Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164203

ABSTRACT

Accurately distinguishing tumor cells from normal cells is a key issue in tumor diagnosis, evaluation, and treatment. Fluorescence-based immunohistochemistry as the standard method faces the inherent challenges of the heterogeneity of tumor cells and the lack of big data analysis of probing images. Here, we have demonstrated a machine learning-driven imaging method for rapid pathological diagnosis of five types of cancers (breast, colon, liver, lung, and stomach) using a perovskite nanocrystal probe. After conducting the bioanalysis of survivin expression in five different cancers, high-efficiency perovskite nanocrystal probes modified with the survivin antibody can recognize the cancer tissue section at the single cell level. The tumor to normal (T/N) ratio is 10.3-fold higher than that of a conventional fluorescent probe, which can successfully differentiate between tumors and adjacent normal tissues within 10 min. The features of the fluorescence intensity and pathological texture morphology have been extracted and analyzed from 1000 fluorescence images by machine learning. The final integrated decision model makes the area under the receiver operating characteristic curve (area under the curve) value of machine learning classification of breast, colon, liver, lung, and stomach above 90% while predicting the tumor organ of 92% of positive patients. This method demonstrates a high T/N ratio probe in the precise diagnosis of multiple cancers, which will be good for improving the accuracy of surgical resection and reducing cancer mortality.

2.
Small ; : e2402825, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990086

ABSTRACT

The perovskite nanocrystals (PeNCs) are emerging as a promising emitter for light-emitting diodes (LEDs) due to their excellent optical and electrical properties. However, the ultrafast growth of PeNCs often results in large sizes exceeding the Bohr diameter, leading to low exciton binding energy and susceptibility to nonradiative recombination, while small-sized PeNCs exhibit a large specific surface area, contributing to an increased defect density. Herein, Zn2+ ions as a negative catalyst to realize quantum-confined FAPbBr3 PeNCs with high photoluminescence quantum yields (PL QY) over 90%. Zn2+ ions exhibit robust coordination with Br- ions is introduced, effectively retarding the participation of Br- ions in the perovskite crystallization process and thus facilitating PeNCs size control. Notably, Zn2+ ions neither incorporate into the perovskite lattice nor are absorbed on the surface of PeNCs. And the reduced growth rate also promotes sufficient octahedral coordination of PeNC that reduces defect density. The LEDs based on these optimized PeNCs exhibits an external quantum efficiency (EQE) of 21.7%, significantly surpassing that of the pristine PeNCs (15.2%). Furthermore, the device lifetime is also extended by twofold. This research presents a novel approach to achieving high-performance optoelectronic devices.

3.
ACS Nano ; 18(28): 18457-18464, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38965899

ABSTRACT

Optically driven cooling of a material, or optical refrigeration, is possible when optical up-conversion via anti-Stokes photoluminescence (ASPL) is achieved with near-unity quantum yield. The recent demonstration of optical cooling of CsPbBr3 perovskite nanocrystals (NCs) has provided a path forward in the development of semiconductor-based optical refrigeration strategies. However, the mechanism of ASPL in CsPbBr3 NCs is not yet settled, and the prospects for cooling technologies strongly depend on details of the mechanism. By analyzing the Arrhenius behavior of ASPL in CsPbBr3 NCs, we investigated the relationship between the average energy gained per photon during up conversion, ΔE, and the thermal activation energy, Ea. We find that Ea is systematically larger than ΔE, and that Ea increases for larger ΔE. We suggest that the additional energetic cost is due to a rearrangement of the crystal lattice as charge carriers pass from surface localized, structurally distinct sub-gap polaron states to the free exciton state during up-conversion. Our interpretation is further corroborated by quantifying the impact of ligand coverage on the NC surface. These findings help inform the development of CsPbBr3 NCs for applications in optical refrigeration.

4.
Chemistry ; : e202401938, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984590

ABSTRACT

Nanoparticles (NPs), including perovskite nanocrystals (PNCs) with single photon purity, present challenges in fluorescence correlation spectroscopy (FCS) studies due to their distinct photoluminescence (PL) behaviors. In particular, the zero-time correlation amplitude [g2(0)] and the associated diffusion timescale (τD) of their FCS curves show substantial dependency on pump intensity (IP). Optical saturation inadequately explains the origin of this FCS phenomenon in NPs, thus setting them apart from conventional dye molecules, which do not manifest such behavior. This observation is apparently attributed to either photo-brightening or optical trapping, both lead to increased NP occupancy (N) in the excitation volume, consequently reducing the g2(0) amplitude [since g2(0) α 1/N] at high IP. However, an advanced FCS study utilizing alternating laser excitation at two different intensities dismisses such possibilities. Further investigation into single-particle blinking behaviors as a function of IP reveals that the intensity dependence of g2(0) primarily arises from the brightness heterogeneity prevalent in almost all types of NPs. This report delves into the complexities of the photophysical properties of NPs and their adverse impacts on FCS studies.

5.
ACS Nano ; 18(24): 15888-15897, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38842501

ABSTRACT

Distinguished from traditional physical unclonable functions (PUFs), optical PUFs derive their encoded information from the optical properties of materials, offering distinct advantages, including solution processability, material versatility, and tunable luminescence performance. However, existing research on optical PUFs has predominantly centered on visible photoluminescence, while advanced optical PUFs based on higher-level covert light remain unexplored. In this study, we present optical PUFs based on the utilization of the covert light of near-infrared circularly polarized luminescence (NIR-CPL). This interesting property is achieved by incorporating Yb-doped metal halide perovskite nanocrystals (Yb-PeNCs) possessing NIR emission property into chiral imprinted photonic (CIP) films. By employing a solvent immersion method, we successfully integrated Yb-PeNCs into these CIP films, thereby creating an optically unclonable surface. The resulting NIR-CPL emission adds a layer of advanced security to the optical PUF systems. These findings underscore the potential of solution-processable chiral films to play a pivotal role in advancing the next generation of PUFs.

6.
ACS Nano ; 18(26): 16905-16913, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904449

ABSTRACT

While two-dimensional transition metal dichalcogenides (TMDCs)-based photodetectors offer prospects for high integration density and flexibility, their thinness poses a challenge regarding low light absorption, impacting photodetection sensitivity. Although the integration of TMDCs with metal halide perovskite nanocrystals (PNCs) has been known to be promising for photodetection with a high absorption coefficient of PNCs, the low charge mobility of PNCs delays efficient photocarrier injection into TMDCs. In this study, we integrated MoS2 with in situ formed core/shell PNCs with short ligands that minimize surface defects and enhance photocarrier injection. The PNCs/MoS2 heterostructure efficiently separates electrons and holes by establishing type II band alignment and consequently inducing a photogating effect. The synergistic interplay between photoconductive and photogating effects yields a high responsivity of 2.2 × 106 A/W and a specific detectivity of 9.0 × 1011 Jones. Our findings offer a promising pathway for developing low-cost, high-performance phototransistors leveraging the advantages of two-dimensional (2D) materials.

7.
Angew Chem Int Ed Engl ; 63(30): e202404067, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38729916

ABSTRACT

Conventional photovoltaic (PV)-photodetectors are hard to detect fainted signals, while photomultiplication (PM)-capable devices indispensable for detecting weak light and are prone to degrade under strong light illumination and large bias, and it is urgent to realize highly efficient integrated detecting system with both PM and PV operation modes. In this work, one lead-free Cs3Cu2I5 nanocrystals with self-trapping exciton nature was introduced as interfacial layer adjacent to bulk and layer-by-layer heterojunction structure, and corresponding organic photodetectors with bias-switchable dual modes are demonstrated. The fabricated device exhibits low operating bias (0 V for PV mode and 0.8 V for PM mode), high specific detectivity (~1013 Jones), fast response speed as low as 1.59 µs, large bandwidth over 0.2 MHz and long-term operational stability last for 4 months in ambient condition. This synergy strategy also validated in different materials and device architectures, providing a convenient and scalable production process to develop highly efficient bias-switchable multi-functional organic optoelectrical applications.

8.
ACS Appl Mater Interfaces ; 16(19): 25033-25041, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700992

ABSTRACT

Perovskite nanocrystals (PNCs) offer unique advantages in large-area and thick-film deposition for X-ray detection applications due to the decoupling of the crystallization of perovskite from film formation, as well as their low-temperature and scalable deposition methods. However, the partial detachment of long-chain ligands in PNCs during the purification process would lead to the exposure of surface defects, making it challenging to ensure efficient charge carrier extraction and stable X-ray detection. In this study, we propose a beneficial strategy that involves the in situ reparation of these exposed defects with sodium bromide (NaBr) during the purification process to construct CsPbBr3 PNC-organic bulk heterostructure X-ray detectors. The NaBr-passivated PNCs exhibit stronger photoluminescence intensity and lower trap density in films compared to those of the control samples, confirming the effective passivation of halide vacancy defects. Furthermore, the NiOx hole transport layer with remarkable electron blocking capability is introduced to further suppress the dark current of the devices. Consequently, the optimal devices exhibit a large sensitivity of 4237 µC Gyair-1 cm-2 and a low dark current density of 10 nA cm-2, as well as improved operational stability, which allows for high-contrast and low-dose X-ray imaging applications.

9.
Luminescence ; 39(4): e4734, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576335

ABSTRACT

Simultaneously improving the stability and photoluminescence quantum yield (PLQY) of all inorganic perovskite nanocrystals (NCs) is crucial for their practical utilization in various optoelectronic devices. Here, CsPbBr3 NCs coated with polyethersulfone (PES) were prepared via an in-situ co-precipitation method. The sulfone groups in PES bind to undercoordinated lead ion (Pb2+) on the CsPbBr3 NCs, resulting in significant reduction of surface defects, thus enhancing the PLQY from 74.2% to 88.3%. Meanwhile, the PES-coated NCs exhibit high water resistance and excellent heat and light stability, maintaining over 85% of the initial PL intensity under thermal aging (70°C, 4 h) and continuous 365 nm ultraviolet (UV) light irradiation (24 W, 8 h) conditions. By contrast, the PL intensity of the control NCs dramatically dropped to less than 40%. Finally, a diode emitting bright white light was fabricated utilizing the PES-coated CsPbBr3 NCs, which exhibits a color gamut of ~110% NTSC standard.


Subject(s)
Calcium Compounds , Nanoparticles , Oxides , Polymers , Titanium , Sulfones
10.
ACS Appl Mater Interfaces ; 16(14): 17946-17953, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38512303

ABSTRACT

Recently, lead halide perovskite nanocrystals (NCs) have shown great potential and have been widely studied in lighting and optoelectronic fields. However, the long-term stability of perovskite NCs under irradiation is an important challenge for their application in practice. Mn2+ dopants are mostly proposed as substitutes for the Pb site in perovskite NCs synthesized through the hot-injection method, with the aim of improving both photo- and thermal stability. In this work, we employed a facile ligand-assisted reprecipitate strategy to introduce Mn ions into perovskite lattice, and the results showed that Mn3+ instead of Mn2+, even with a very low level of incorporation of 0.18 mol % as interstitial dopant, can enhance the photostability of perovskite binder film under the ambient conditions without emission change, and the photoluminescent efficiency can retain 70% and be stable under intensive irradiation for 12 h. Besides, Mn3+ incorporation could prolong the photoluminescent decay time by passivating trap defects and modifying the distortion of the lattice, which underscores the significant potential for application as light emitters.

11.
Small ; 20(29): e2311058, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38351656

ABSTRACT

The design of smart stimuli-responsive photoluminescent materials capable of multi-level encryption and complex information storage is highly sought after in the current information era. Here, a novel adamantyl-capped CsPbBr3 (AD-CsPbBr3) perovskite NCs, along with its supramolecular host-guest assembly partner a modified ß-CD (mCD), mCD@AD-CsPbBr3, are designed and prepared. By dispersing these two materials in different solvents, namely, AD-CsPbBr3 in toluene, mCD@AD-CsPbBr3 in toluene, and mCD@AD-CsPbBr3 in methanol, the three solutions exhibit diverse photoluminescence (PL) turn-on/off or PL discoloration response upon supramolecular stimulus. Based on these responses, a proof-of-principle programmable Multi-Level Photoluminescence Encoding System (MPLES) is established. Three types of four-level and three types of three-level information encoding are achieved by the system. A layer-by-layer four-level information encryption and decryption as well as a two-level encrypted 3D code are successfully achieved.

12.
Adv Mater ; 36(5): e2304604, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37656902

ABSTRACT

Self-powered skin optoelectronics fabricated on ultrathin polymer films is emerging as one of the most promising components for the next-generation Internet of Things (IoT) technology. However, a longstanding challenge is the device underperformance owing to the low process temperature of polymer substrates. In addition, broadband electroluminescence (EL) based on organic or polymer semiconductors inevitably suffers from periodic spectral distortion due to Fabry-Pérot (FP) interference upon substrate bending, preventing advanced applications. Here, ultraflexible skin optoelectronics integrating high-performance solar cells and monochromatic light-emitting diodes using solution-processed perovskite semiconductors is presented. n-i-p perovskite solar cells and perovskite nanocrystal light-emitting diodes (PNC-LEDs), with power-conversion and current efficiencies of 18.2% and 15.2 cd A-1 , respectively, are demonstrated on ultrathin polymer substrates with high thermal stability, which is a record-high efficiency for ultraflexible perovskite solar cell. The narrowband EL with a full width at half-maximum of 23 nm successfully eliminates FP interference, yielding bending-insensitive spectra even under 50% of mechanical compression. Photo-plethysmography using the skin optoelectronic device demonstrates a signal selectivity of 98.2% at 87 bpm pulse. The results presented here pave the way to inexpensive and high-performance ultrathin optoelectronics for self-powered applications such as wearable displays and indoor IoT sensors.

13.
ACS Nano ; 18(2): 1396-1403, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37943020

ABSTRACT

Perovskite nanocrystals (NCs) have attracted increasing interest in the realization of single-photon emitters owing to their ease of chemical synthesis, wide spectral tunability, fast recombination rate constant, scalability, and high quantum yield. However, the integration of a single perovskite NC into a photonic structure has yet to be accomplished. In this work, the integration of a highly stable individual zwitterionic ligand-based CsPbBr3 perovskite NC with a circular Bragg grating (CBG) is successfully demonstrated. The far-field radiation pattern of the NC inside the CBG exhibits high directionality toward a low azimuthal angle, which is consistent with the simulation results. A 5.4-fold enhancement in brightness is observed due to an increase in collection efficiency. Moreover, a 1.95-fold increase in the recombination rate constant is achieved. This study offers ultrafast (<100 ps) single-photon emission and an improved brightness of perovskite NCs, which are critical factors for practical quantum optical applications.

14.
Small ; 20(23): e2307032, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38145359

ABSTRACT

Perovskite nanocrystals (NCs) have emerged as a promising building block for the fabrication of optic-/optoelectronic-/electronic devices owing to their superior characteristics, such as high absorption coefficient, rapid ion mobilities, and tunable energy levels. However, their low structural stability and poor surface passivation have restricted their application to next-generation devices. Herein, a drug delivery system (DDS)-inspired post-treatment strategy is reported for improving their structural stability by doping of Ag into CsPbBr3 (CPB) perovskite NCs; delivery to damaged sites can promote their structural recovery slowly and uniformly, averting the permanent loss of their intrinsic characteristics. Ag NCs are designed through surface-chemistry tuning and structural engineering to enable their circulation in CPB NC dispersions, followed by their delivery to the CPB NC surface, defect-site recovery, and defect prevention. The perovskite-structure healing process through the DDS-type process (with Ag NCs as the drug) is analyzed by a combination of theoretical calculations (with density functional theory) and experimental analyses. The proposed DDS-inspired healing strategy significantly enhances the optical properties and stability of perovskite NCs, enabling the fabrication of white light-emitting diodes.

15.
Small ; : e2307785, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054790

ABSTRACT

Manipulation of persistent charges in semiconductor nanostructure is the key point to obtain quantum bits towards the application of quantum memory and information devices. However, realizing persistent charge storage in semiconductor nano-systems is still very challenge due to the disturbance from crystal defects and environment conditions. Herein, the two-photon persistent charging induced long-lasting afterglow and charged exciton formation are observed in CsPbBr3 perovskite nanocrystals (NCs) confined in glass host with effective lifetime surpassing one second, where the glass inclosure provides effective protection. A method combining the femtosecond and second time-resolved transient absorption spectroscopy is explored to determine the persistent charging possibility of perovskite NCs unambiguously. Meanwhile, with temperature-dependent spectroscopy, the underlying mechanism of this persistent charging is elucidated. A two-channel carrier transfer model is proposed involving athermal quantum tunneling and slower thermal-assisted channel. On this basis, two different information storage devices are demonstrated with the memory time exceeding two hours under low-temperature condition. These results provide a new strategy to realize persistent charging in perovskite NCs and deepen the understanding of the underlying carrier kinetics, which may pave an alternative way towards novel information memory and optical data storage applications.

16.
Sensors (Basel) ; 23(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38067863

ABSTRACT

Liquid scintillators are extensively employed as targets in neutrino experiments and in medical radiography. Perovskite nanocrystals are recognized for their tunable emission spectra and high photoluminescence quantum yields. In this study, we investigated the feasibility of using perovskites as an alternative to fluor, a substance that shifts the wavelengths. The liquid scintillator candidates were synthesized by doping perovskite nanocrystals with emission wavelengths of 450, 480, and 510 nm into fluor PPO with varying nanocrystal concentrations in a toluene solvent. The several properties of the perovskite nanocrystal-doped liquid scintillator were measured and compared with those of a secondary wavelength shifter, bis-MSB. The emission spectra of the perovskite nanocrystal-doped liquid scintillator exhibited a distinct monochromatic wavelength, indicating energy transfer from PPO to the perovskite nanocrystals. Using a 60Co radioactive source setup with two photomultiplier tubes (PMTs), the light yields, pulse shape, and wavelength shifts of the scintillation events were measured. The light yields were evaluated based on the observed Compton edges from γ-rays, and compared across the synthesized samples. A decrease (or increase) in area-normalized PMT pulse height was observed at higher perovskite nanocrystal (or PPO) concentrations. The results demonstrated the sufficient potential of perovskite nanocrystals as an alternative to traditional wavelength shifters in a liquid scintillator.

17.
Nano Lett ; 23(23): 10788-10795, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37982537

ABSTRACT

All-inorganic cesium lead halide perovskite nanocrystals (NCs) have received much attention due to their outstanding optical and electronic properties, but the underlying growth mechanism remains elusive due to their rapid formation process. Here, we report an in situ real-time study of the growth of Cs4PbBr6 NCs under practical synthesis conditions in a custom-made reactor. Through the synchrotron-based small-angle X-ray scattering technique, we find that the formation of Cs4PbBr6 NCs is accomplished in three steps: the fast nucleation process accompanied by self-focusing growth, the subsequent diffusion-limited Ostwald ripening, and the self-assembly of NCs into the face-centered cubic (fcc) superlattices at high temperature and the termination of growth. The simultaneously collected wide-angle X-ray scattering signals further corroborate the three-step growth model. The influence of superlattice formation is also elucidated, which improves the uniformity of the final NCs.

18.
Materials (Basel) ; 16(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37763594

ABSTRACT

Lead-based halide perovskite nanocrystals (PeNCs) have demonstrated remarkable potential for use in light-emitting diodes (LEDs). This is because of their high photoluminescence quantum yield, defect tolerance, tunable emission wavelength, color purity, and high device efficiency. However, the environmental toxicity of Pb has impeded their commercial viability owing to the restriction of hazardous substances directive. Therefore, Pb-free PeNCs have emerged as a promising solution for the development of eco-friendly LEDs. This review article presents a detailed analysis of the various compositions of Pb-free PeNCs, including tin-, bismuth-, antimony-, and copper-based perovskites and double perovskites, focusing on their stability, optoelectronic properties, and device performance in LEDs. Furthermore, we address the challenges encountered in using Pb-free PeNC-LEDs and discuss the prospects and potential of these Pb-free PeNCs as sustainable alternatives to lead-based PeLEDs. In this review, we aim to shed light on the current state of Pb-free PeNC LEDs and highlight their significance in driving the development of eco-friendly LED technologies.

19.
ACS Appl Mater Interfaces ; 15(30): 36716-36723, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37477401

ABSTRACT

Tin-based perovskites comprise one of the preferred nontoxic alternatives to Pb-based perovskites due to their desirable optoelectronic properties. However, there remains a crucial stability problem due to the property of Sn2+ oxidation. In this study, we reported stable tin-based perovskite nanocrystals (NCs) using stannous acetate as the Sn2+ source because of its stronger Sn-O bonding. To prevent the oxidation of Sn2+, a thin layer of CsBr coverage was formed in situ; tin-based perovskite NCs, CsxSnBrx+2@CsBr (1 < x < 4), show a high photoluminescence quantum yield (PLQY) of 78.2% and high stability. The measured lifetime of PLQY decrease to half of the initial value is ∼1287 h under ambient conditions and ∼2200 h under a nitrogen atmosphere, respectively. Furthermore, the as-fabricated light-emitting diodes based on CsxSnBrx+2@CsBr NCs as the emitting layer exhibit a maximum luminescence of 16 cd/m2 and an external quantum efficiency of 0.035% with peaks at 451 and 615 nm, corresponding to the emissions of CsBr and CsxSnBrx+2, respectively. This work provided a new way to obtain stable Sn-based perovskite NCs and exhibited their potential for application in white light-emitting diodes (LEDs).

20.
Small ; 19(45): e2303472, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37420329

ABSTRACT

The severely insufficient operational lifetime of perovskite light-emitting diodes (LEDs) is incompatible with the rapidly increasing external quantum efficiency, even as it approaches the theoretical limit, thereby significantly impeding the commercialization of perovskite LEDs. In addition, Joule heating induces ion migration and surface defects, degrades the photoluminescence quantum yield and other optoelectronic properties of perovskite films, and induces the crystallization of charge transport layers with low glass transition temperatures, resulting in LED degradation under continuous operation. Here, a novel thermally crosslinked hole transport material, poly(FCA60 -co-BFCA20 -co-VFCA20 ) (poly-FBV), with temperature-dependent hole mobility is designed, which is advantageous for balancing the charge injection of the LEDs and limiting the generation of Joule heating. The optimised CsPbI3 perovskite nanocrystal LEDs with poly-FBV realise approximately a 2-fold external quantum efficiency increase over the LED with commercial hole transport layer poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), owing to the balanced carrier injection and suppressed exciton quenching. Moreover, because of the Joule heating control provided by the novel crosslinked hole transport material, the LED utilising crosslinked poly-FBV has a 150-fold longer operating lifetime (490 min) than that utilizing poly-TPD (3.3 min). The study opens a new avenue for the use of PNC LEDs in commercial semiconductor optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL