Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
J Pharm Bioallied Sci ; 16(Suppl 2): S1299-S1303, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882825

ABSTRACT

Aim: The metabolism of glucose is carefully regulated by several chemical elements and plays a critical part in preserving cellular energy balance. Our study investigates possible connections between the essential proteins CYTIP, C1QL3, and CYBB, which are involved in the metabolism of glucose, and pelargonidin, a naturally occurring plant chemical. The underlying mechanisms of pelargonidin's anti-diabetic effects are still unknown. Materials and Methods: We examine the binding affinities and possible binding sites between pelargonidin and C1QL3/CYBB AND CYTIP using molecular docking simulations. The results demonstrate favorable docking scores and potential binding sites, suggesting the formation of stable complexes between pelargonidin and the target proteins. Results: This finding means that pelargonidin may modulate the function of C1QL3 and CYBB, CYTIP consequently influencing glucose metabolism. Conclusion: This study provides a foundation for future experimental investigations to validate the predicted interactions and explore the mechanisms through which pelargonidin affects glucose metabolism. Understanding these molecular interactions could lead to the development of new therapeutic strategies for glucose metabolism and its related disorders.

2.
Brain Sci ; 14(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38928545

ABSTRACT

Epilepsy is a neurological disease that affects approximately 50 million people worldwide. Despite an existing abundance of antiepileptic drugs, lifelong disease treatment is often required but could be improved with alternative drugs that have fewer side effects. Given that epileptic seizures stem from abnormal neuronal discharges predominately modulated by the human sodium channel Nav1.2, the quest for novel and potent Nav1.2 blockers holds promise for epilepsy management. Herein, an in vivo approach was used to detect new antiepileptic compounds using the maximum electroshock test on mice. Pre-treatment of mice with extracts from the Ficus religiosa plant ameliorated the tonic hind limb extensor phase of induced convulsions. Subsequently, an in silico approach identified potential Nav1.2 blocking compounds from F. religiosa using a combination of computational techniques, including molecular docking, prime molecular mechanics/generalized Born surface area (MM/GBSA) analysis, and molecular dynamics (MD) simulation studies. The molecular docking and MM/GBSA analysis indicated that out of 82 compounds known to be present in F. religiosa, seven exhibited relatively strong binding affinities to Nav1.2 that ranged from -6.555 to -13.476 kcal/mol; similar or with higher affinity than phenytoin (-6.660 kcal/mol), a known Na+-channel blocking antiepileptic drug. Furthermore, MD simulations revealed that two compounds: 6-C-glucosyl-8-C-arabinosyl apigenin and pelargonidin-3-rhamnoside could form stable complexes with Nav1.2 at 300 K, indicating their potential as lead antiepileptic agents. In summary, the combination of in vivo and in silico approaches supports the potential of F. religiosa phytochemicals as natural antiepileptic therapeutic agents.

3.
Article in English | MEDLINE | ID: mdl-38853344

ABSTRACT

Lung cancer has the worst prognosis with an average 5-year survival rate of only 10%-20%. Lung cancer has the highest prevalence rate and a second most common cause of cancer-associated mortalities worldwide. The present study was planned to explore the anticancer effects of pelargonidin against the lung cancer A549 cells via analyzing oxidative stress-mediated apoptosis. The viability of both control and pelargonidin-treated A549 cells was analyzed using the MTT cytotoxicity assay at different time periods. The levels of endogenous ROS generation, mitochondrial membrane potential (Δψm), and apoptosis were assessed using corresponding fluorescent staining assays. The levels of oxidative stress biomarkers, including TBARS, SOD, CAT, and GSH, in the cell lysates of control and pelargonidin-treated A549 cells were examined using the assay kits. The pelargonidin treatment substantially suppressed the A549 cell growth. Further, pelargonidin promoted the ROS production and depleted the Δψm levels in the A549 cells. The fluorescent staining assays witnessed the occurrence of increased apoptosis in the pelargonidin-treated A549 cells. The pelargonidin also boosted the TBARS and reduced the antioxidant levels thereby promoted the oxidative stress-regulated apoptosis in the A549 cells. In summary, the findings' results of the current study demonstrated an anticancer activity of pelargonidin on A549 cells. The pelargonidin treatment substantially decreased the growth and encouraged the oxidative stress-regulated apoptosis in A549 cells. Therefore, it was evident that the pelargonidin could be employed as an effective anticancer candidate to treat the lung cancer.

4.
Sci Total Environ ; 942: 173603, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38821275

ABSTRACT

Intensification of copper pollution in the environment has led to its excessive accumulation in humans, causing oxidative stress and lipid metabolism disorders. It is necessary to look for effective targets and safe methods to alleviate copper toxicity. Pelargonidin-3-glucoside (Pg3G) is a natural anthocyanin with metal ion chelating ability and multiple physiological activities. In this study, lipid accumulation was investigated under copper exposure in Caenorhabditis elegans which can be improved by Pg3G. Transcriptome analysis revealed that differentially expressed genes are enriched in lipid metabolism and protein folding/degradation. Pg3G activated mitochondrial unfold protein response (UPRmt) to mitigate mitochondrial damage caused by copper and regulated the expression of genes involved in lipid absorption, transport, and synthesis, thereby reducing lipid levels in C. elegans. This improvement disappeared in the ubl-5 knockout strain, indicating that ubl-5 is one target of Pg3G. Meanwhile, in HepG2 cells, Pg3G enhanced the cellular antioxidant capacity by activating UPRmt for maintaining mitochondrial homeostasis, followed by inhibition of excessive lipid accumulation. Overall, these results suggested that UPRmt activation can be a strategy for mitigating lipid disorders induced by copper and Pg3G with excellent ability to resist oxidative stress specially targeted for ubl-5 has a promising application in controlling copper contamination.


Subject(s)
Anthocyanins , Caenorhabditis elegans , Copper , Lipid Metabolism , Mitochondria , Unfolded Protein Response , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Copper/toxicity , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Lipid Metabolism/drug effects , Unfolded Protein Response/drug effects , Oxidative Stress/drug effects , Humans , Hep G2 Cells
5.
Nat Prod Res ; : 1-6, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517217

ABSTRACT

A novel coronavirus has caused major health problems and is spreading globally. The main protease enzyme plays a significant role in the number of copies of ss-RNA produced during the proteolytic cleavage of polypeptides. This work aims to find possible dual inhibitors of the 3-Chymotrypsin-like proteases PDB-6W63 and 6LU7 which increase efficiency and faster inhibition activity. By using an in-silico technique, polyphenols are molecularly docked against these targets to inhibit protease enzymes. Some polyphenols, such as pelargonidin and naringin, have significant dual inhibition characteristics with remarkable binding affinities with active scaffolds of both proteins, which have important ADMET parameters. These organic molecules are strongly bonded with amino acids of protein via mostly hydrogen bonding. These polyphenols also have outstanding docking scores and MMGBSA energies. The validity of the docking score was evaluated using a molecular dynamics simulation that assessed the stability of the complex. With the aid of computer-aided drug design, we hypothesise that the dual inhibition of compounds pelargonidin and naringin could effectively and potentially oppose SARS-CoV-2.

6.
J Med Food ; 27(2): 110-122, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181190

ABSTRACT

The objective of this study was to examine the impact and underlying mechanisms of pelargonidin-3-galactoside (Pg3gal) produced from purple sweet potatoes on colonic inflammation induced by dextran sulfate sodium (DSS) in a murine model of ulcerative colitis (UC). C57BL/6J mice were categorized into four groups (n = 6 per group): DSS+Pg3gal, control, control+Pg3gal, and DSS. Colitis was induced by providing free access to 3% DSS for 10 days. The DSS+Pg3gal model mice received DSS concurrently with intragastric Pg3gal (25 mg/kg). The health of the mice was carefully monitored on a regular basis, and scores for the Disease Activity Index (DAI) were documented. A histological assessment was conducted using hematoxylin and eosin staining to evaluate the extent of mucosal injury present. The expression levels of IL-6, NLRP3, ASC, cleaved-Caspase-1, TNF-α, N-GSDMS, and cleaved-IL-1ß proteins were evaluated by Western blot analysis. The process of 16S rRNA sequencing was carried out to examine the composition and relative abundance of gut microbiotas within the intestines of the mice. The DAI results revealed that Pg3gal significantly attenuated the DSS-induced UC in mice. In addition, it successfully alleviated the decline in colon size, improved the condition of colonic tissue, and significantly inhibited the production of proinflammatory cytokines, such as IL-6, IL-1ß, and TNF-α, in the colon tissues. Additionally, Pg3gal modulated the DSS-induced imbalanced gut microbiota, as evidenced by decreased Proteobacteria and Deferribacteres and simultaneous elevation in Firmicutes, Bacteroidetes, and Verrucomicrobia. In summary, Pg3gal alleviated DSS-induced UC by inhibiting pyroptosis in intestinal epithelial cells and enhancing the structural integrity of the gut microbiota.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Ipomoea batatas , Animals , Mice , Dextran Sulfate/adverse effects , Colon/pathology , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Anthocyanins/metabolism , RNA, Ribosomal, 16S , Pyroptosis , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Intestines/pathology , Disease Models, Animal
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1737-1748, 2024 03.
Article in English | MEDLINE | ID: mdl-37728621

ABSTRACT

Acrolein, a common environmental pollutant, is linked to the development of cardiovascular inflammatory diseases. Pelargonidin is a natural compound with anti-inflammation activity. In this study, we aimed to explore the effects of pelargonidin on inflammation induced by acrolein in human umbilical vein endothelial cells (HUVECs). MTT assay was utilized for assessing cell viability in HUVECs. LDH release in HUVECs was measured using the LDH kit. Western blot was used to detect the protein expression of p-p65, p65 and COX-2. Inflammation was evaluated through determining the levels of PGE2, IL-1ß, IL-6, IL-8 and TNF-α in HUVECs after treatment. COX-2 mRNA expression and COX-2 content were examined using RT-qPCR and a human COX-2 ELISA kit, respectively. Acrolein treatment at 50 µM resulted in a 45% decrease in the viability and an increase in LDH release (2.2-fold) in HUVECs. Pelargonidin at 5, 10, 20, and 40 µM alleviated acrolein-caused inhibitory effect on cell viability (increased to 1.3-, 1.5-, 1.8-, and 1.9-fold, respectively, compared to acrolein treatment group) and promoting effect on LDH release (decreased to 82%, 75%, 62%, and 58%, respectively, compared to acrolein treatment group) in HUVECs. Moreover, pelargonidin or pyrrolidine dithiocarbamate (PDTC; an NF-κB pathway inhibitor) inhibited acrolein-induced activation of the NF-κB pathway. Acrolein elevated the levels of PGE2, IL-1ß, IL-6, IL-8 and TNF-α (from 40.2, 27.3, 67.2, 29.0, 24.8 pg/mL in control group to 224.0, 167.3, 618.3, 104.6, and 275.1 pg/mL in acrolein treatment group, respectively), which were retarded after pelargonidin (decreased to 134.8, 82.3, 246.2, 70.2, and 120.8 pg/mL in acrolein + pelargonidin treatment group) or PDTC (decreased to 107.9, 80.1, 214.6, 64.0, and 96.6 pg/mL in acrolein + PDTC treatment group) treatment in HUVECs. Pelargonidin inactivated the NF-κB pathway to reduce acrolein-induced COX-2 expression. Furthermore, pelargonidin relieved acrolein-triggered inflammation through decreasing COX-2 expression by inactivating the NF-κB pathway in HUVECs. In conclusion, pelargonidin could protect against acrolein-triggered inflammation in HUVECs through attenuating COX-2 expression by inactivating the NF-κB pathway.


Subject(s)
Acrolein , Anthocyanins , NF-kappa B , Proline/analogs & derivatives , Thiocarbamates , Humans , NF-kappa B/metabolism , Human Umbilical Vein Endothelial Cells , Cyclooxygenase 2/metabolism , Acrolein/toxicity , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Interleukin-8 , Dinoprostone/metabolism , Signal Transduction , Cells, Cultured , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism
8.
Antioxidants (Basel) ; 12(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37627606

ABSTRACT

The fortification of dairy products with polyphenols is known to deliver additional health benefits. However, interactions between polyphenols may form complexes and cause a loss of functionality overall. This study aimed to investigate potential interactions between polyphenols, in encapsulated and non-encapsulated forms, extracted from tamarillo fruit and bovine serum albumin (BSA) from fresh milk cream. Fortification with tamarillo extract was made at 1, 2 and 3% (w/w), and the resultant changes in physicochemical, rheological and functional properties were studied. With an increase in fortification, the absorbance of protein-ligand in the protein-polyphenol complex was decreased by up to 55% and 67% in UV and fluorescent intensities, respectively. Chlorogenic acid and kaempferol-3-rutinoside were more affected than delphinidin-3-rutinoside and pelargonidin-3-rutinoside. Static quenching was the main mechanism in the fluorescence spectra. Tryptophan and tyrosine residues were the two major aromatic amino acids responsible for the interactions with BSA. There were at least three binding sites near the tryptophan residue on BSA. The rheological property remained unaffected after the addition of non-encapsulated tamarillo extracts. Antioxidant capacity was significantly decreased (p < 0.05) after the addition of encapsulated extracts. This may be explained by using a low concentration of maltodextrin (10% w/w) as an encapsulating agent and its high binding affinity to milk proteins.

9.
Front Plant Sci ; 14: 1227219, 2023.
Article in English | MEDLINE | ID: mdl-37645465

ABSTRACT

Anthocyanins are responsible for the color spectrum of both ornamental and natural flowers. However, not all plant species produce all colors. For example, roses are not blue because they do not naturally possess a hydroxylase that opens the pathway for delphinidin and its derivatives. It is more intriguing why some plants do not carry orange or scarlet red flowers with anthocyanins based on pelargonidin, because the precursor for these anthocyanins should be available if anthocyanins are made at all. The key to this is the substrate specificity of dihydroflavonol 4-reductase (DFR), an enzyme located at the branch point between flavonols and anthocyanins. The most common example is petunia, which does not bear orange flowers unless the enzyme is complemented by biotechnology. We changed a few amino acids in the active site of the enzyme and showed that the mutated petunia DFR started to favor dihydrokaempferol, the precursor to orange pelargonidin, in vitro. When transferred to petunia, it produced an orange hue and dramatically more pelargonidin-based anthocyanins in the flowers.

10.
BMC Plant Biol ; 23(1): 356, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37434140

ABSTRACT

BACKGROUND: Fragaria nilgerrensis (FN) provides a rich source of genetic variations for strawberry germplasm innovation. The color of strawberry fruits is a key factor affecting consumer preferences. However, the genetic basis of the fruit color formation in F. nilgerrensis and its interspecific hybrids has rarely been researched. RESULTS: In this study, the fruit transcriptomes and flavonoid contents of FN (white skin; control) and its interspecific hybrids BF1 and BF2 (pale red skin) were compared. A total of 31 flavonoids were identified. Notably, two pelargonidin derivatives (pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside) were revealed as potential key pigments for the coloration of BF1 and BF2 fruits. Additionally, dihydroflavonol 4-reductase (DFR) (LOC101293459 and LOC101293749) and anthocyanidin 3-O-glucosyltransferase (BZ1) (LOC101300000), which are crucial structural genes in the anthocyanidin biosynthetic pathway, had significantly up-regulated expression levels in the two FN interspecific hybrids. Moreover, most of the genes encoding transcription factors (e.g., MYB, WRKY, TCP, bHLH, AP2, and WD40) related to anthocyanin accumulation were differentially expressed. We also identified two DFR genes (LOC101293749 and LOC101293459) that were significantly correlated with members in bHLH, MYB, WD40, AP2, and bZIP families. Two chalcone synthase (CHS) (LOC101298162 and LOC101298456) and a BZ1 gene (LOC101300000) were highly correlated with members in bHLH, WD40 and AP2 families. CONCLUSIONS: Pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside may be the key pigments contributing to the formation of pale red fruit skin. DFR and BZ1 structural genes and some bHLH, MYB, WD40, AP2, and bZIP TF family members enhance the accumulation of two pelargonidin derivatives. This study provides important insights into the regulation of anthocyanidin biosynthesis in FN and its interspecific hybrids. The presented data may be relevant for improving strawberry fruit coloration via genetic engineering.


Subject(s)
Anthocyanins , Fragaria , Fragaria/genetics , Transcriptome , Gene Expression Profiling , Flavonoids , Glucosides
11.
Food Chem ; 428: 136814, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37429238

ABSTRACT

This work developed a universal UPLC-PDA method based on safe reagents to analyze anthocyanins from different foods. Nine foods were studied by the developed chromatographic method, which was constructed using a solid core C18 column and a binary mobile phase composed of (A) water (0.25 molcitric acid.Lsolvent-1), and (B) ethanol. A total running time of 6 min was obtained, the faster comprehensive method for anthocyanins analysis. Mass spectrometry analysis was employed to identify a comprehensive set of 53 anthocyanins comprising glycosylated and acylated cyanidin, pelargonidin, malvidin, peonidin, petunidin, and delphinidin derivatives. Cyanidin-3-O-glucoside (m/z+ 449) and cyanidin-3-O-rutinoside (m/z+ 595) were used as standards to validate the accuracy of the developed method. The analytical parameters were evaluated, including intra-day and inter-day precision, robustness, repeatability, retention factor (k), resolution, and peak symmetry factor. The current method demonstrated excellent chromatographic resolution, making it a powerful tool for analyzing anthocyanins pigments.


Subject(s)
Anthocyanins , Biological Products , Anthocyanins/analysis , Biological Products/analysis , Mass Spectrometry , Fruit/chemistry , Ethanol/analysis , Chromatography, High Pressure Liquid
12.
Arch Biochem Biophys ; 743: 109668, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37315775

ABSTRACT

Pelargonidin (PG), a derivative of anthocyanins, has anti-oxidant and anti-inflammatory properties. Herein, the protective effect and the mechanism of PG in counteract the osteoarthritis (OA) progression were needed to further evaluate. In the current study, C57BL/6 mice was induced by destabilization of medial meniscus (DMM) surgery to establish the OA model. Primary chondrocytes were acquired from the knee cartilage of newborn mice. Then, PG was administrated to OA mice and IL-1ß-stimulated chondrocytes to evaluate its protective effects, respectively. Results uncovered that no conspicuous cytotoxic effects were observed when chondrocytes were treated with PG at a concentration lower than 40 µM for 24-72 h. Thus, 10 µM, 20 µM, and 40 µM PG were chosen for subsequent experiments in vitro. Then, we observed that 10, 20, and 40 µM PG reduced the levels of IL-6, TNF-α, COX-2 and iNOS in chondrocytes. In line, PG inhibited the IL-1ß-induced ECM catabolism in chondrocytes, as evidenced by deepening toluidine blue staining, increased expression of Collagen II, and decreased expressions of ADAMTS5 and MMP13. Moreover, PG also reduced the IL-1ß-stimulated p-p65 overexpression and nuclear translocation of p65 in chondrocytes. In vivo, Safranin O/Fast green and HE staining showed that articular cartilage surface morphology was basically smooth and complete after PG treatment for 8 weeks. Similarly, OARSI scores and MMP13 expression were apparently decreased, whereas Aggrecan expression was elevated in PG-treated mice 8 weeks after DMM surgery. In conclusion, PG can effectively ameliorate inflammatory reactions and cartilage degeneration via suppressing the NF-κB pathway, thereby restraining the OA progression.


Subject(s)
Cartilage, Articular , Osteoarthritis , Mice , Animals , NF-kappa B/metabolism , Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Matrix Metalloproteinase 13/metabolism , Mice, Inbred C57BL , Osteoarthritis/drug therapy , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Cells, Cultured
13.
Molecules ; 28(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36985635

ABSTRACT

Purple-pericarp sweetcorn accessions, derived from crossing purple-pericarp maize with white shrunken2 sweetcorn, were assessed for differences in anthocyanin profile at both sweetcorn eating stage and at full kernel maturity. The 'Tim1' sweetcorn line developed a similar total anthocyanin concentration to its 'Costa Rica' parent when assessed at sweetcorn-eating stage. At full maturity it surpassed the purple maize parent, but this was mainly due to the presence of starch diluting the anthocyanin concentration of the latter. The anthocyanin/colour relationship was affected by both total anthocyanin concentration and the ratio of cyanidin- to pelargonidin-based anthocyanins. Malonylation of anthocyanins was also found to vary and did not appear to be linked with either cyanidin:pelargonidin ratio or total anthocyanin concentration. In addition, anthocyanin synthesis was affected by kernel maturity at harvest, with colour development increasing in conjunction with a progression of anthocyanin development across the kernel surface. Pigmentation was present in the aleurone, pericarp and vitreous endosperm of kernels of the purple-pericarp maize parent and purple-pericarp sweetcorn accessions when fully mature, but pigmentation was only apparent in the pericarp at sweetcorn-eating stage. Importantly for consumers, anthocyanin pigmentation covered almost the entire kernel surface at sweetcorn-eating stage.


Subject(s)
Anthocyanins , Zea mays , Vegetables , Endosperm , Pigmentation
14.
Planta ; 257(4): 65, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36826722

ABSTRACT

MAIN CONCLUSION: Glycosylation from an anthocyanidin 3-O-glucosyltransferase Ps3GT (PsUGT78A27) facilitates the accumulation of pelargonidin 3-O-glucoside, which defines the vivid red flower color and occurs only in specific peony tree cultivars. Although tree peony cultivars of Chinese and Japanese both originated from China, vivid red color is only found in flowers of Japanese cultivars but not of Chinese cultivar groups. In this study, a Japanese tree peony cultivar 'Taiyoh' with vivid red petals and a Chinese tree peony cultivar 'Hu Hong' with reddish pink petals were chosen as the experimental materials. Flavonoids profiling indicated that pelargonidin 3-O-glucoside (Pg3G) detected only in Japanese cultivar contributed to vivid red color of tree peony petals, while pelargonidin 3,5-di-O-glucoside (Pg3G5G) found in both of Japanese and Chinese cultivars was responsible for pink flower color. Through the integration of full-length transcriptome sequencing and in vitro enzymatic activity analysis, two anthocyanin glucosyltransferase genes PsUGT78A27 and PsUGT75L45 were isolated from the petals of tree peony, and their encoding products exhibited enzymatic activities of pelargonidin 3-O-glucosyltransferase and anthocyanin 5-O-glucosyltransferase, respectively. Further quantitative real-time PCR revealed that PsUGT78A27 displayed high expression in petals of both cultivars and PsUGT75L45 was expressed at high levels in cultivar 'Hu Hong' only. Using a gene gun technique, the GFP fusion proteins of PsUGT78A27 and PsUGT75L45 were visualized to be cytoplasmic and nuclear localization in the epidermal cells of tree peony petals, and the glucosylation function of PsUGT78A27 and PsUGT75L45 to alter petal color of tree peony and herbaceous peony had been directly validated in vivo. These results demonstrated that PsUGT78A27 and PsUGT75L45 are key players for the presence or absence of vivid red flower color in tree peony cultivars. Our findings further elucidated the chemical and molecular mechanism of petal pigmentation of Paeonia and could help breed the Paeonia cultivars possessing novel flower colors.


Subject(s)
Anthocyanins , Paeonia , Anthocyanins/metabolism , Paeonia/genetics , Plant Breeding , Flowers/genetics , Glucosides/metabolism , Glucosyltransferases/metabolism , Color
15.
Drug Chem Toxicol ; 46(3): 462-471, 2023 May.
Article in English | MEDLINE | ID: mdl-35289247

ABSTRACT

BACKGROUND: Targeting the neuronal mitochondria as a possible intervention to guard against neurodegenerative disorder progression has been investigated in the current work via the administration of pelargonidin (PEL) to rats intoxicated by the mitochondrial toxin reserpine. The main criteria for choosing PEL were its reported antioxidant, anti-apoptotic and anti-inflammatory activities. METHODS: Male albino Wistar rats were randomized into five experimental groups; normal control, reserpinized to induce mitochondrial failure, standard PARP-1-inhibitor 1,5-isoquinolinediol (DIQ)-treated reserpinized, PEL-treated reserpinized, and GSK-3ß inhibitor (AR-A 014418) -treated reserpinized. RESULTS: PEL administration reversed the reserpine-induced abnormal behaviors marked by decreased catalepsy time. In addition, PEL restored brain glutathione with a reduction in nitric oxide content as compared to the reserpine-challenged group. Meanwhile, it improved neuronal mitochondrial function by the elevation of complex I activity associated with a low ADP/ATP ratio. Likely through its anti-inflammatory effect, PEL reduced the elevation of serum interleukin-1ß level and inhibited serum lactate dehydrogenase activity. These findings are aligned with the reduced expression of cleaved PARP and cleaved caspase-3 proteins, indicating PEL's suppressive effect on the intrinsic apoptotic pathway. Those biochemical findings were confirmed through comparable histopathological tissue examination among the experimental groups. CONCLUSIONS: In conclusion, PEL is a promising candidate for future use in the management of mitochondria-associated neuronal complications via controlling the ongoing inflammatory and degeneration cascades.


Subject(s)
Apoptosis , Reserpine , Rats , Male , Animals , Reserpine/toxicity , Reserpine/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Rats, Wistar , Mitochondria , Anti-Inflammatory Agents/pharmacology
16.
J Mol Model ; 29(1): 2, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36480114

ABSTRACT

This research refers to the study and understanding of the conformational space of the positive-charged anthocyanidin structures in relation with the known chemical reactivities and bioactivities of these compounds. Therefore, the planar (P) and nonplanar (Z) conformers of the three hydroxylated anthocyanidins pelargonidin, cyanidin, and delphinidin were analyzed throughout the conformational space at the B3LYP/6-311 ++ G** level of theory. The outcome displayed eleven new conformers for pelargonidin, fifty-four for cyanidin, and thirty-one for delphinidin. Positive-charged quinoidal structures showed a significant statistical weight in the conformational space, thus coexisting simultaneously with other resonance structures, such that under certain reaction conditions, the anthocyanidins behave as positive-charged quinoidal structures instead of oxonium salts. The calculations of the permanent dipole moment and the polarizability showed relationships with the quantity and arrangement of hydroxyls in the structure. In addition, theoretical calculations were used to analyze the frontier molecular orbitals (HOMO-LUMO) of the three anthocyanidins. The novel conception of this work lies in the fact that dipole moment, polarizability, and HOMO-LUMO values were related to the reactivity/bioactivity of these three anthocyanidins. HOMO-LUMO energy gaps were useful to explain the antioxidant activity, while the percent atom contributions to HOMO were appropriate to demonstrate the antimutagenic activity as enzyme inhibitors, as well as the steric and electrostatic requirements to form the pharmacophore. Delphinidin was the strongest antioxidant anthocyanidin, and pelargonidin the best anthocyanidin with antimutagenic activity.


Subject(s)
Antioxidants , Antioxidants/pharmacology
17.
Molecules ; 27(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432125

ABSTRACT

Anthocyanins are an important pharmaceutical ingredient possessing diet regulatory, antioxidant, anticancer, antidiabetic, anti-obesity, antimicrobial, and anti-inflammatory properties. Pelargonidin is an important anthocyanin-based orange-red flavonoid compound used in drugs for treating hypoglycemia, retinopathy, skeletal myopathy, etc. The main sources of pelargonidin are strawberries and food products with red pigmentation. There is a lack of evidence for supporting its use as an independent supplement. In the present study, pelargonidin and pelargonidin-3-O-glucoside are studied for their structural properties using quantum chemical calculations based on density functional theory. The results confirmed that the parent compound and its glycosylated derivative acted as good electron donors. Electrostatic potential, frontier molecular orbitals, and molecular descriptor analyses also substantiated their electron donating properties. Furthermore, based on the probability, a target prediction was performed for pelargonidin and pelargonidin-3-O-glucoside. Hydroxyacyl-coenzyme A dehydrogenase was chosen as an enzymatic target of interest, since the presence work focuses on glucuronidated compounds and their efficacy over diabetes. Possible interactions between these compounds and a target with nominable binding energies were also evaluated. Further, the structural stability of these two compounds were also analyzed using a molecular dynamics simulation.


Subject(s)
Anthocyanins , Glucosides , Anthocyanins/chemistry , Glucosides/pharmacology , Chromatography, High Pressure Liquid , Flavonoids/chemistry
18.
Molecules ; 27(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35956895

ABSTRACT

In this study, high pressure processing (HPP) and thermal treatment were comparatively evaluated by examining their impacts on the binding behavior and interaction between α-lactalbumin (α-La) and pelargonium-3-glucoside (P3G) under pH values of 6.0, 7.4, and 8.0. The methods of circular dichroism spectroscopy, fluorescence quenching, dynamic light scattering, and molecular simulation were used to characterize the effects of processing-induced changes in protein structure, size distribution, binding site conformation, and residue charges on their binding characteristics between them. The results indicated that the thermal treatments significantly increased the quenching constants of the complex at pH 7.4/8.0 and 60/80 °C, as well as the accessible fraction of protein at pH 8.0/80 °C. Both HPP and thermal treatments increased the random coil content and showed limited effects on the α-helix and ß-sheet contents of α-La and caused the aggregation of the complex to varying degrees. Molecular dynamic simulation and docking analyses revealed that the binding site of the complex did not change under different processing conditions, but the solvent-accessible surface area varied under different conditions.


Subject(s)
Lactalbumin , Pelargonium , Circular Dichroism , Glucosides , Hydrogen-Ion Concentration , Lactalbumin/chemistry , Spectrometry, Fluorescence
19.
Plant Foods Hum Nutr ; 77(3): 412-420, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35794452

ABSTRACT

Palmitic acid (PA), a widely consumed saturated fat, is known to induce the apoptosis of vascular endothelial cells. This study examined the protective effect of anthocyanin from red radish (ARR), which has been shown to protect the cardiovascular system and is rich in polyacylated pelargonidin (P) glycosides, on PA-treated SV 40 transfected aortic rat endothelial cells (SVAREC). In all, 22 distinct anthocyanins were identified in the ARR via ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry, the most abundant of which were pelargonidin-3-(p-coumaroyl)diglucoside-5-glucoside (31.60%), pelargonidin-3-(feruloyl)diglucoside-5-(malonyl)glucoside (22.98%), pelargonidin-3-(p-coumaroyl)diglucoside-5-(malonyl)glucoside (8.02%), and pelargonidin-3-(feruloyl)diglucoside-5-glucoside (6.25%). P displayed the highest serum level (93.72%) in the ARR-treated mice, while polyacylated P glucosides were also absorbed intact. Furthermore, ARR treatment effectively increased cellular activity and reduced the ratio of Bcl-2-associated X protein : B cell lymphoma-2, while simultaneously alleviating the excessive production of reactive oxygen species in PA-treated SVAREC. Transcriptome and further verification analyses confirmed that the ARR-inhibiting PA-induced apoptosis of SVAREC was related to the p38 mitogen-activated protein kinase signaling pathway. Our results are the first to demonstrate that ARR may be a promising phytochemical in the prevention of PA-induced endothelial dysfunction.


Subject(s)
Brassicaceae , Raphanus , Animals , Anthocyanins/analysis , Apoptosis , Endothelial Cells/chemistry , Endothelial Cells/metabolism , Glucosides/chemistry , Glucosides/pharmacology , Mice , Palmitic Acid/pharmacology , Raphanus/metabolism , Rats , p38 Mitogen-Activated Protein Kinases
20.
J Alzheimers Dis ; 88(2): 653-661, 2022.
Article in English | MEDLINE | ID: mdl-35694918

ABSTRACT

BACKGROUND: An anthocyanidin, pelargonidin, primarily found in berries, has antioxidant and anti-inflammatory properties, and is associated with better cognition and reduced Alzheimer's dementia risk. OBJECTIVE: This study investigated if pelargonidin or berry intake is associated with Alzheimer's disease (AD) neuropathology in human brains. METHODS: The study was conducted among 575 deceased participants (age at death = 91.3±6.1 years; 70% females) of the Rush Memory and Aging Project, with dietary data (assessed using a food frequency questionnaire) and neuropathological evaluations. Calorie-adjusted pelargonidin intake was modeled in quartiles and berry intake as continuous (servings/week). Mean amyloid-beta load and phosphorylated tau neuronal neurofibrillary tangle density across multiple cortical regions were assessed using immunohistochemistry. Global AD pathology burden, a quantitative summary score of neurofibrillary tangles, and diffuse and neuritic plaques using Bielschowsky silver stains in multiple brain regions, was also assessed. RESULTS: In a linear regression model adjusted for age at death, sex, education, APOE ɛ4 status, vitamin E, and vitamin C, participants in the highest quartile of pelargonidin intake when compared to those in the lowest quartile, had less amyloid-ß load (ß (SE) = -0.293 (0.14), p = 0.038), and fewer phosphorylated tau tangles (ß (SE) = -0.310, p = 0.051). Among APOE ɛ4 non-carriers, higher strawberry (ß (SE) = -0.227 (0.11), p = 0.037) and pelargonidin (Q4 versus Q1: ß (SE) = -0.401 (0.16), p = 0.011; p trend = 0.010) intake was associated with less phosphorylated tau tangles, no association was observed in APOE ɛ4 carriers. Berry intake was not associated with AD pathology. However, excluding participants with dementia or mild cognitive impairment at baseline, strawberry (p = 0.004) and pelargonidin (ptrend = 0.007) intake were associated with fewer phosphorylated tau tangles. CONCLUSION: Higher intake of pelargonidin, a bioactive present in strawberries, is associated with less AD neuropathology, primarily phosphorylated tau tangles.


Subject(s)
Alzheimer Disease , Aged, 80 and over , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Anthocyanins , Apolipoproteins E , Brain/pathology , Female , Fruit/metabolism , Humans , Male , Neurofibrillary Tangles/pathology , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL