Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891425

ABSTRACT

Here, we report the preparation and evaluation of PVA/PEDOT:PSS-conducting hydrogels working as channel materials for OECT applications, focusing on the understanding of their charge transport and transfer properties. Our conducting hydrogels are based on crosslinked PVA with PEDOT:PSS interacting via hydrogen bonding and exhibit an excellent swelling ratio of ~180-200% w/w. Our electrochemical impedance studies indicate that the charge transport and transfer processes at the channel material based on conducting hydrogels are not trivial compared to conducting polymeric films. The most relevant feature is that the ionic transport through the swollen hydrogel is clearly different from the transport through the solution, and the charge transfer and diffusion processes govern the low-frequency regime. In addition, we have performed in operando Raman spectroscopy analyses in the OECT devices supported by first-principle computational simulations corroborating the doping/de-doping processes under different applied gate voltages. The maximum transconductance (gm~1.05 µS) and maximum volumetric capacitance (C*~2.3 F.cm-3) values indicate that these conducting hydrogels can be promising candidates as channel materials for OECT devices.

2.
Article in English | MEDLINE | ID: mdl-38832687

ABSTRACT

This study presents the development of gas sensors based on the PEDOT:PSS@ZnO hybrid active layer slot-die printing aqueous ink. Two different zinc oxide (ZnO) nanoparticles were studied to form the nanocomposites, as well as the use of glass and PET substrates to manufacture the devices. Despite the influence of the morphology of the active layer, all device variations studied here exhibited high response values for methanol gas at room temperature, in addition to presenting good repeatability, reversibility, and the possibility of technology transfer to flexible substrates. Furthermore, PEDOT:PSS@ZnO showed good selectivity to methanol compared to ethanol, ammonia, and CO2. The best devices showed responses greater than 700% in detecting methanol.

3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982325

ABSTRACT

The synthesis of four pentacoordinated organotin(IV) complexes prepared in a one-pot reaction from 2-hydroxy-1-naphthaldehyde, 2-amino-3-hydroxypyridine and organotin oxides is reported. The complexes were characterized by UV-Vis, IR, MS, 1H, 13C and 119Sn NMR techniques. The compound based on 2,2-diphenyl-6-aza-1,3-dioxa-2-stannanaphtho[1,2-h]pyrido[3,2-d]cyclononene revealed the formation of a monomeric complex with a distorted five-coordinated molecular geometry intermediate between the trigonal bipyramidal and square pyramidal. In order to find possible applications in photovoltaic devices, hybrid films of organotin(IV) complexes embedded in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with graphene were deposited. The topographic and mechanical properties were examined. The film with the complex integrated into the cyclohexyl substituent has high plastic deformation, with a maximum stress of 1.69 × 107 Pa and a Knoop hardness of 0.061. The lowest values of 1.85 eV for the onset gap and 3.53 eV for the energy gap were obtained for the heterostructure having the complex with the phenyl substituent. Bulk heterojunction devices were fabricated; these devices showed ohmic behavior at low voltages and a space-charge-limited current (SCLC) conduction mechanism at higher voltages. A value of 0.02 A was found for the maximum carried current. The SCLC mechanism suggests hole mobility values of between 2.62 × 10-2 and 3.63 cm2/V.s and concentrations of thermally excited holes between 2.96 × 1018 and 4.38 × 1018 m-3.

4.
Polymers (Basel) ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36772040

ABSTRACT

An electrochemical sensor for the pesticide Pirimicarb (PMC) has been developed. A screen-printed electrode (SPCE) was used and modified with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) and gold nanoparticles (AuNPs) to enhance electrochemical proprieties. Electrode characterizations were performed using scattering electron microscopy (SEM) and cyclic voltammetry (CV). With the SPCE/PEDOT:PSS/AuNPs modified electrode, a new peak at 1.0 V appeared in the presence of PMC related to the PMC oxidation. To elucidate the mechanism of PMC oxidation, Gas Chromatography-Mass Spectrometry (GC-MS), where two major peaks were identified, evidencing that the device can both detect and degrade PMC by an electro-oxidation process. Exploring this peak signal, it was possible the sensor development, performing detection from 93.81-750 µmol L-1, limits of quantification (LOQ) and detection (LOD) of 93.91 µmol L-1 and 28.34 µmol L-1, respectively. Thus, it was possible to study and optimization of PMC degradation, moreover, to perform detection at low concentrations and with good selectivity against different interferents using a low-cost printed electrode based on graphite modified with conductive polymer and AuNPs.

5.
Biosensors (Basel) ; 12(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36290990

ABSTRACT

One of the significant challenges today in the brain-machine interfaces that use invasive methods is the stability of the chronic record. In recent years, polymer-based electrodes have gained notoriety for achieving mechanical strength values close to that of brain tissue, promoting a lower immune response to the implant. In this work, we fabricated fully polymeric electrodes based on PEDOT:PSS for neural recording in Wistar rats. We characterized the electrical properties and both in vitro and in vivo functionality of the electrodes. Additionally, we employed histological processing and microscopical visualization to evaluate the tecidual immune response at 7, 14, and 21 days post-implant. Electrodes with 400-micrometer channels showed a 12 dB signal-to-noise ratio. Local field potentials were characterized under two conditions: anesthetized and free-moving. There was a proliferation of microglia at the tissue-electrode interface in the early days, though there was a decrease after 14 days. Astrocytes also migrated to the interface, but there was not continuous recruitment of these cells in the tissue; there was inflammatory stability by day 21. The signal was not affected by this inflammatory action, demonstrating that fully polymeric electrodes can be an alternative means to prolong the valuable time of neural recordings.


Subject(s)
Neurons , Polymers , Animals , Rats , Neurons/physiology , Rats, Wistar , Microelectrodes
6.
Polymers (Basel) ; 14(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36236091

ABSTRACT

The hybrid film of molybdenum oxide (MoO3) and poly(3,4-ethylenedyoxithiophene) polystyrene sulfonate (PEDOT:PSS) is a promising candidate for use as hole transport layer (HTL) in low-cost devices. A fast, controllable and economic process was used to fabricate high-performance HTLs by adding organotin (IV) semiconductors to the MoO3/PEDOT:PSS films. These hybrid films were fabricated by spin-coating and the MoO3/PEDOT:PSS-organotin (IV) complex films were characterized by infrared spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Some mechanical and optical properties of the hybrid films were obtained and, to electrically characterize the hybrid films, hetero-junction glass/ITO/MoO3/PEDOT:PSS-organotin (IV) complex/Ag devices were prepared. Regarding the mechanical properties, the films have high plastic deformation, with a maximum stress of around 40 MPa and a Knoop hardness of 0.14. With respect to optical behavior, the films showed high transparency, with optical gap values between 2.8 and 3.5 eV and an onset gap of around 2.4 eV, typical of semiconductors. Additionally, the films in their respective devices show ambipolar and ohmic behavior with small differences depending on the substituent in organotin (IV) semiconductors. The MoO3/PEDOT:PSS matrix defines the mechanical behavior of the films and the tin complexes contribute their optoelectronic properties.

7.
Polymers (Basel) ; 13(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34883665

ABSTRACT

The atomic layer deposition (ALD) of Al2O3 between perovskite and the hole transporting material (HTM) PEDOT:PSS has previously been shown to improve the efficiency of perovskite solar cells. However, the costs associated with this technique make it unaffordable. In this work, the deposition of an organic-inorganic PEDOT:PSS-Cl-Al2O3 bilayer is performed by a simple electrochemical technique with a final annealing step, and the performance of this material as HTM in inverted perovskite solar cells is studied. It was found that this material (PEDOT:PSS-Al2O3) improves the solar cell performance by the same mechanisms as Al2O3 obtained by ALD: formation of an additional energy barrier, perovskite passivation, and increase in the open-circuit voltage (Voc) due to suppressed recombination. As a result, the incorporation of the electrochemical Al2O3 increased the cell efficiency from 12.1% to 14.3%. Remarkably, this material led to higher steady-state power conversion efficiency, improving a recurring problem in solar cells.

8.
Polymers (Basel) ; 13(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34833307

ABSTRACT

The use of composite films with semiconductor behavior is an alternative to enhance the efficiency of optoelectronic devices. Composite films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and metalloporphines (MPs; M = Co, Cu, Pd) have been prepared by spin-coating. The PEDOT:PSS-MP films were treated with isopropanol (IPA) vapor to modify the polymer structure from benzoid to quinoid. The quinoid structure promotes improvements in the optical and electrical behavior of films. The composite films' morphology and structure were characterized using infrared and Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Composite films were analyzed for their optical behavior by ultraviolet-visible spectroscopy: at λ < 450 nm, the films become transparent, indicating the capacity to be used as transparent electrodes in optoelectronic devices. At λ ≥ 450 nm, the absorbance in the films increased significantly. The CoP showed an 8 times larger current density compared to the CuP. A light induced change in the J-V curves was observed, and it is larger for the CoP. The conductivity values yielded between 1.23 × 102 and 1.92 × 103 Scm-1 and were higher in forward bias.

9.
Polymers (Basel) ; 13(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806246

ABSTRACT

The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to 82%). The complexes were characterized by UV-vis spectroscopy, IR spectroscopy, mass spectrometry, 1H, 13C, and 119Sn nuclear magnetic resonance (NMR) and elemental analysis. The spectroscopic analysis revealed that the tin atom is seven-coordinate in solution and that the carboxyl group acts as monodentate ligand. To determine the effect of the substituent on the optoelectronic properties of the organotin (IV) complexes, thin films were deposited, and the optical bandgap was obtained. A bandgap between 1.88 and 1.98 eV for the pellets and between 1.23 and 1.40 eV for the thin films was obtained. Later, different types of optoelectronic devices with architecture "contacts up/base down" were manufactured and analyzed to compare their electrical behavior. The design was intended to generate a composite based on the synthetized heptacoordinated organotin (IV) complexes embedded on the poly(3,4-ethylenedyoxithiophene)-poly(styrene sulfonate) (PEDOT:PSS). A Schottky curve at low voltages (<1.5 mV) and a current density variation of as much as ~3 × 10-5 A/cm2 at ~1.1 mV was observed. A generated photocurrent was of approximately 10-7 A and a photoconductivity between 4 × 10-9 and 7 × 10-9 S/cm for all the manufactured structures. The structural modifications on organotin (IV) complexes were focused on the electronic nature of the substituents and their ability to contribute to the electronic delocalization via the π system. The presence of the methyl group, a modest electron donor, or the non-substitution on the aromatic ring, has a reduced effect on the electronic properties of the molecule. However, a strong effect in the electronic properties of the material can be inferred from the presence of electron-withdrawing substituents like chlorine, able to reduce the gap energies.

10.
Polymers (Basel) ; 12(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260898

ABSTRACT

In this work, we present a comparative study of benzoid poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as electrode and as hole carrier transport layer (HTL) in the manufacture of organic photovoltaic devices using Fischer metal-carbene complexes. The performance of the different devices was evaluated for solar cell applications. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the thin films that integrated the devices. A more ordered and crystallized active film microstructure is observed when using benzoid PEDOT:PSS as nucleation layer. The optical gap for both direct and indirect electronic transitions was evaluated from ultraviolet-visible spectroscopy data (UV-vis), as well as the absorption coefficient (α), and the values are in the range of 2.10-2.93 eV. Photovoltaic devices with conventional architecture, using two different chromium carbenes as active layers, were manufactured, and their electrical behavior was studied. The devices were irradiated with different wavelengths between the infrared and ultraviolet regions of the electromagnetic spectrum. Using the PEDOT:PSS film as hole carrier transport layer (HTL) decreases the slope on the ohmic and space charge limited current (SCLC) regions and eliminates the trap-charge limited current (T-CLC) mechanism. Furthermore, a saturation current of ~1.95 × 10-10 A and higher current values ~1.75 × 10-2 A at 4 V, ~4 orders in magnitude larger were observed. The PEDOT:PSS films as HTL in the devices reduced the injection barrier, thus showing a better performance than as anodes in this type of organic solar cells.

11.
Polymers (Basel) ; 11(6)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31212644

ABSTRACT

In this work, we propose poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) material to form a hybrid heterojunction with amorphous silicon-based materials for high charge carrier collection at the frontal interface of solar cells. The nanostructural characteristics of PEDOT:PSS layers were modified using post-treatment techniques via isopropyl alcohol (IPA). Atomic force microscopy (AFM), Fourier-transform infrared (FTIR), and Raman spectroscopy demonstrated conformational changes and nanostructural reorganization in the surface of the polymer in order to tailor hybrid interface to be used in the heterojunctions of inorganic solar cells. To prove this concept, hybrid polymer/amorphous silicon solar cells were fabricated. The hybrid PEDOT:PSS/buffer/a-Si:H heterojunction demonstrated high transmittance, reduction of electron diffusion, and enhancement of the internal electric field. Although the structure was a planar superstrate-type configuration and the PEDOT:PSS layer was exposed to glow discharge, the hybrid solar cell reached high efficiency compared to that in similar hybrid solar cells with substrate-type configuration and that in textured well-optimized amorphous silicon solar cells fabricated at low temperature. Thus, we demonstrate that PEDOT:PSS is fully tailored and compatible material with plasma processes and can be a substitute for inorganic p-type layers in inorganic solar cells and related devices with improvement of performance and simplification of fabrication process.

12.
Biomed Eng Online ; 17(1): 38, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29609593

ABSTRACT

BACKGROUND: Wearable textile electrodes for the detection of biopotentials are a promising tool for the monitoring and early diagnosis of chronic diseases. We present a comparative study of the electrical characteristics of four textile electrodes manufactured from common fabrics treated with a conductive polymer, a commercial fabric, and disposable Ag/AgCl electrodes. These characteristics will allow identifying the performance of the materials when used as ECG electrodes. The electrodes were subjected to different electrical tests, and complemented with conductivity calculations and microscopic images to determine their feasibility in the detection of ECG signals. METHODS: We evaluated four electrical characteristics: contact impedance, electrode polarization, noise, and long-term performance. We analyzed PEDOT:PSS treated fabrics based on cotton, cotton-polyester, lycra and polyester; also a commercial fabric made of silver-plated nylon Shielde® Med-Tex P130, and commercial Ag/AgCl electrodes. We calculated conductivity from the surface resistance and, analyzed their surface at a microscopic level. Rwizard was used in the statistical analysis. RESULTS: The results showed that textile electrodes treated with PEDOT:PSS are suitable for the detection of ECG signals. The error detecting features of the ECG signal was lower than 2% and the electrodes kept working properly after 36 h of continuous use. Even though the contact impedance and the polarization level in textile electrodes were greater than in commercial electrodes, these parameters did not affect the acquisition of the ECG signals. Fabrics conductivity calculations were consistent to the contact impedance.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Electrocardiography/instrumentation , Polymers , Polystyrenes , Textiles , Wearable Electronic Devices , Electrodes
13.
Polymers (Basel) ; 10(10)2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30960993

ABSTRACT

Thin-film hybrid organic-inorganic photovoltaic structures based on hydrogenated silicon (Si:H), poly(3,4ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) polymer Al-doped ZnO (AZO) films deposited on different types of flexible substrates have been fabricated and investigated. The compatibility of the polymer and inorganic materials regimes and deposition techniques used for device fabrication has been demonstrated on flexible substrates. Morphological characteristics of transparent Al-doped ZnO (AZO) films deposited on substrates have been measured by atomic force microscopy. Electronic characteristics of the fabricated photovoltaic structures have been measured and analyzed for different thicknesses of the transparent electrodes and different substrate types. Photovoltaic hybrid structure on polyethylene naphthalate (PEN) substrate showed the best characteristics: short circuit current density Jsc = 9.79 mA/cm², open circuit voltage Uoc = 565 mV, and PCE η = 1.3%. To analyze the mechanisms governing the device performance, short circuit current density spectral dependence of the devices fabricated on different types of flexible substrates has been measured. As demonstrated by our analysis, the structures on PEN substrates, besides better substrate transmittance, also show better junction properties.

14.
Univ. sci ; 15(1): 68-76, Jan.-Apr. 2010. ilus
Article in English | LILACS-Express | LILACS | ID: lil-637336

ABSTRACT

Polymer-based organic light-emitting diodes (OLEDs) with the structure ITO / PEDOT:PSS / MDMO-PPV / Metal were prepared by spin coating. It is known that electroluminescence of these devices is strongly dependent on the material used as cathode and on the deposition parameters of the polymer electroluminescent layer MDMO-PPV. Objective. In this work the effect of i) the frequency of the spin coater (1000-8000 rpm), ii) the concentration of the MDMO-PPV: Toluene solution, and iii) the material used as cathode (Aluminium or Silver) on the electrical response of the devices, was evaluated through current-voltage (I-V) measurements. Materials and methods. PEDOT:PPS and MDMO-PPV organic layers were deposited by spin coating on ITO substrates, and the OLED structure was completed with cathodes of aluminium and silver. The electric response of the devices was evaluated based on the I-V characteristics. Results. Diodes prepared with thinner organic films allow higher currents at lower voltages; this can be achieved either by increasing the frequency of the spin coater or by using concentrations of MDMO-PPV: Toluene lower than 2% weight. A fit of the experimental data showed that the diodes have two contributions to the current. The first one is attributed to parasitic currents between anode and cathode, and the other one is a parallel current through the organic layer, in which the carrier injection mechanism is mediated by thermionic emission. Conclusions. The results of the fitting and the energy level alignment through the whole structure show that PPV-based OLEDs are unipolar devices, with current mainly attributed to hole transport.


Se fabricaron diodos orgánicos emisores de luz (OLEDs) con la estructura ITO / PEDOT:PSS / MDMO-PPV / Metal mediante la técnica de spin coating. Es ampliamente conocido que la electroluminiscencia de estos diodos depende fuertemente del material usado como cátodo y también de los parámetros de crecimiento de la capa del polímero electroluminiscente MDMO-PPV. Objetivo. En este trabajo el efecto de i) la frecuencia del spin coater (1000-8000 rpm), ii) la concentración de la solución MDMO-PPV: Tolueno y iii) el material usado como cátodo (plata o aluminio) sobre la repuesta eléctrica de los dispositivos, fue evaluado a través de medidas de corriente-voltaje (I-V). Materiales y métodos. Películas delgadas de los materiales orgánicos PEDOT:PSS y MDMO-PPV fueron depositados por spin coating sobre sustratos de ITO, y la estructura del OLED fue terminada con cátodo de plata y aluminio. La respuesta eléctrica de los dispositivos fue evaluada a través de su característica I-V. Resultados. Los diodos fabricados con películas orgánicas más delgadas son los que suministran mayores corrientes a menores voltajes. Esto puede lograrse ya sea incrementando la frecuencia de rotación del spin coating o usando concentraciones de MDMO-PPV: Tolueno menores al 2% en peso. Un ajuste de los datos experimentales demostró que los diodos poseen contribuciones de una corriente parásita entre ánodo y cátodo, y otra corriente paralela en donde el mecanismo predominante de inyección de portadores a la capa orgánica es a través de emisión termoiónica. Conclusiones. El ajuste de los datos experimentales, junto con la posición de niveles de energía a través de la heteroestructura, demuestra que los OLEDs basados en derivados de PPV son dispositivos unipolares, en el que la corriente se atribuye principalmente a transporte de huecos.


Foram fabricados diodos orgânicos emissores de luz (OLEDs) com a estrutura de ITO / PEDOT: PSS / MDMO-PPV / metal, pela técnica de spin coating. É amplamente conhecido que a eletroluminescência destes diodos depende fortemente do material utilizado como cátodo, e também dos parâmetros de crescimento da camada de polímero eletroluminescente MDMO-PPV. Objetivo. Neste trabalho o efeito de i) a freqüência do spin coater (1000-8000 rpm), ii) a concentração da solução MDMO-PPV: Tolueno e iii) o material utilizado como cátodo (prata ou alumínio) sobre a resposta elétrica dos dispositivos, foi avaliado por medidas de corrente-voltagem (I-V). Materiais e métodos. Películas finas de materiais orgânicos PEDOT: PSS e MDMO-PPV foram depositadas por spin coating sobre substratos de ITO e a estrutura do OLED foi terminada com cátodo de prata e de alumínio. A resposta elétrica dos dispositivos foi avaliada pela sua característica I-V. Resultados. Os diodos feitos de películas orgânicas finas fornecem maiores correntes a menores voltagens. Isto pode ser conseguido, quer através do aumento da velocidade de rotação do spin coating ou usando concentrações de MDMO-PPV: Tolueno menores de 2% em peso. Um ajuste dos dados experimentais mostrou que os diodos têm uma contribuição de uma corrente parasita entre anodo e catodo, e outra corrente paralela, onde o principal mecanismo da injeção de portadores da camada orgânica é através da emissão termiônica. Conclusões. O ajuste dos dados experimentais, juntamente com a posição dos níveis de energia através da heteroestrutura, mostra que os OLEDs baseados em derivados de PPV são dispositivos unipolares, onde a corrente é atribuída principalmente ao transporte de ocos.

15.
Sensors (Basel) ; 10(4): 2812-20, 2010.
Article in English | MEDLINE | ID: mdl-22319273

ABSTRACT

The conductive blend of the poly (3,4-ethylene dioxythiophene) and polystyrene sulfonated acid (PEDOT-PSS) polymers were doped with Methyl Red (MR) dye in the acid form and were used as the basis for a chemiresistor sensor for detection of ethanol vapor. This Au | Polymers-dye blend | Au device was manufactured by chemical vapor deposition and spin-coating, the first for deposition of the metal electrodes onto a glass substrate, and the second for preparation of the organic thin film forming ∼1.0 mm2 of active area. The results obtained are the following: (i) electrical resistance dependence with atmospheres containing ethanol vapor carried by nitrogen gas and humidity; (ii) sensitivity at 1.15 for limit detection of 26.25 ppm analyte and an operating temperature of 25 °C; and (iii) the sensing process is quickly reversible and shows very a low power consumption of 20 µW. The thin film morphology of ∼200 nm thickness was analyzed by Atomic Force Microscopy (AFM), where it was observed to have a peculiarly granulometric surface favorable to adsorption. This work indicates that PEDOT-PSS doped with MR dye to compose blend film shows good performance like resistive sensor.

SELECTION OF CITATIONS
SEARCH DETAIL