Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Viruses ; 16(8)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39205185

ABSTRACT

The multisystemic effects of COVID-19 may continue for a longer time period following the acute phase, depending on the severity of the disease. However, long-term systemic transcriptomic changes associated with COVID-19 disease and the impact of disease severity are not fully understood. We aimed to investigate the impact of COVID-19 and its severity on transcriptomic alterations in peripheral blood mononuclear cells (PBMCs) following 1 year of the disease. PBMCs were isolated from the peripheral blood of healthy control donors who did not have COVID-19 (C; n = 13), from COVID-19 patients without pneumonia (NP; n = 11), and from COVID-19 patients with severe pneumonia (SP; n = 10) after 1-year of follow-up. Following RNA isolation from PBMCs, high-quality RNAs were sequenced after creating a library. Differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElncRNAs) were identified using Benjamini-Hochberg correction and they were analysed for hierarchical clustering and principal component analysis (PCA). Intergroup comparisons (C vs. NP, C vs. SP, and NP vs. SP) of DEGs and DElncRNAs were performed and hub genes were determined. Functional enrichment analyses of DEGs and DElncRNAs were made using Metascape (v3.5.20240101) and the first version of NCPATH. The RNA sequencing analysis revealed 4843 DEGs and 1056 DElncRNAs in "C vs. NP", 1651 DEGs and 577 DElncRNAs in "C vs. SP", and 954 DEGs and 148 DElncRNAs in "NP vs. SP", with 291 DEGs and 70 DElncRNAs shared across all groups, respectively. We identified 14 hub genes from 291 DEGs, with functional enrichment analysis showing upregulated DEGs mainly linked to inflammation and osteoclast differentiation and downregulated DEGs to viral infections and immune responses. The analysis showed that 291 common and 14 hub genes were associated with pneumonia and that these genes could be regulated by the transcription factors JUN and NFκB1 carrying the NFκB binding site. We also revealed unique immune cell signatures across DEG categories indicating that the upregulated DEGs were associated with neutrophils and monocytes, while downregulated DEGs were associated with CD4 memory effector T cells. The comparative transcriptomic analysis of NP and SP groups with 52 gene signatures suggestive of IPF risk showed a lower risk of IPF in the SP group than the NP patients. Our findings suggest that COVID-19 may cause long term pathologies by modulating the expression of various DEGs, DeLncRNAs, and hub genes at the cellular level.


Subject(s)
COVID-19 , Gene Expression Profiling , Leukocytes, Mononuclear , SARS-CoV-2 , Transcriptome , Humans , COVID-19/genetics , COVID-19/virology , COVID-19/blood , Leukocytes, Mononuclear/metabolism , Male , Female , Middle Aged , SARS-CoV-2/genetics , Adult , Follow-Up Studies , Aged , RNA, Long Noncoding/genetics , Severity of Illness Index , Pneumonia/virology , Pneumonia/genetics
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000195

ABSTRACT

Ovarian cancer (OC) poses a significant global health challenge with high mortality rates, emphasizing the need for improved treatment strategies. The immune system's role in OC progression and treatment response is increasingly recognized, particularly regarding peripheral blood mononuclear cells (PBMCs) and cytokine production. This study aimed to investigate PBMC subpopulations (T and B lymphocytes, natural killer cells, monocytes) and cytokine production, specifically interleukin-1 beta (IL-1ß), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-12 (IL-12), and tumor necrosis factor alpha (TNFα), in monocytes of OC patients both preoperatively and during the early postoperative period. Thirteen OC patients and 23 controls were enrolled. Preoperatively, OC patients exhibited changes in PBMC subpopulations, including decreased cytotoxic T cells, increased M2 monocytes, and the disbalance of monocyte cytokine production. These alterations persisted after surgery with subtle additional changes observed in PBMC subpopulations and cytokine expression in monocytes. Considering the pivotal role of these altered cells and cytokines in OC progression, our findings suggest that OC patients experience an enhanced pro-tumorigenic environment, which persists into the early postoperative period. These findings highlight the impact of surgery on the complex interaction between the immune system and OC progression. Further investigation is needed to clarify the underlying mechanisms during this early postoperative period, which may hold potential for interventions aimed at improving OC management.


Subject(s)
Cytokines , Leukocytes, Mononuclear , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/surgery , Ovarian Neoplasms/pathology , Middle Aged , Cytokines/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Postoperative Period , Preoperative Period , Monocytes/immunology , Monocytes/metabolism , Aged , Adult , Case-Control Studies
3.
Cancers (Basel) ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39001429

ABSTRACT

The mechanisms of mAb-induced ADCC have been well established. However, the ADCC bioassays used to quantify mAb-induced ADCC require continued development/refinement to properly assess and compare the potency of newly developed therapeutic mAbs and biosimilars to meet regulatory requirements. We used trastuzumab and a lactate dehydrogenase (LDH)-based ADCC bioassay as a model to define critical parameters of the ADCC bioassay, describing how several bioassay parameters, including preparation of effector cells, E/T ratio, target cell selection, bioassay media components, and treatment time can influence the data quality of the ADCC activity. We confirm that a 4 to 24 h recovery cultivation is required to restore peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cell activity toward ADCC when using cryopreserved PBMCs. Furthermore, we delineated the cellular mechanisms underlying the restored ADCC activity following the recovery cultivation. We observed that CD69, an early marker of NK cell activation, was upregulated and a new subset CD56dim/CD16dim population was dramatically increased in the recovered NK cells, which led to an increase in expression and secretion of perforin, granzyme B, and cytokine production. This study provides comprehensive technical insights into ADCC bioassay optimization to inform trastuzumab biosimilar development. The knowledge gained from this study can also be leveraged to guide bioassay development for therapeutic mAbs with ADCC as the primary mechanism of action.

4.
Biol Res ; 57(1): 2, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191441

ABSTRACT

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Subject(s)
COVID-19 , Interferon Type I , SARS-CoV-2 , alpha-Synuclein , Endothelial Cells , Humans , Cell Line , Virus Replication
5.
Biol. Res ; 57: 2-2, 2024. ilus, graf
Article in English | LILACS | ID: biblio-1550057

ABSTRACT

BACKGROUND: Increasing evidence suggests a double-faceted role of alpha-synuclein (α-syn) following infection by a variety of viruses, including SARS-CoV-2. Although α-syn accumulation is known to contribute to cell toxicity and the development and/or exacerbation of neuropathological manifestations, it is also a key to sustaining anti-viral innate immunity. Consistently with α-syn aggregation as a hallmark of Parkinson's disease, most studies investigating the biological function of α-syn focused on neural cells, while reports on the role of α-syn in periphery are limited, especially in SARS-CoV-2 infection. RESULTS: Results herein obtained by real time qPCR, immunofluorescence and western blot indicate that α-syn upregulation in peripheral cells occurs as a Type-I Interferon (IFN)-related response against SARS-CoV-2 infection. Noteworthy, this effect mostly involves α-syn multimers, and the dynamic α-syn multimer:monomer ratio. Administration of excess α-syn monomers promoted SARS-CoV-2 replication along with downregulation of IFN-Stimulated Genes (ISGs) in epithelial lung cells, which was associated with reduced α-syn multimers and α-syn multimer:monomer ratio. These effects were prevented by combined administration of IFN-ß, which hindered virus replication and upregulated ISGs, meanwhile increasing both α-syn multimers and α-syn multimer:monomer ratio in the absence of cell toxicity. Finally, in endothelial cells displaying abortive SARS-CoV-2 replication, α-syn multimers, and multimer:monomer ratio were not reduced following exposure to the virus and exogenous α-syn, suggesting that only productive viral infection impairs α-syn multimerization and multimer:monomer equilibrium. CONCLUSIONS: Our study provides novel insights into the biology of α-syn, showing that its dynamic conformations are implicated in the innate immune response against SARS-CoV-2 infection in peripheral cells. In particular, our results suggest that promotion of non-toxic α-syn multimers likely occurs as a Type-I IFN-related biological response which partakes in the suppression of viral replication. Further studies are needed to replicate our findings in neuronal cells as well as animal models, and to ascertain the nature of such α-syn conformations.


Subject(s)
Humans , Interferon Type I , alpha-Synuclein , SARS-CoV-2 , COVID-19 , Virus Replication , Cell Line , Endothelial Cells
6.
Front Immunol ; 14: 1231363, 2023.
Article in English | MEDLINE | ID: mdl-37649486

ABSTRACT

COVID-19 is characterized by an excessive inflammatory response and macrophage hyperactivation, leading, in severe cases, to alveolar epithelial injury and acute respiratory distress syndrome. Recent studies have reported that SARS-CoV-2 spike (S) protein interacts with bacterial lipopolysaccharide (LPS) to boost inflammatory responses in vitro, in macrophages and peripheral blood mononuclear cells (PBMCs), and in vivo. The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting pituitary GH release, exerts many peripheral functions, acting as a growth factor in both malignant and non-malignant cells. GHRH antagonists, in turn, display potent antitumor effects and antinflammatory activities in different cell types, including lung and endothelial cells. However, to date, the antinflammatory role of GHRH antagonists in COVID-19 remains unexplored. Here, we examined the ability of GHRH antagonist MIA-602 to reduce inflammation in human THP-1-derived macrophages and PBMCs stimulated with S protein and LPS combination. Western blot and immunofluorescence analysis revealed the presence of GHRH receptor and its splice variant SV1 in both THP-1 cells and PBMCs. Exposure of THP-1 cells to S protein and LPS combination increased the mRNA levels and protein secretion of TNF-α and IL-1ß, as well as IL-8 and MCP-1 gene expression, an effect hampered by MIA-602. Similarly, MIA-602 hindered TNF-α and IL-1ß secretion in PBMCs and reduced MCP-1 mRNA levels. Mechanistically, MIA-602 blunted the S protein and LPS-induced activation of inflammatory pathways in THP-1 cells, such as NF-κB, STAT3, MAPK ERK1/2 and JNK. MIA-602 also attenuated oxidative stress in PBMCs, by decreasing ROS production, iNOS and COX-2 protein levels, and MMP9 activity. Finally, MIA-602 prevented the effect of S protein and LPS synergism on NF-кB nuclear translocation and activity. Overall, these findings demonstrate a novel antinflammatory role for GHRH antagonists of MIA class and suggest their potential development for the treatment of inflammatory diseases, such as COVID-19 and related comorbidities.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Endothelial Cells , Growth Hormone-Releasing Hormone/antagonists & inhibitors , Inflammation/drug therapy , Leukocytes, Mononuclear , Lipopolysaccharides , SARS-CoV-2 , Tumor Necrosis Factor-alpha
7.
J Neuroinflammation ; 20(1): 164, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443034

ABSTRACT

BACKGROUND: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe autoimmune neuropsychiatric disease. Brain access of anti-NMDAR autoantibody through the blood-brain barrier (BBB) is essential for pathogenesis. Most previous animal models limit the investigation of etiologies of BBB damage in patients. METHODS: In this study, we established a novel humanized mouse model of anti-NMDAR encephalitis by intraperitoneal injection of patients' peripheral blood mononuclear cells (PBMCs) into BALB/c Rag2-/-Il2rg-/-SirpαNODFlk2-/- mice. RESULTS: We found that engraftment of patients' PBMCs not only produced potent anti-GluN1 autoantibodies, but also disrupted BBB integrity to allow brain access of autoantibodies, resulting in a hyperactive locomotor phenotype, anxiety- and depressive-like behaviors, cognitive deficits, as well as functional changes in corresponding brain regions. Transcriptome analysis suggested an exaggerated immune response and impaired neurotransmission in the mouse model and highlighted Il-1ß as a hub gene implicated in pathological changes. We further demonstrated that Il-1ß was produced by endothelial cells and disrupted BBB by repressing tight junction proteins. Treatment with Anakinra, an Il-1 receptor antagonist, ameliorated BBB damage and neuropsychiatric behaviors. CONCLUSIONS: Our study provided a novel and clinically more relevant humanized mouse model of anti-NMDAR encephalitis and revealed an intrinsic pathogenic property of the patient's lymphocytes.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Animals , Mice , Blood-Brain Barrier , Leukocytes, Mononuclear , Endothelial Cells , Mice, Inbred NOD , Autoantibodies , Disease Models, Animal , Receptors, N-Methyl-D-Aspartate
8.
Cytometry A ; 103(6): 500-517, 2023 06.
Article in English | MEDLINE | ID: mdl-36571245

ABSTRACT

Immunophenotyping using high dimensional flow cytometry is a central component of human immune system multi-omic studies. We present four high parameter flow cytometry panels for deep immunophenotyping of human peripheral blood mononuclear cells (PBMC). This set of four 25+ color panels include 64 cell surface markers to resolve broad immune compartment populations, as well as activation and memory of specific T, B, natural killer (NK), and myeloid lineages. Common lineage bridging markers are integrated into each panel to allow for inter-panel quality control through major lineage frequency verification. These panels were developed using a five laser BD Symphony A5 conventional cytometer and successfully transferred to a five laser Cytek Aurora spectral cytometer capable of acquiring the panels. Nine representative PBMC samples were stained with the four phenotyping panels and acquired on both instruments to evaluate population frequency and visual staining patterns for gating between the systems. Both instruments produced comparable high quality flow cytometry data and supported our decision to acquire samples on the spectral cytometer moving forward. This modular set of panels and instrument performance metrics provide guidelines for designing flow cytometry experiments suitable for longitudinal or cross-sectional immune profiling.


Subject(s)
Data Accuracy , Leukocytes, Mononuclear , Humans , Cross-Sectional Studies , Flow Cytometry , Immunophenotyping
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1004736

ABSTRACT

【Objective】 To explore the pathogenesis of fetal edema caused by CD36 antibody in fetal/neonatal alloimmune thrombocytopenia (FNAIT), and to provide reference for clinical prevention and treatment. 【Methods】 The established CD36 monoclonal antibody was incubated with human peripheral blood mononuclear cells (PBMC), and the concentrations of cytokines (TNF-α and IL-1β) in the supernatant of cell culture were detected by ELISA. The permeability of endothelial cells were investigated by detecting the fluorescence intensity of FITC-albumin by incubating cytokine-rich cell supernatant with human umbilical vein endothelial cells (HUVEC). 【Results】 Flow cytometry showed that CD36 monoclonal antibody could bind to human monocytes. Compared with isotype IgG control, increased cytokine TNF-α (pg/mL) (407.73±20.40 vs 29.38 ±4.72, P<0.05) and IL-1β (pg/mL) (247.14±83.59 vs 53.68±26.96, P<0.05) were detected in the supernatant of cell culture after incubation of CD36 monoclonal antibody with human PBMC. Detection of fluorescence intensity of FITC-albumin in transwell cultured HUVEC showed that cytokine-rich cell supernatant derived from CD36 monoclonal antibody incubated with human PBMC can increase the permeability of endothelial cells significantly (CD36 antibody vs isotype IgG, MFI value: 492±16 vs 320±11, P<0.05). 【Conclusion】 The effect of CD36 monoclonal antibody on PBMC can increase HUVEC permeability, which may be one of the pathogenesis of fetal edema with FNAIT.

10.
Cureus ; 15(12): e50586, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38222203

ABSTRACT

In the last couple of decades, much progress has been made in studying bacteria living in humans. However, there is much more to learn about bacteria immune cell interactions. Here, we show that anaerobic bacteria do not grow when cultured overnight with human cells under atmospheric air. Air contains about 18% oxygen, which inhibits the growth of these bacteria while supporting the cultivation of human cells. The bacteria cultured with human peripheral blood mononuclear cells (PBMCs) inflamed with phytohemagglutinin (PHA) greatly increased the production of proinflammatory cytokines like tumor necrosis factor-alpha (TNFα) while inhibiting the production of monocyte chemoattractant protein-1 (MCP-1), an important chemokine.

11.
Transl Med Commun ; 7(1): 17, 2022.
Article in English | MEDLINE | ID: mdl-35880042

ABSTRACT

Background: The worldwide increasing number of people with chronic diseases is pushing conventional therapy to its limits. The so-called Major AutoHaemo Therapy (MAH) has been used in many practices for years. Despite suspicions, especially the 10-passes ozone-high-dosis Therapy (OHT) has shown substantial benefits in chronic ailments. However, knowledge of scientifically based effects of high ozone concentrations are still rare. The present investigation focussed on verifying whether OHT may be linked to a beneficial effect on mitochondrial bioenergetics which can be expressed as a bioenergetic health index (BHI). Methods: We report on six patients which received OHT for preventive purposes twice within one week. The BHI in peripheral blood mononuclear cells (PBMC) is calculated from parameters of a cellular mitochondrial function assay, which gives insights into different aspects of mitochondrial function: 1) Basal oxygen consumption rate (OCR); 2) ATP-linked OCR and proton leak; 3) Maximal OCR and reserve capacity; 4) Non-mitochondrial OCR. Results: The results clearly show that the bioenergetic health index in PBMC improves significantly after just 2 OHT applications over a period of 1 week. The overall improvement of the BHI is based primarily on a significant increase in the reserve capacity and the maximum respiration of the mitochondria. The increase in non-mitochondrial oxygen consumption, which has a negative impact on the BHI value, is indicative for the Nrf-2 dependent activation of antioxidant and detoxifying enzymes activated through OHT. Conclusion: These data demonstrate for the first time the beneficial effect of OHT on mitochondrial parameters. Thus, the results of this study suggest that OHT could be a safe and effective therapeutic option alone or as integrative and complementary support for pharmacological therapy in a variety of chronic and acute diseases where mitochondrial dysfunction plays a central role.

12.
Eur J Clin Pharmacol ; 78(8): 1261-1272, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35536394

ABSTRACT

PURPOSE: Intracellular exposure of tacrolimus (TAC) may be a better marker of therapeutic effect than whole blood exposure. We aimed to evaluate the influence of genetic polymorphism on the pharmacokinetics of TAC in peripheral blood mononuclear cells (PBMCs) and develop limited sampling strategy (LSS) models to estimate the area under the curve (AUC0-12h) in the PBMC of Chinese renal transplant patients. METHODS: Ten blood samples of each of the 23 renal transplant patients were collected 0-12h after 14 (10-18) days of TAC administration. PBMCs were separated and quantified. The TAC level in PBMCs was determined, and pharmacokinetic parameters were estimated by noncompartmental study. The AUC0-12h of TAC in whole blood was estimated by Bayesian approach based on a population pharmacokinetic model established in 65 renal transplant patients. The influence of CYP3A5 and ABCB1 genotypes on exposure was estimated. By applying multiple stepwise linear regression analysis, LSS equations for TAC AUC0-12h in the PMBC of renal transplant patients were established, and the bias and precision of various equations were identified and compared. RESULTS: We found a modest correlation between TAC exposure in whole blood and PBMC (r2 = 0.5260). Patients with the CYP3A5 6986GG genotype had a higher AUC0-12h in PBMCs than those with the 6986 AA or GA genotype (P = 0.026). Conversely, patients with the ABCB1 3435TT genotype had a higher AUC0-12h in PBMC than those with the 3435 CC and CT genotypes (P = 0.046). LSS models with 1-4 blood time points were established (r2 = 0.570-0.989). The best model for predicting TAC AUC0-12h was C2-C4-C6-C10 (r2 = 0.989). The model with C0.5-C6 (r2 = 0.849) can be used for outpatients who need monitoring to be performed in a short period. CONCLUSIONS: The CYP3A5 and ABCB1 genotypes impact TAC exposure in PBMCs, which may further alter the effects of TAC. The LSS model consisting of 2-4 time points is an effective approach for estimating full TAC AUC0-12h in Chinese renal transplant patients. This approach may provide convenience and the possibility for clinical monitoring of TAC intracellular exposure.


Subject(s)
Cytochrome P-450 CYP3A , Immunosuppressive Agents , Kidney Transplantation , Tacrolimus , ATP Binding Cassette Transporter, Subfamily B/genetics , Area Under Curve , Bayes Theorem , Cytochrome P-450 CYP3A/genetics , Humans , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacokinetics , Leukocytes, Mononuclear , Tacrolimus/administration & dosage , Tacrolimus/pharmacokinetics , Transplant Recipients
13.
Front Immunol ; 13: 838891, 2022.
Article in English | MEDLINE | ID: mdl-35371008

ABSTRACT

Background: Ankylosing spondylitis (AS) is a chronic inflammatory disease with serious consequences and a high rate of morbidity and mortality, In our previous work, we reveal the key features of proteins in new-onset ankylosing spondylitis patients. Material and Methods: Ankylosing spondylitis (AS) is a chronic inflammatory condition that affects the spine, and inflammation plays an essential role in AS pathogenesis. The inflammatory process in AS, however, is still poorly understood due to its intricacy. Systematic proteomic and phosphorylation analyses of peripheral blood mononuclear cells (PBMCs) were used to investigate potential pathways involved in AS pathogenesis. Results: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was performed and discovered 782 differentially expressed proteins (DEPs) and 122 differentially phosphorylated proteins (DPPs) between 9 new-onset AS patients and 9 healthy controls. The DEPs were further verified using parallel reaction monitoring (PRM) analysis. PRM analysis verified that 3 proteins (HSP90AB1, HSP90AA1 and HSPA8) in the antigen processing and presentation pathway, 6 proteins (including ITPR1, MYLK and STIM1) in the platelet activation pathway and 10 proteins (including MYL12A, MYL9 and ROCK2) in the leukocyte transendothelial migration pathway were highly expressed in the PBMCs of AS patients. Conclusion: The key proteins involved in antigen processing and presentation, platelet activation and leukocyte transendothelial migration revealed abnormal immune regulation in patients with new-onset AS. These proteins might be used as candidate markers for AS diagnosis and new therapeutic targets, as well as elucidating the pathophysiology of AS.


Subject(s)
Spondylitis, Ankylosing , Chromatography, Liquid , Humans , Leukocytes, Mononuclear/metabolism , Proteomics , Spondylitis, Ankylosing/metabolism , Tandem Mass Spectrometry
14.
Methods Protoc ; 5(2)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35314657

ABSTRACT

Managing medical procedures for children with problematic disorders is a challenging approach, especially in the case of blood withdrawal for autism spectrum disorder-affected children. Peripheral blood mononuclear cells (PBMC) represent an important cellular model to study immune responses and drug toxicity. The monocytic cells, a fraction of PBMC, are strongly involved in some pathophysiological processes, such as inflammation and immune system changes. Here, we propose a simple, reliable protocol for obtaining peripheral blood-derived mononuclear cells from small volumes of blood samples.

15.
J Immunol Methods ; 502: 113227, 2022 03.
Article in English | MEDLINE | ID: mdl-35031279

ABSTRACT

10x Genomics is a highly accessible single cell RNA sequencing platform that allows for simultaneous gene expression analysis and identification of receptor chain combinations in cells of the adaptive immune system. Here, we asked whether the gene and receptor expression measurements in peripheral blood mononuclear cells (PBMC) are influenced by technical, cell freezing, FACS-processing, and day to day biological variation. No differentially expressed gene was observed between 1. triplicates aliquots taken from the same vial of frozen PBMC; 2. triplicate vials of frozen PBMC; and 3. triplicate aliquots taken from the same vial of frozen PBMC and processed separately for FACS staining and sorting of different PBMC populations. A small number of differentially expressed genes were observed between PBMC sampled, isolated and frozen from the same donor on different days, and these differences were more pronounced in the memory B cells than other cell populations. T cell receptors were recovered in all replicates when at least 5 cells per clonotype were identified. These findings show high reproducibility of 10x Genomics single cell RNA sequencing data in the immune cell context.


Subject(s)
Genomics , Leukocytes, Mononuclear , Leukocytes, Mononuclear/metabolism , Reproducibility of Results , Sequence Analysis, RNA/methods
16.
Clin Chem Lab Med ; 60(5): 701-706, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35085430

ABSTRACT

OBJECTIVES: Peripheral blood mononuclear cells (PBMCs) are a versatile material for clinical routine as well as for research projects. However, their isolation via density gradient centrifugation is still time-consuming. When samples are taken beyond usual laboratory handling times, it may sometimes be necessary to pause the isolation process. Our aim was to evaluate the impact of delays up to 48 h after the density gradient centrifugation on PBMC yield, purity and viability. METHODS: PBMCs were isolated from samples of 20 donors, either with BD Vacutainer CPT tubes (CPT) or with the standard Ficoll method. Isolation was paused after initial density gradient centrifugation for 0, 24, or 48 h. PBMC yield (% output/input), purity (% PBMCs/total cells) and viability (% Annexin V-/propidium iodide-) were compared. RESULTS: The yield did not change significantly over time when CPT were used (55%/52%/47%), but did after isolation with the standard method (62%/40%[p<0.0001]/53%[p<0.01]). Purity was marginally affected if CPT were used (95%/93%[p=n.s./92%[p<0.05] vs. 97% for all time points with standard method). Whereas viable PBMCs decreased steadily for CPT isolates (62%/51%[p<0.001]/36%[p<0.0001]), after standard Ficoll gradient isolation, cell apoptosis was more pronounced already after 24 h delay, and viability did not further decrease after 48 h (64%/44%[p<0.0001]/40%[p<0.0001]). CONCLUSIONS: In conclusion, our findings suggest that while post-centrifugation delays ≥24 h might have only a minor effect on cell yield and purity, their impact on cell viability is substantial, even when CPT are used.


Subject(s)
Leukocytes, Mononuclear , Leukocytes , Cell Separation/methods , Cell Survival , Ficoll , Humans
17.
Front Cardiovasc Med ; 8: 734388, 2021.
Article in English | MEDLINE | ID: mdl-34631832

ABSTRACT

Background: Congenital heart disease (CHD) with single-ventricle (SV) physiology is now survivable with a three-stage surgical course ending with Fontan palliation. However, 10-year transplant-free survival remains at 39-50%, with ventricular dysfunction progressing to heart failure (HF) being a common sequela. For SV-CHD patients who develop HF, undergoing the surgical course would not be helpful and could even be detrimental. As HF risk cannot be predicted and metabolic defects have been observed in Ohia SV-CHD mice, we hypothesized that respiratory defects in peripheral blood mononuclear cells (PBMCs) may allow HF risk stratification in SV-CHD. Methods: SV-CHD (n = 20), biventricular CHD (BV-CHD; n = 16), or healthy control subjects (n = 22) were recruited, and PBMC oxygen consumption rate (OCR) was measured using the Seahorse Analyzer. Respiration was similarly measured in Ohia mouse heart tissue. Results: Post-Fontan SV-CHD patients with HF showed higher maximal respiratory capacity (p = 0.004) and respiratory reserve (p < 0.0001), parameters important for cell stress adaptation, while the opposite was found for those without HF (reserve p = 0.037; maximal p = 0.05). This was observed in comparison to BV-CHD or healthy controls. However, respiration did not differ between SV patients pre- and post-Fontan or between pre- or post-Fontan SV-CHD patients and BV-CHD. Reminiscent of these findings, heart tissue from Ohia mice with SV-CHD also showed higher OCR, while those without CHD showed lower OCR. Conclusion: Elevated mitochondrial respiration in PBMCs is correlated with HF in post-Fontan SV-CHD, suggesting that PBMC respiration may have utility for prognosticating HF risk in SV-CHD. Whether elevated respiration may reflect maladaptation to altered hemodynamics in SV-CHD warrants further investigation.

18.
Curr Issues Mol Biol ; 43(2): 704-715, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34287264

ABSTRACT

Patients with cardiovascular disease (CVD) and periodontitis (PT) show shared risk factors as result of the altered molecular mechanisms associated with pathological conditions. The aim of our study was to evaluate if the plasma biomarkers associated with endothelial dysfunction may also be related to alterations in the inflammatory status in peripheral blood mononuclear cells (PBMC). Patients with PT, coronary heart disease (CHD), or both diseases as well as controls were enrolled. Plasma levels of coenzyme Q10 (CoQ10), 3-nitrotyrosine (NT), and asymmetric dimethylarginine (ADMA) were assessed using HPLC. mRNA levels of caspase-1 (CASP1), NLR family pyrin domain containing 3 (NLRP3), and tumor necrosis factor-α (TNF-α) in PBMC from the recruited subjects were quantified using real-time PCR. Patients with PT + CHD showed lower CoQ10 plasma levels and increased concentrations of NT in comparison to healthy subjects. ADMA levels were higher in CHD and PT + CHD patients compared to controls. Transcript levels of CASP1, NLRP3, and TNF-α were up-regulated in PBMC from all patient groups when compared to healthy subjects. Our results suggest a possible causal link between oxidative stress, high levels of NT and ADMA, and inflammasome activation, which may be involved in the endothelial inflammatory dysfunction leading to the pathogenesis and progression of CHD in PT patients.


Subject(s)
Biomarkers , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Endothelium/metabolism , Nitrosative Stress , Oxidative Stress , Periodontitis/metabolism , Case-Control Studies , Disease Susceptibility , Endothelium/physiopathology , Heart Disease Risk Factors , Humans , Leukocytes, Mononuclear/metabolism , Periodontitis/blood , Periodontitis/complications , Periodontitis/etiology , ROC Curve , Risk Assessment , Risk Factors
19.
Front Cell Infect Microbiol ; 11: 649925, 2021.
Article in English | MEDLINE | ID: mdl-33816354

ABSTRACT

Apical periodontitis is an inflammatory disease of microbial etiology. It has been suggested that endodontic bacterial DNA might translocate to distant organs via blood vessels, but no studies have been conducted. We aimed first to explore overall extraradicular infection, as well as specifically by Porphyromonas spp; and their potential to translocate from infected root canals to blood through peripheral blood mononuclear cells. In this cross-sectional study, healthy individuals with and without a diagnosis of apical periodontitis with an associated apical lesion of endodontic origin (both, symptomatic and asymptomatic) were included. Apical lesions (N=64) were collected from volunteers with an indication of tooth extraction. Intracanal samples (N=39) and respective peripheral blood mononuclear cells from apical periodontitis (n=14) individuals with an indication of endodontic treatment, as well as from healthy individuals (n=14) were collected. The detection frequencies and loads (DNA copies/mg or DNA copies/µL) of total bacteria, Porphyromonas endodontalis and Porphyromonas gingivalis were measured by qPCR. In apical lesions, the detection frequencies (%) and median bacterial loads (DNA copies/mg) respectively were 70.8% and 4521.6 for total bacteria; 21.5% and 1789.7 for Porphyromonas endodontalis; and 18.4% and 1493.9 for Porphyromonas gingivalis. In intracanal exudates, the detection frequencies and median bacterial loads respectively were 100% and 21089.2 (DNA copies/µL) for total bacteria, 41% and 8263.9 for Porphyromonas endodontalis; and 20.5%, median 12538.9 for Porphyromonas gingivalis. Finally, bacteria were detected in all samples of peripheral blood mononuclear cells including apical periodontitis and healthy groups, though total bacterial loads (median DNA copies/µL) were significantly higher in apical periodontitis (953.6) compared to controls (300.7), p<0.05. Porphyromonas endodontalis was equally detected in both groups (50%), but its bacterial load tended to be higher in apical periodontitis (262.3) than controls (158.8), p>0.05; Porphyromonas gingivalis was not detected. Bacteria and specifically Porphyromonas spp. were frequently detected in endodontic canals and apical lesions. Also, total bacteria and Porphyromonas endodontalis DNA were detected in peripheral blood mononuclear cells, supporting their plausible role in bacterial systemic translocation.


Subject(s)
Bacterial Translocation , Periapical Periodontitis , Cross-Sectional Studies , DNA, Bacterial , Humans , Leukocytes, Mononuclear , Porphyromonas endodontalis
20.
Immunol Lett ; 233: 48-56, 2021 05.
Article in English | MEDLINE | ID: mdl-33741378

ABSTRACT

It has been reported that patients with rheumatoid arthritis (RA) have significantly less bacteria belonging to the Bacteroides group in their microbiota. We speculate that inhibition of cytokine production is impaired in patients with RA owing to their low levels of intestinal bacteria belonging to the Bacteroidetes group. Here we investigated the effect of Bacteroides fragilis lipopolysaccharide (B-LPS) on cytokine production in vitro and on the development of collagen antibody-induced arthritis (CAIA) in DBA/1 mice, an animal model of RA. in vitro culture experiments showed that Escherichia coli LPS (E-LPS)-induced cytokine production from THP-1 monocytic cells and peripheral blood mononuclear cells was significantly suppressed by B-LPS in a dose-dependent manner. A decrease in TNF-α and IL-1ß production was also observed in LPS-tolerized macrophages induced by B-LPS at concentrations equal to and higher than that of E-LPS. Similar results were obtained when autoclaved feces were used to induce cytokine production instead of E-LPS. In in vivo experiments using CAIA models, B-LPS had no adverse effects even when administered at 10 times the concentration of E-LPS, which elicits severe arthritis. In addition, simultaneous administration of high dose B-LPS with E-LPS or administration of B-LPS prior to E-LPS significantly suppressed arthritis development in CAIA model animals when compared with administration of E-LPS alone. These results suggest that increasing certain bacterial groups such as Bacteroides is an effective strategy for preventing arthritis development in patients with RA.


Subject(s)
Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/metabolism , Bacteroides fragilis/immunology , Escherichia coli/immunology , Lipopolysaccharides/immunology , Monocytes/immunology , Monocytes/metabolism , Animals , Arthritis, Experimental , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/pathology , Cell Line , Cytokines/biosynthesis , Disease Models, Animal , Disease Susceptibility , Dose-Response Relationship, Immunologic , Endotoxins/immunology , Humans , Immune Tolerance , Male , Mice , Monocytes/pathology , Severity of Illness Index , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL