectrometry/methods , Animals , Chromatography, High Pressure Liquid/standards , Freeze Drying , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , Mollusk Venoms , Okadaic Acid/analysis , Oxocins/analysis , Reference Standards , Spiro Compounds/analysis , Tandem Mass Spectrometry/standards
15.
J Food Prot ; 84(2): 204-212, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32977333

ABSTRACT

ABSTRACT: Some harmful algal blooms produce lipophilic marine biotoxins (LMTs) such as okadaic acid (OA; and its analogs dinophysistoxins [DTXs]), yessotoxins (YTXs), pectenotoxins (PTXs), and azaspiracids (AZAs), all of which may accumulate in filter-feeding bivalve mollusks. European health regulations stipulate a limit of 160 µg/kg for OA or DTXs, PTXs, and AZAs and 3.75 mg/kg for YTXs. Argopecten purpuratus is a valuable commercial marine bivalve exploited in Peru. Despite its importance and the periodic reports of the presence of harmful algal blooms in Peruvian coastal waters, information regarding potential contamination of these scallops by LMTs is lacking. We evaluated LMTs in 115 samples of A. purpuratus collected between November 2013 and March 2015 from 18 production areas distributed along the Peruvian coast. The hepatopancreas, which accumulates most of the toxins in the scallop, was analyzed with liquid chromatography-tandem mass spectrometry to quantify OA in its free form, YTX, AZA-1, and PTX-2. Baseline separation was achieved in 19 min. Linearity (R2 > 0.997), precision (coefficient of variation < 15%), and limits of quantification (0.155 to 0.479 ng/mL) were satisfactory. YTX was found in 72 samples, and PTX-2 was found in 17 samples, but concentrations of both biotoxins were below the regulatory limits. Free OA and AZA-1 were not detected in the scallop samples. This atypical profile (i.e., presence of PTX-2 and absence of OA) may be linked to the presence of the dinoflagellate Dinophysis acuminata. The production of YTX could be associated with the phytoplankton Gonyaulax spinifera and Protoceratium reticulatum. This is the first systematic assessment of the four types of LMTs in shellfish from Peruvian coastal waters. The results suggest low prevalence of LMTs in Peruvian bay scallops but support continued surveillance and analysis of LMTs in Peru.


Subject(s)
Pectinidae , Animals , Chromatography, Liquid , Okadaic Acid/analysis , Peru , Shellfish/analysis
16.
Toxins (Basel) ; 12(12)2020 12 06.
Article in English | MEDLINE | ID: mdl-33291341

ABSTRACT

Pectenotoxins (PTXs) are produced by Dinophysis spp., along with okadaic acid, dinophysistoxin 1, and dinophysistoxin 2. The okadaic acid group toxins cause diarrhetic shellfish poisoning (DSP), so are therefore regulated. New Zealand currently includes pectenotoxins within the DSP regulations. To determine the impact of this decision, shellfish biotoxin data collected between 2009 and 2019 were examined. They showed that 85 samples exceeded the DSP regulatory limit (0.45%) and that excluding pectenotoxins would have reduced this by 10% to 76 samples. The incidence (1.3%) and maximum concentrations of pectenotoxins (0.079 mg/kg) were also found to be low, well below the current European Food Safety Authority (EFSA) safe limit of 0.12 mg/kg. Inclusion within the DSP regulations is scientifically flawed, as pectenotoxins and okadaic acid have a different mechanism of action, meaning that their toxicities are not additive, which is the fundamental principle of grouping toxins. Furthermore, evaluation of the available toxicity data suggests that pectenotoxins have very low oral toxicity, with recent studies showing no oral toxicity in mice dosed with the PTX analogue PTX2 at 5000 µg/kg. No known human illnesses have been reported due to exposure to pectenotoxins in shellfish, a fact which combined with the toxicity data indicates that they pose negligible risk to humans. Regulatory policies should be commensurate with the level of risk, thus deregulation of PTXs ought to be considered, a stance already adopted by some countries.


Subject(s)
Marine Toxins/isolation & purification , Marine Toxins/toxicity , Shellfish Poisoning/prevention & control , Shellfish/analysis , Shellfish/toxicity , Animals , Bivalvia , New Zealand , Okadaic Acid/analogs & derivatives , Okadaic Acid/isolation & purification , Okadaic Acid/toxicity , Phytoplankton/isolation & purification , Risk Assessment/methods , Shellfish Poisoning/etiology
17.
Mar Pollut Bull ; 158: 111414, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32753198

ABSTRACT

Diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins (PTX) produced by endemic species of the genus Dinophysis, mainly D. acuta and D. acuminata, pose a big threat to public health, artisanal fisheries and the aquaculture industry in Southern Chile. This work reports the first detection of lipophilic toxins, including pectenotoxin-2 (PTX-2) and gymnodimine-A (GYM-A), in hard razor clam (Tagelus dombeii) associated with an unprecedented spring bloom -38.4 × 103 cells L-1 in integrated hose sampler (0-10 m) - of Dinophysis acuminata in coastal waters of central Chile. The socio-economic challenges to small-scale fisheries are discussed. The study points to the pressing need for sound policies to face unexpected HAB event, probably due to biogeographical expansions, with a focus on fisheries management, participation of stakeholders, and development of adaptive capacities.


Subject(s)
Dinoflagellida , Marine Toxins , Shellfish Poisoning , Animals , Chile , Shellfish/analysis
18.
Article in English | MEDLINE | ID: mdl-32515303

ABSTRACT

Lipophilic marine toxins (LMTs) are made up of multiple groups of toxic analogues, which are characterised by different levels of cellular and toxic action. The most prevalent groups in the southern Pacific zone are: a) okadaic acid group (OA-group) which consists of okadaic acid (OA) and dinophysistoxin-1 (DTX-1); and, b) pectenotoxin-2 (PTX2) group which consists of pectenotoxin-2 (PTX-2). The main objective of our study was to examine in vitro biotransformation of OA-group and PTX-group in the tissues of two endemic species of bivalves from southern Chile; blue mussels (Mytilus chilensis) and clams (Ameghinomya antiqua). The biotransformation processes of both groups were only detected in the digestive glands of both species using LC-MS/MS. The most frequently detected analogues were acyl derivatives (≈2.0 ± 0.1 µg ml-1) for OA-group and PTX-2SA (≈1.4 ± 0.1 µg ml-1) for PTX-group, with a higher percentage of biotransformation for OA-group (p < .001). In addition, simultaneous incubations of the different analogues (OA/PTX-2; DTX-1/PTX-2 and OA/DTX-1/PTX-2) did not show any interaction between the biotransformation processes. These results show that the toxicological variability of endemic species leads to biotransformation of the profile of toxins, so that these new analogues may affect people's health.


Subject(s)
Bivalvia/metabolism , Furans/metabolism , Macrolides/metabolism , Mytilus/metabolism , Okadaic Acid/metabolism , Animals , Biotransformation , Bivalvia/chemistry , Chile , Chromatography, Liquid , Furans/analysis , Macrolides/analysis , Mytilus/chemistry , Okadaic Acid/analogs & derivatives , Okadaic Acid/analysis , Tandem Mass Spectrometry
19.
Mar Pollut Bull ; 150: 110778, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31910525

ABSTRACT

The aim of the present work was to unravel which environmental drivers govern the dynamics of toxic dinoflagellate abundance as well as their associated paralytic shellfish toxins (PSTs), diarrhetic shellfish toxins (DSTs) and pectenotoxin-2 (PTX2) in Ambon Bay, Eastern Indonesia. Weather, biological and physicochemical parameters were investigated weekly over a 7-month period. Both PSTs and PTX2 were detected at low levels, yet they persisted throughout the research. Meanwhile, DSTs were absent. A strong correlation was found between total particulate PST and Gymnodinium catenatum cell abundance, implying that this species was the main producer of this toxin. PTX2 was positively correlated with Dinophysis miles cell abundance. Vertical mixing, tidal elevation and irradiance attenuation were the main environmental factors that regulated both toxins and cell abundances, while nutrients showed only weak correlations. The present study indicates that dinoflagellate toxins form a potential environmental, economic and health risk in this Eastern Indonesian bay.


Subject(s)
Dinoflagellida , Marine Toxins , Bays , Environmental Monitoring , Indonesia , Shellfish
20.
Toxins (Basel) ; 10(11)2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30404158

ABSTRACT

The identification and quantification of okadaic acid (OA)/dinophysistoxin (DTX) analogues and pectenotoxins (PTXs) in Dinophysis samples collected from coastal locations around Japan were evaluated by liquid chromatography mass spectrometry. The species identified and analyzed included Dinophysis fortii, D. acuminata, D. mitra (Phalacroma mitra), D. norvegica, D. infundibulus, D. tripos, D. caudata, D. rotundata (Phalacroma rotundatum), and D. rudgei. The dominant toxin found in D. acuminata was PTX2 although some samples contained DTX1 as a minor toxin. D. acuminata specimens isolated from the southwestern regions (Takada and Hiroshima) showed characteristic toxin profiles, with only OA detected in samples collected from Takada. In contrast, both OA and DTX1, in addition to a larger proportion of PTX2, were detected in D. acuminata from Hiroshima. D. fortii showed a toxin profile dominated by PTX2 although this species had higher levels of DTX1 than D. acuminata. OA was detected as a minor toxin in some D. fortii samples collected from Yakumo, Noheji, and Hakata. PTX2 was also the dominant toxin found among other Dinophysis species analyzed, such as D. norvegica, D. tripos, and D. caudata, although some pooled picked cells of these species contained trace levels of OA or DTX1. The results obtained in this study re-confirm that cellular toxin content and profiles are different even among strains of the same species.


Subject(s)
Alveolata/chemistry , Aquatic Organisms , Okadaic Acid/analogs & derivatives , Okadaic Acid/toxicity , Seawater/microbiology , Chromatography, Liquid , Environmental Monitoring/methods , Japan , Marine Toxins/analysis , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL