Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters











Publication year range
1.
Virol J ; 21(1): 235, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350281

ABSTRACT

BACKGROUND: Cell-penetrating peptides (CPPs) are effective for delivering therapeutic molecules with minimal toxicity. This study focuses on the use of penetratin, a well-characterized CPP, to deliver a DNA vector encoding short hairpin RNA (shRNA) targeting the respiratory syncytial virus (RSV) F gene into infected cells. RSV is known to cause severe lower respiratory infections in infants and poses significant risks to immunocompromised individuals and the elderly. We evaluated the antiviral efficacy of the penetratin-shRNA complex by comparing its ability to inhibit RSV replication and induce apoptosis with ribavirin treatment. METHODS: Penetratin-shRNA complexes were prepared at different ratios and analyzed using gel retardation assays, dynamic light scattering, and zeta potential measurements. The complexes were tested in HEp-2 and A549 cells for transfection efficiency, cytotoxicity, viral load, and apoptosis using plaque assays, real-time reverse transcription-polymerase chain reaction (RT-PCR), DNA fragmentation, propidium iodide staining, and caspase 3/7 activation assays. RESULTS: The gel shift assay determined that a 20:1 CPP-to-shRNA ratio was optimal for effective complexation, resulting in particles with a size of 164 nm and a zeta potential of 8.7 mV. Transfection efficiency in HEp-2 cells was highest at this ratio, reaching up to 93%. The penetratin-shRNA complex effectively silenced the RSV F gene, reduced viral titers, and decreased DNA fragmentation and apoptosis in infected cells. CONCLUSION: Penetratin effectively delivers shRNA targeting the RSV F gene, significantly reducing viral load and preventing apoptosis without toxicity. This approach surpasses Lipofectamine and shows potential for future therapeutic interventions, especially when combined with ribavirin, against RSV infection.


Subject(s)
Antiviral Agents , Apoptosis , Cell-Penetrating Peptides , RNA, Small Interfering , Virus Replication , Humans , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemistry , Apoptosis/drug effects , Antiviral Agents/pharmacology , Virus Replication/drug effects , RNA, Small Interfering/genetics , Cell Line , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/physiology
2.
Bioorg Med Chem ; 111: 117871, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39133977

ABSTRACT

Cell-penetrating peptides (CPPs) are crucial for delivering macromolecules such as nucleic acids into cells. This study investigates the effectiveness of dual-modified penetratin peptides, focusing on the impact of stapling structures and an endosomal escape domain (EED) on enhancing intracellular uptake. Some CPPs were synthesized with an EED at either the N- or C-terminus and stapling structures, and then complexed with plasmid DNA (pDNA) to evaluate their cellular uptake. Results revealed that the combination of stapling and an EED significantly improved delivery efficiency, primarily via macropinocytosis and clathrin-mediated endocytosis. These findings underscore the importance of optimizing CPP sequences for effective nucleic acid delivery systems.


Subject(s)
Cell-Penetrating Peptides , Endosomes , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/chemical synthesis , Cell-Penetrating Peptides/pharmacology , Humans , Endosomes/metabolism , DNA/chemistry , Plasmids , HeLa Cells
3.
Biol Pharm Bull ; 47(5): 1033-1042, 2024.
Article in English | MEDLINE | ID: mdl-38797668

ABSTRACT

Eye drops, including solutions and suspensions, are essential dosage forms to treat ophthalmic diseases, with poorly water-soluble drugs typically formulated as ophthalmic suspensions. In addition to low bioavailability, suspensions exhibit limited efficacy, safety, and usability due to the presence of drug particles. Improving bioavailability can reduce the drug concentrations and the risk of problems associated with suspended drug particles. However, practical penetration enhancers capable of improving bioavailability remain elusive. Herein, we focused on penetratin (PNT), a cell-penetrating peptide (CPP) that promotes active cellular transport related to macromolecule uptake, such as micropinocytosis. According to the in vitro corneal uptake study using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24, PNT enhanced the uptake of Fluoresbrite® YG carboxylate polystyrene microspheres without covalent binding. In an ex vivo porcine eye model, the addition of 10 µM PNT to rebamipide ophthalmic suspension markedly improved the corneal uptake of rebamipide; however, the addition of 100 µM PNT was ineffective due to potentially increased particle size by aggregation. This article provides basic information on the application of PNT as a penetration enhancer in ophthalmic suspensions, including the in vitro and ex vivo studies mentioned above, as well as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and storage stability at different pH values.


Subject(s)
Cell-Penetrating Peptides , Cornea , Ophthalmic Solutions , Suspensions , Animals , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/administration & dosage , Ophthalmic Solutions/administration & dosage , Humans , Cornea/metabolism , Cornea/drug effects , Swine , Quinolones/administration & dosage , Quinolones/pharmacokinetics , Quinolones/chemistry , Administration, Ophthalmic , Biological Availability , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Particle Size , Alanine/analogs & derivatives
4.
Pharmaceutics ; 16(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38675138

ABSTRACT

The cell-penetrating peptide (CPP) penetratin has gained much attention over many years due to its potential role as a transporter for a broad range of cargo into cells. The modification of penetratin has been extensively investigated too. Aza-peptides are peptide analogs in which one or more of the amino residues are replaced by a semicarbazide. This substitution results in conformational restrictions and modifications in hydrogen bonding properties, which affect the structure and may lead to enhanced activity and selectivity of the modified peptide. In this work, the Trp residues of penetratin were substituted by aza-glycine or glycine residues to examine the effect of these modifications on the cellular uptake and the internalization mechanism. The substitution of Trp48 or Trp48,56 dramatically reduced the internalization, showing the importance of Trp48 in cellular uptake. Interestingly, while aza-glycine in the position of Trp56 increased the cellular uptake, Gly reduced it. The two Trp-modified derivatives showed altered internalization pathways, too. Based on our knowledge, this is the first study about the effect of aza-amino acid substitution on the cell entry of CPPs. Our results suggest that aza-amino acid insertion is a useful modification to change the internalization of a CPP.

5.
Microorganisms ; 12(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38543531

ABSTRACT

Membranolytic molecules constitute the first line of innate immune defense against pathogenic microorganisms. Plasmodium sporozoites are potentially exposed to these cytotoxic molecules in the hemolymph and salivary glands of mosquitoes, as well as in the skin, blood, and liver of the mammalian host. Here, we show that sporozoites are resistant to bacteriolytic concentration of cecropin B, a cationic amphipathic antimicrobial insect peptide. Intriguingly, anti-tumoral cell-penetrating peptides derived from the anti-apoptotic protein AAC11 killed P. berghei and P. falciparum sporozoites. Using dynamic imaging, we demonstrated that the most cytotoxic peptide, called RT39, did not significantly inhibit the sporozoite motility until the occurrence of a fast permeabilization of the parasite membrane by the peptide. Concomitantly, the cytosolic fluorescent protein constitutively expressed by sporozoites leaked from the treated parasite body while To-Pro 3 and FITC-labeled RT39 internalized, respectively, binding to the nucleic acids and membranes of sporozoites. This led to an increase in the parasite granularity as assessed by flow cytometry. Most permeabilization events started at the parasite's posterior end, resulting in the appearance of a fluorescent dot in the anterior part of sporozoites. Understanding and exploiting the susceptibility of sporozoites and other plasmodial stages to membranolytic molecules might foster strategies to eliminate the parasite and block its transmission.

6.
Int J Nanomedicine ; 19: 1887-1908, 2024.
Article in English | MEDLINE | ID: mdl-38414529

ABSTRACT

Introduction: Since intrinsic ocular barrier limits the intraocular penetration of therapeutic protein through eye drops, repeated intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) agents are the standard therapy for neovascular age-related macular degeneration (nAMD), which are highly invasive and may cause particular ocular complications, leading to poor patient compliance. Methods: Using Penetratin (Pen) as the ocular penetration enhancer and hyaluronic acid (HA) as the retina-targeting ligand, a dual-modified ophthalmic liposome (Penetratin hyaluronic acid-liposome/Conbercept, PenHA-Lip/Conb) eye drop was designed to non-invasively penetrate the ocular barrier and deliver anti-VEGF therapeutic agents to the targeted intraocular tissue. Results: PenHA-Lip effectively penetrates the ocular barrier and targets the retinal pigment epithelium via corneal and non-corneal pathways. After a single topical administration of conbercept-loaded PenHA-Lip (PenHA-Lip/Conb), the intraocular concentration of conbercept peaked at 18.74 ± 1.09 ng/mL at 4 h, which is 11.55-fold higher than unmodified conbercept. In a laser-induced choroidal neovascularization (CNV) mouse model, PenHA-Lip/Conb eye drops three times daily for seven days inhibited CNV formation and progression without any significant tissue toxicity and achieved an equivalent effect to a single intravitreal conbercept injection. Conclusion: PenHA-Lip efficiently and safely delivered conbercept to the posterior eye segment and may be a promising noninvasive therapeutic option for nAMD.


Subject(s)
Cell-Penetrating Peptides , Choroidal Neovascularization , Macular Degeneration , Mice , Animals , Humans , Liposomes/therapeutic use , Angiogenesis Inhibitors/pharmacology , Hyaluronic Acid , Vascular Endothelial Growth Factor A , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Macular Degeneration/drug therapy , Ophthalmic Solutions/therapeutic use , Intravitreal Injections
7.
Int J Pharm ; 650: 123685, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38072146

ABSTRACT

Contact lenses (CLs) have been suggested as drug delivery platforms capable of increasing the drug residence time on the cornea and therefore its bioavailability. However, when targeting the posterior segment of the eye, the drug released from CLs still encounters the barrier effect of the ocular tissues, which considerably reduces the efficacy of administration. This work aims at the development of CLs able to simultaneously deliver an anti-inflammatory drug (dexamethasone sodium phosphate) and a cell-penetrating peptide (penetratin), the latter acting as a drug carrier across the tissues. Hydroxyethyl methacrylate (HEMA)-based hydrogels were functionalized with acrylic acid (AAc) and/or aminopropyl methacrylamide (APMA) to serve as CL materials with increased affinity for the drug and peptide. APMA-functionalized hydrogels sustained the dual release for 8 h, which is compatible with the wearing time of daily CLs. Hydrogels demonstrated suitable light transmittance, swelling capacity and in vitro biocompatibility. The anti-inflammatory activity of the drug was not compromised by the presence of the peptide nor by sterilization. The ocular distribution of the drug after 6 h of CL wearing was evaluated in vivo in rabbits and revealed that the amount of drug in the cornea and aqueous humor significantly increased when the drug was co-delivered with penetratin.


Subject(s)
Cell-Penetrating Peptides , Contact Lenses , Animals , Rabbits , Drug Delivery Systems , Drug Carriers , Dexamethasone , Anti-Inflammatory Agents , Permeability , Hydrogels
8.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37765059

ABSTRACT

Cell-penetrating peptides (CPPs) are small peptides capable of translocating through biological membranes carrying various attached cargo into cells and even into the nucleus. They may also participate in transcellular transport. Our in silico study intends to model several peptides and their conjugates. We have selected three CPPs with a linear backbone, including penetratin, a naturally occurring oligopeptide; two of its modified sequence analogues (6,14-Phe-penetratin and dodeca-penetratin); and three natural CPPs with a cyclic backbone: Kalata B1, the Sunflower trypsin inhibitor 1 (SFT1), and Momordica cochinchinensis trypsin inhibitor II (MCoTI-II). We have also built conjugates with the small-molecule drug compounds doxorubicin, zidovudine, and rasagiline for each peptide. Molecular dynamics (MD) simulations were carried out with explicit membrane models. The analysis of the trajectories showed that the interaction of penetratin with the membrane led to spectacular rearrangements in the secondary structure of the peptide, while cyclic peptides remained unchanged due to their high conformational stability. Membrane-peptide and membrane-conjugate interactions have been identified and compared. Taking into account well-known examples from the literature, our simulations demonstrated the utility of computational methods for CPP complexes, and they may contribute to a better understanding of the mechanism of penetration, which could serve as the basis for delivering conjugated drug molecules to their intracellular targets.

9.
BMC Res Notes ; 16(1): 231, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749584

ABSTRACT

OBJECTIVE: The principal delivery method for CRISPR-based genome editing in insects is now based on microinjection into single cells or embryos. The direct protein transduction systems cannot be employed in aphids because oogenesis occurs without apparent vitellogenesis. Given the limited timing of injection into the embryonic stage in oviparous aphids, a protein delivery system from the hemolymph to the germline and embryos would be a useful tool for genome editing. This study reports a newly developed direct protein delivery system for aphids using cell-penetrating peptides (CPPs). CPPs are short peptides that translocate across the plasma membrane when bound to cargo proteins. RESULTS: Penetratin (PEN), a widely conserved CPP among insects, was identified in this study. We used mVenus, a recombinant fluorescent protein, as a visual marker for CPP availability assessments, and fused it with PEN by bacterial protein expression. The mVenus-PEN recombinant proteins were introduced into the hemolymph of adult unwinged Acyrthosiphon pisum females using a nanoinjector. Fluorescence emitted by mVenus-PEN was observed in various tissues, such as the gut, trachea, bacteriocytes, and their progeny. This study shows that PEN can deliver exogenously expressed proteins into tissues in vivo, indicating that CPPs are powerful tools for protein transduction.


Subject(s)
Aphids , Cell-Penetrating Peptides , Female , Animals , Pisum sativum , Bacterial Proteins , Cell Membrane
10.
Neurooncol Adv ; 5(1): vdad042, 2023.
Article in English | MEDLINE | ID: mdl-37197737

ABSTRACT

Background: Brain metastases (BMs), the most common tumors of the central nervous system, are life-threatening with a dismal prognosis. The major challenges to developing effective treatments for BMs are the limited abilities of drugs to target tumors and to cross the blood-brain barrier (BBB). We aimed to investigate the efficacy of our therapeutic approach against BMs in mouse models that recapitulate the clinical manifestations of BMs. Methods: BMs mouse models were constructed by injecting human breast, lung cancer, and melanoma intracardially, which allowed the BBB to remain intact. We investigated the ability of the cell-penetrating peptide p28 to cross the BBB in an in vitro 3D model and in the BMs animal models. The therapeutic effects of p28 in combination with DNA-damaging agents (radiation and temozolomide) on BMs were also evaluated. Results: p28 crossed the intact BBB more efficiently than the standard chemotherapeutic agent, temozolomide. Upon crossing the BBB, p28 localized preferentially to tumor lesions and enhanced the efficacy of DNA-damaging agents by activating the p53-p21 axis. In the BMs animal models, radiation in combination with p28 significantly reduced the tumor burden of BMs. Conclusions: The cell-cycle inhibitor p28 can cross the BBB localize to tumor lesions in the brain and enhance the inhibitory effects of DNA-damaging agents on BMs, suggesting the potential therapeutic benefits of this molecule in BMs.

11.
Pharmaceutics ; 15(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36986605

ABSTRACT

Gene therapy brings a ray of hope for inherited ocular diseases that may cause severe vision loss and even blindness. However, due to the dynamic and static absorption barriers, it is challenging to deliver genes to the posterior segment of the eye by topical instillation. To circumvent this limitation, we developed a penetratin derivative (89WP)-modified polyamidoamine polyplex to deliver small interference RNA (siRNA) via eye drops to achieve effective gene silencing in orthotopic retinoblastoma. The polyplex could be spontaneously assembled through electrostatic and hydrophobic interactions, as demonstrated by isothermal titration calorimetry, and enter cells intactly. In vitro cellular internalization revealed that the polyplex possessed higher permeability and safety than the lipoplex composed of commercial cationic liposomes. After the polyplex was instilled in the conjunctival sac of the mice, the distribution of siRNA in the fundus oculi was significantly increased, and the bioluminescence from orthotopic retinoblastoma was effectively inhibited. In this work, an evolved cell-penetrating peptide was employed to modify the siRNA vector in a simple and effective way, and the formed polyplex interfered with intraocular protein expression successfully via noninvasive administration, which showed a promising prospect for gene therapy for inherited ocular diseases.

12.
Eur J Pharm Sci ; 183: 106400, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36750148

ABSTRACT

The cell-penetrating peptides (CPPs) Tat and penetratin are frequently explored as shuttles for drug delivery across the blood-brain barrier (BBB). CPPs are often labelled with fluorophores for analytical purposes, with 5(6)-carboxytetramethylrhodamine (TAMRA) being a popular choice. However, TAMRA labelling affects the physicochemical properties of the resulting fluorophore-CPP construct when compared to the CPP alone. Selenomethionine (MSe) may be introduced as alternative label, which, due to its small size and amino acid nature, likely results in minimal alterations of the peptide physicochemical properties. With this study we compared, head-to-head, the effect of MSe and TAMRA labelling of Tat and penetratin with respect to their physicochemical properties, and investigated effects hereof on brain capillary endothelial cell (BCEC) models. TAMRA labelling positively affected the ability of the peptides to adhere to the cell membranes as well being internalized into the BCECs when compared to MSe labelling. TAMRA labelling of penetratin added toxicity to the BCECs to a higher extent than TAMRA labelling of Tat, whereas MSe labelling did not affect the cellular viability. Both TAMRA and MSe labelling of penetratin decreased the barrier integrity of BCEC monolayers, but not to an extent that improved transport of the paracellular marker 14C-mannitol. In conclusion, MSe labelling of Tat and penetratin adds minimal alterations to the physicochemical properties of these CPPs and their resulting effects on BCECs, and thereby represents a preferred alternative to TAMRA for peptide quantification purposes.


Subject(s)
Cell-Penetrating Peptides , Cell-Penetrating Peptides/chemistry , Selenomethionine , Blood-Brain Barrier , Biological Transport , Fluorescent Dyes
13.
Biomedicines ; 10(5)2022 May 16.
Article in English | MEDLINE | ID: mdl-35625882

ABSTRACT

The development of peptide inhibitors against intracellular targets depends upon the dual challenge of achieving a high affinity and specificity for the target and maintaining cellular permeability for biological activity. Previous efforts to develop bicyclic peptides targeted to the Grb7 signalling protein implicated in HER2+ve cancer progression have resulted in improved affinity. However, these same peptides demonstrated a lowered activity due to their decreased ability to penetrate cell membranes. Here, we report the testing of a new series of bicyclic G7 peptides designed to possess improved bioactivity. We discovered that the incorporation of two amino acids (Phe-Pro, Phe-Trp or Phe-Arg) within the bicyclic peptide framework maintains an enhanced binding affinity for the Grb7-SH2 domain compared to that of the first-generation monocyclic peptide G7-18NATE. Structure determination using X-ray crystallography revealed that the mode of binding by the expanded bicyclic G7 peptide is analogous to that of G7-18NATE. Interestingly, while the bicyclic peptide containing Phe-Trp did not display the highest affinity for Grb7-SH2 in the series, it was the most potent inhibitor of HER2+ve SKBR3 breast cancer cell migration when coupled to Penetratin. Together, this demonstrates that peptide flexibility as well as the amino acid tryptophan can play important roles in the uptake of peptides into the cell.

14.
Amino Acids ; 54(7): 1109-1113, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35301594

ABSTRACT

Fluorescent labeling is a broadly utilized approach to assess in vitro and in vivo behavior of biologically active, especially cell-penetrating and antimicrobial peptides. In this communication, far-UV circular dichroism (CD) spectra of penetratin (PEN) fluorophore conjugates reported previously have been re-evaluated. Compared to the intrinsically disordered native peptide, rhodamine B and carboxyfluorescein derivatives of free and membrane-bound PEN exhibit extrinsic CD features. Potential sources of these signals displayed above 220 nm are discussed suggesting the contributions of both intra- and intermolecular chiral exciton coupling mechanisms. Careful evaluation of the CD spectra of fluorophore-labeled peptides is a valuable tool for early detection of labeling-provoked structural alterations which in turn may modify the membrane binding and cellular uptake compared to the unconjugated form.


Subject(s)
Carrier Proteins , Cell-Penetrating Peptides , Carrier Proteins/chemistry , Cell-Penetrating Peptides/chemistry , Circular Dichroism , Fluorescent Dyes/chemistry
15.
Int J Nanomedicine ; 17: 697-710, 2022.
Article in English | MEDLINE | ID: mdl-35210769

ABSTRACT

INTRODUCTION: The buccal route has been considered an attractive alternative delivery route for injectable formulations. Cell-penetrating peptides (CPPs) are gaining increased attention for their cellular uptake and tissue permeation effects. This study was aimed to evaluate the in vitro and ex vivo permeation-enhancing effect of penetratin-conjugated liposomes for salmon calcitonin (sCT) in TR146 human buccal cells and porcine buccal tissues. METHODS: Penetratin was conjugated to phospholipids through a maleimide-thiol reaction. Liposomes were prepared and sCT was encapsulated using a thin-film hydration method. Physical properties such as particle size, zeta potential, encapsulation efficiency, and morphological images via transmission electron microscopy were obtained. Cellular uptake studies were conducted using flow cytometry (FACS) and confocal laser scanning microscopy (CLSM). A cell permeation study was performed using a Transwell® assay, and permeation through porcine buccal tissue was evaluated. The amount of sCT permeated was quantified using an ELISA kit and was optically observed using CLSM. RESULTS: The particle size of penetratin-conjugated liposomes was approximately 123.0 nm, their zeta potential was +29.6 mV, and their calcitonin encapsulation efficiency was 18.0%. In the cellular uptake study using FACS and CLSM, stronger fluorescence was observed in penetratin-conjugated liposomes compared with the solution containing free sCT and control liposomes. Likewise, the amount of sCT permeated from penetratin-conjugated liposomes was higher than that from the free sCT solution and control liposomes by 5.8-fold across TR146 cells and 91.5-fold across porcine buccal tissues. CONCLUSION: Penetratin-conjugated liposomes are considered a good drug delivery strategy for sCT via the buccal route.


Subject(s)
Cell-Penetrating Peptides , Liposomes , Animals , Calcitonin , Cell-Penetrating Peptides/pharmacology , Drug Delivery Systems/methods , Humans , Liposomes/chemistry , Mouth Mucosa , Oral Mucosal Absorption , Swine
16.
Int J Mol Sci ; 23(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35054898

ABSTRACT

Cell-penetrating peptides (CPPs) have distinct properties to translocate across cell envelope. The key property of CPPs to translocation with attached molecules has been utilized as vehicles for the delivery of several potential drug candidates that illustrate the significant effect in in-vitro experiment but fail in in-vivo experiment due to selectively permeable nature of cell envelop. Penetratin, a well-known CPP identified from the third α-helix of Antennapedia homeodomain of Drosophila, has been widely used and studied for the delivery of bioactive molecules to treat cancers, stroke, and infections caused by pathogenic organisms. Few studies have demonstrated that penetratin directly possesses antimicrobial activities against bacterial and fungal pathogens; however, the mechanism is unknown. In this study, we have utilized the power of high-throughput Saccharomyces cerevisiae proteome microarrays to screen all the potential protein targets of penetratin. Saccharomyces cerevisiae proteome microarrays assays of penetratin followed by statistical analysis depicted 123 Saccharomyces cerevisiae proteins as the protein targets of penetratin out of ~5800 Saccharomyces cerevisiae proteins. To understand the target patterns of penetratin, enrichment analyses were conducted using 123 protein targets. In biological process: ribonucleoprotein complex biogenesis, nucleic acid metabolic process, actin filament-based process, transcription, DNA-templated, and negative regulation of gene expression are a few significantly enriched terms. Cytoplasm, nucleus, and cell-organelles are enriched terms for cellular component. Protein-protein interactions network depicted ribonucleoprotein complex biogenesis, cortical cytoskeleton, and histone binding, which represent the major enriched terms for the 123 protein targets of penetratin. We also compared the protein targets of penetratin and intracellular protein targets of antifungal AMPs (Lfcin B, Histatin-5, and Sub-5). The comparison results showed few unique proteins between penetratin and AMPs. Nucleic acid metabolic process and cellular component disassembly were the common enrichment terms for penetratin and three AMPs. Penetratin shows unique enrichment items that are related to DNA biological process. Moreover, motif enrichment analysis depicted different enriched motifs in the protein targets of penetratin, LfcinB, Histatin-5, and Sub-5.


Subject(s)
Cell-Penetrating Peptides , Protein Array Analysis/methods , Proteome , Proteomics/methods , Amino Acid Sequence , Antimicrobial Cationic Peptides/metabolism , Cell-Penetrating Peptides/metabolism , Computational Biology/methods , Gene Ontology , High-Throughput Screening Assays , Protein Binding , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
17.
Eur J Pharm Sci ; 168: 106054, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34728364

ABSTRACT

The blood-brain barrier (BBB) allows passive permeation of only a limited number of, primarily lipophilic, low-molecular weight drugs that obey the so-called "rule of CNS likeness". Therefore, novel strategies to facilitate drug delivery across the BBB are needed. Cell-penetrating peptides (CPPs) enable delivery of various therapeutic cargoes into cells and may potentially serve as shuttles for delivery of brain-specific drugs across the BBB. The CPPs Tat47-57 and penetratin are prototypical cationic CPPs, whereas apidaecin and oncocin belong to the group of proline-rich cationic antimicrobial peptides displaying CPP-like properties. The aim of the present study was to investigate the potential of Tat47-57, penetratin, apidaecin, and oncocin for interaction with and permeation of the BBB in vitro. We also studied whether the CPPs facilitated permeation of the paracellular flux marker mannitol as well as the transcellular flux marker propranolol. The peptides were labelled with the fluorophore 6-TAMRA (T) for visualization and quantification purposes. CPP membrane-adherence, membrane-embedding, and cellular uptake as well as barrier-permeation were evaluated in murine brain capillary endothelial cells (bEND3) and human induced pluripotent stem cell-derived (Bioni-010c) brain capillary endothelial-like monolayers. The cationic and the proline-rich cationic CPPs were taken up into the Bioni-010c monolayers. T-Tat47-57, T-apidaecin, and T-oncocin also permeated Bioni-010c monolayers, whereas T-penetratin did not. However, both T-Tat47-57 and T-penetratin affected the barrier integrity to a degree that facilitated permeation of 14C-mannitol. These results may therefore pave the way for future CPP-mediated brain delivery of small drugs that do not obey the "rule of CNS likeness".


Subject(s)
Cell-Penetrating Peptides , Induced Pluripotent Stem Cells , Animals , Antimicrobial Peptides , Blood-Brain Barrier , Endothelial Cells , Humans , Mannitol , Mice
18.
Acta Biomater ; 138: 478-490, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34757231

ABSTRACT

Glioblastoma is the most common and aggressive primary brain tumor, whose malignancy is closely correlated with elevated proto-oncogene c-myc. Intranasal administration emerges as a potential approach to deliver gene into the brain and interfere c-Myc expression. However, powerful permeability in nasal mucosa, selective delivery to glioma and avoidance of premature release during remote transport are imperative to ensure the therapeutic effectiveness. To address the above concerns, herein we constructed a lipoplex based on pre-compression of c-Myc-targeting siRNA (sic-Myc) by octaarginine and subsequent encapsulation by liposome modified with a selected peptide derived from penetratin, named 89WP. It was found that the lipoplex exhibited a stable core-shell structure and could be preferentially internalized along with cell debris by glioma cells via active macropinocytosis. Through this cellular uptake pathway, the lipoplex avoided being entrapped by lysosome and released siRNA in cytoplasm within 4 h, inducing substantial downregulation of c-Myc mRNA and protein expression of glioma cells. Furthermore, due to significantly enhanced permeability in tumor spheroids and nasal mucosa, the lipoplex was competent to deliver more siRNA to orthotopic glioma after intranasal administration, and therefore prolonged the survival time of glioma-bearing mice by inducing apoptosis. STATEMENT OF SIGNIFICANCE: In the present work, a lipoplex was designed to address the unmet demands on intranasal siRNA delivery to the brain for treatment of glioma. First, a powerful peptide was selected to enable the lipoplex to penetrate nasal mucosa. Second, we found the lipoplex could be selectively internalized along with cell debris by glioma cells via active macropinocytosis, and recorded the entire process. This cellular uptake pathway not only prevented the lipoplex being entrapped by lysosome, but also increased distribution of the lipoplex in orthotopic glioma. Third, this lipoplex provided additional protection for siRNA to avoid premature release during transport from nasal to brain. Overall, this lipoplex improved the gene delivery efficiency of intranasal administration and was promising in the perspective of selectively silencing disease-related genes in intracranial tumor.


Subject(s)
Glioblastoma , Glioma , Administration, Intranasal , Animals , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/therapy , Liposomes , Mice , RNA, Small Interfering
19.
Trauma Case Rep ; 35: 100518, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34430694

ABSTRACT

Cardiac impalement is a rare and usually fatal injury. Immediate recognition and surgical intervention are decisive factors for patient survival. This is a reported case of cardiac impalement with left ventricular transfixation, whose prehospital management, surgical treatment and postoperative care were successful.

20.
Front Cell Dev Biol ; 9: 647300, 2021.
Article in English | MEDLINE | ID: mdl-33912562

ABSTRACT

Although the largely positive intramembrane dipole potential (DP) may substantially influence the function of transmembrane proteins, its investigation is deeply hampered by the lack of measurement techniques suitable for high-throughput examination of living cells. Here, we describe a novel emission ratiometric flow cytometry method based on F66, a 3-hydroxiflavon derivative, and demonstrate that 6-ketocholestanol, cholesterol and 7-dehydrocholesterol, saturated stearic acid (SA) and ω-6 γ-linolenic acid (GLA) increase, while ω-3 α-linolenic acid (ALA) decreases the DP. These changes do not correlate with alterations in cell viability or membrane fluidity. Pretreatment with ALA counteracts, while SA or GLA enhances cholesterol-induced DP elevations. Furthermore, ALA (but not SA or GLA) increases endo-lysosomal escape of penetratin, a cell-penetrating peptide. In summary, we have developed a novel method to measure DP in large quantities of individual living cells and propose ALA as a physiological DP lowering agent facilitating cytoplasmic entry of penetratin.

SELECTION OF CITATIONS
SEARCH DETAIL