Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 552
Filter
1.
mSystems ; : e0088824, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352141

ABSTRACT

While numerous computational frameworks and workflows are available for recovering prokaryote and eukaryote genomes from metagenome data, only a limited number of pipelines are designed specifically for viromics analysis. With many viromics tools developed in the last few years alone, it can be challenging for scientists with limited bioinformatics experience to easily recover, evaluate quality, annotate genes, dereplicate, assign taxonomy, and calculate relative abundance and coverage of viral genomes using state-of-the-art methods and standards. Here, we describe Modular Viromics Pipeline (MVP) v.1.0, a user-friendly pipeline written in Python and providing a simple framework to perform standard viromics analyses. MVP combines multiple tools to enable viral genome identification, characterization of genome quality, filtering, clustering, taxonomic and functional annotation, genome binning, and comprehensive summaries of results that can be used for downstream ecological analyses. Overall, MVP provides a standardized and reproducible pipeline for both extensive and robust characterization of viruses from large-scale sequencing data including metagenomes, metatranscriptomes, viromes, and isolate genomes. As a typical use case, we show how the entire MVP pipeline can be applied to a set of 20 metagenomes from wetland sediments using only 10 modules executed via command lines, leading to the identification of 11,656 viral contigs and 8,145 viral operational taxonomic units (vOTUs) displaying a clear beta-diversity pattern. Further, acting as a dynamic wrapper, MVP is designed to continuously incorporate updates and integrate new tools, ensuring its ongoing relevance in the rapidly evolving field of viromics. MVP is available at https://gitlab.com/ccoclet/mvp and as versioned packages in PyPi and Conda.IMPORTANCEThe significance of our work lies in the development of Modular Viromics Pipeline (MVP), an integrated and user-friendly pipeline tailored exclusively for viromics analyses. MVP stands out due to its modular design, which ensures easy installation, execution, and integration of new tools and databases. By combining state-of-the-art tools such as geNomad and CheckV, MVP provides high-quality viral genome recovery and taxonomy and host assignment, and functional annotation, addressing the limitations of existing pipelines. MVP's ability to handle diverse sample types, including environmental, human microbiome, and plant-associated samples, makes it a versatile tool for the broader microbiome research community. By standardizing the analysis process and providing easily interpretable results, MVP enables researchers to perform comprehensive studies of viral communities, significantly advancing our understanding of viral ecology and its impact on various ecosystems.

2.
Crit Rev Microbiol ; : 1-12, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39257231

ABSTRACT

Antimicrobial resistance (AMR) has been recognized as an important health crisis in the twenty first century. Type IV secretion systems (T4SSs) play key roles in the dissemination of AMR plasmids. Novel strategies that combat AMR problem by targeting T4SS sprung up in recent years. Here, we focus on the strategy of male-specific phages that could target and kill bacteria carrying conjugative AMR plasmids encoding T4SSs. We reviewed the recent advances in male-specific phages, including anti-conjugation mechanisms, clinical isolation and identification methods, classification and characteristics, in vitro and in vivo anti-conjugation efficacy and improving strategies. Male-specific phages constitute exciting candidates for developing sustainable anti-resistance biocontrol applications.

3.
Crit Rev Biotechnol ; : 1-17, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284762

ABSTRACT

Cyanobacteria, the only oxygenic photoautotrophs among prokaryotes, are developing as both carbon building blocks and energetic self-supported chassis for the generation of various bioproducts. However, one of the challenges to optimize it as a more sustainable platform is how to release intracellular bioproducts for an easier downstream biorefinery process. To date, the major method used for cyanobacterial cell lysis is based on mechanical force, which is energy-intensive and economically unsustainable. Phage-mediated bacterial cell lysis is species-specific and highly efficient and can be conducted under mild conditions; therefore, it has been intensively studied as a bacterial cell lysis weapon. In contrast to heterotrophic bacteria, biological cell lysis studies in cyanobacteria are lagging behind. In this study, we reviewed cyanobacterial cell envelope features that could affect cell strength and elicited a thorough presentation of the necessary phage lysin components for efficient cell lysis. We then summarized all bioengineering manipulated pipelines for lysin component optimization and further revealed the challenges for each intent-oriented application in cyanobacterial cell lysis. In addition to applied biotechnology usage, the significance of phage-mediated cyanobacterial cell lysis could also advance sophisticated biochemical studies and promote biocontrol of toxic cyanobacteria blooms.

4.
Antibiotics (Basel) ; 13(9)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39334970

ABSTRACT

The conventional treatment of bacterial infections with antibiotics is becoming increasingly ineffective due to the emergence of multidrug-resistant (MDR) pathogens. This literature review explores the potential of bacteriophages as an alternative or adjunctive therapy to antibiotics in combating MDR infections in Africa. This analysis focuses on current research regarding the integration of phage therapy into African healthcare, highlighting its challenges and opportunities. This review begins with the AMR crisis and the need for new treatments, then covers the history, mechanisms, benefits, and limitations of phage therapy. Key African studies are summarized, identifying major obstacles such as regulatory issues, infrastructure, and research standardization. Research efforts in West Africa that have made notable progress in bacteriophage research are highlighted. This review concludes with recommendations for policymakers, researchers, and healthcare professionals to enhance the development and use of phage therapy in Africa, aiming to reduce antibiotic resistance and improve patient outcomes. By addressing the identified challenges and leveraging the unique advantages of phages, there is potential to significantly mitigate the impact of antibiotic resistance and improve patient outcomes in Africa.

5.
Indian J Microbiol ; 64(3): 983-989, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39282186

ABSTRACT

Foodborne disease is caused by consuming pathogenic microorganism-contaminated food that generates poisoning. Escherichia coli is a bacterium that causes foodborne disease, which is neutralized using gel hand sanitizer containing a bacteriophage with hydroxypropyl methylcellulose (HPMC) and active glycerin ingredients. Phages are viruses that infect bacteria naturally. This study aims to examine the effect of HPMC and glycerin on the physical properties and activity of bacteriophage ɸPT1b-based hand sanitizer gel, as well as determining the optimum composition of the combination of HPMC and glycerin in the same. The results of the study shows that the HPMC and glycerin factors show a positive value for inhibitory response, with the HPMC factor showing the best results. The optimum formula results using Design Expert 12.0 software were 0.75% for HPMC and 7.5% for glycerin, while the values for viscosity, dispersal power, and inhibitory power were 32,500 dPas, 7,737 cm, and 1.300 cm, respectively. In conclusion, an increase in HPMC concentration affects the increment of the viscosity score and decreases spread response. However, the glycerin concentration increment reduces the viscosity score but raises the spread value.

6.
J Cosmet Dermatol ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248208

ABSTRACT

BACKGROUND: The complex ecosystem of the skin microbiome is essential for skin health by acting as a primary defense against infections, regulating immune responses, and maintaining barrier integrity. This literature review aims to consolidate existing information on the skin microbiome, focusing on its composition, functionality, importance, and its impact on skin aging. METHODS: An exhaustive exploration of scholarly literature was performed utilizing electronic databases including PubMed, Google Scholar, and ResearchGate, focusing on studies published between 2011 and 2024. Keywords included "skin microbiome," "skin microbiota," and "aging skin." Studies involving human subjects that focused on the skin microbiome's relationship with skin health were included. Out of 100 initially identified studies, 70 met the inclusion criteria and were reviewed. RESULTS: Studies showed that aging is associated with a reduction in the variety of microorganisms of the skin microbiome, leading to an increased susceptibility to skin conditions. Consequently, this underlines the interest in bacteriotherapy, mainly topical probiotics, to reinforce the skin microbiome in older adults, suggesting improvements in skin health and a reduction in age-related skin conditions. Further exploration is needed into the microbiome's role in skin health and the development of innovative, microbe-based skincare products. Biotherapeutic approaches, including the use of phages, endolysins, probiotics, prebiotics, postbiotics, and microbiome transplantation, can restore balance and enhance skin health. This article also addresses regulatory standards in the EU and the USA that ensure the safety and effectiveness of microbial skincare products. CONCLUSION: This review underscores the need to advance research on the skin microbiome's role in cosmetic enhancements and tailored skincare solutions, highlighting a great interest in leveraging microbial communities for dermatological benefits.

7.
Article in English | MEDLINE | ID: mdl-39210514

ABSTRACT

The increasing global population and climate change pose significant challenges to agriculture, particularly in managing plant diseases caused by phytopathogens. Traditional methods, including chemical pesticides and antibiotics, have become less effective due to pathogen resistance and environmental concerns. Phage therapy emerges as a promising alternative, offering a sustainable and precise approach to controlling plant bacterial diseases without harming beneficial soil microorganisms. This review explores the potential of bacteriophages as biocontrol agents, highlighting their specificity, rapid multiplication, and minimal environmental impact. We discuss the historical context, current applications, and prospects of phage therapy in agriculture, emphasizing its role in enhancing crop yield and quality. Additionally, the paper examines the integration of phage therapy with modern agricultural practices and the development phage cocktails and genetically engineered phages to combat resistant pathogens. The findings suggest that phage therapy could revolutionize phytopathological management, contributing to global food security and sustainable agricultural practices. ONE-SENTENCE SUMMARY: The burden of plant diseases and phage-based phytopathological treatment.


Subject(s)
Agriculture , Bacteriophages , Climate Change , Food Security , Plant Diseases , Plant Diseases/microbiology , Plant Diseases/prevention & control , Agriculture/methods , Phage Therapy/methods , Crops, Agricultural/microbiology , Biological Control Agents
8.
mSystems ; 9(9): e0080124, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39166874

ABSTRACT

The opportunistic human pathogen Pseudomonas aeruginosa is naturally infected by a large class of temperate, transposable, Mu-like phages. We examined the genotypic and phenotypic diversity of P. aeruginosa PA14 lysogen populations as they resolve clustered regularly interspaced short palindromic repeat (CRISPR) autoimmunity, mediated by an imperfect CRISPR match to the Mu-like DMS3 prophage. After 12 days of evolution, we measured a decrease in spontaneous induction in both exponential and stationary phase growth. Co-existing variation in spontaneous induction rates in the exponential phase depended on the way the coexisting strains resolved genetic conflict. Multiple mutational modes to resolve genetic conflict between host and phage resulted in coexistence in evolved populations of single lysogens that maintained CRISPR immunity to other phages and polylysogens that lost immunity completely. This work highlights a new dimension of the role of lysogenic phages in the evolution of their hosts.IMPORTANCEThe chronic opportunistic multi-drug-resistant pathogen Pseudomonas aeruginosa is persistently infected by temperate phages. We assess the contribution of temperate phage infection to the evolution of the clinically relevant strain UCBPP-PA14. We found that a low level of clustered regularly interspaced short palindromic repeat (CRISPR)-mediated self-targeting resulted in polylysogeny evolution and large genome rearrangements in lysogens; we also found extensive diversification in CRISPR spacers and cas genes. These genomic modifications resulted in decreased spontaneous induction in both exponential and stationary phase growth, increasing lysogen fitness. This work shows the importance of considering latent phage infection in characterizing the evolution of bacterial populations.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Lysogeny , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/genetics , Lysogeny/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Pseudomonas Phages/genetics , Evolution, Molecular , Bacteriophages/genetics , Prophages/genetics
9.
Microbiol Resour Announc ; 13(9): e0057824, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39162485

ABSTRACT

Xenia2 is a DV cluster actinobacteriophage that infects Gordonia rubripertincta NRRL B-16540. The genome is 68,135bp, has a GC content of 57.9% and 98 predicted protein-coding genes, 33 of which have a predicted function. Xenia2 has a lysis cassette with an endolysin (lysin A) and four different holin-like transmembrane proteins.

10.
Mikrochim Acta ; 191(9): 550, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39167218

ABSTRACT

A novel bacteriophage-targeted electrochemical biosensor designed for accurate and quantitative detection of live Salmonella in food samples is presented. The biosensor is simply constructed by electrostatic immobilizing bacteriophages on MXene-nanostructured electrodes. MXene, renowned for its high surface area, biocompatibility, and conductivity, serves as an ideal platform for bacteriophage immobilization. This allows for a high-density immobilization of bacteriophage particles, achieving approximately 71 pcs µm-2. Remarkably, the bacteriophages immobilized MXene nanostructured electrodes still maintain their viability and functionality, ensuring their effectiveness in pathogen detection. Therefore, the proposed biosensor exhibited enhanced sensitivity with a low limit of detection (LOD) of 5 CFU mL-1. Notably, the biosensor shows excellent specificity in the presence of other bacteria that commonly contaminate food and can distinguish live Salmonella from a mixed population. Furthermore, it is applicable in detecting live Salmonella in food samples, which highlights its potential in food safety monitoring. This biosensor offers simplicity, convenience, and suitability for resource-limited environments, making it a promising tool for on-site monitoring of foodborne pathogenic bacteria.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Food Microbiology , Limit of Detection , Methylene Blue , Salmonella , Static Electricity , Biosensing Techniques/methods , Electrochemical Techniques/methods , Salmonella/isolation & purification , Salmonella/virology , Food Microbiology/methods , Methylene Blue/chemistry , Bacteriophages/chemistry , Electrodes , Food Contamination/analysis , Nanostructures/chemistry
11.
N Biotechnol ; 83: 188-196, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39181197

ABSTRACT

Due to the overuse of antibiotics, the number of multidrug-resistant pathogen bacteria is rising in recent years posing a serious threat to human health. One promising alternative for treatment is the application of phage therapy using highly selective bacteriophages. Because of their selectivity, individual screens called phagograms for each patient are required to select phages from a phage library. Phagograms are mostly performed via bacterial cultivation on double layer agar plates and phage addition causing bacterial lysis. However, these assays are work-intensive and have a low ability for parallelization and automation. Hence, highly parallelizable and automatable microbioreactors in the lowest microliter scale could offer an economic solution increasing the throughput of phagograms. This paper demonstrates the applicability of a novel capillary-wave microbioreactor (cwMBR) to perform phagograms. Due to its small volume of only 7 µL and the open-droplet design, it can be easily automated and parallelized in future. Furthermore, the ability of online biomass measurement makes the cwMBR a perfect phagogram platform in the future. Herein, phagograms with E. coli and different concentrations of the phages MM02 and EASG3 were performed as proof of concept for phagograms in the cwMBR. Thereby, the cwMBR was able to measure differences in lysis kinetics of different phages. Furthermore, the phagograms were compared to those in conventional microtiter plate readers revealing the cwMBR as ideal alternative for phagograms as it combines favorable mixing conditions and a phage repellent hydrophilic glass surface with online biomass measurement in an open-droplet design for future parallelization and automation.


Subject(s)
Bacteriophages , Bioreactors , Escherichia coli , Humans , Phage Therapy
12.
Water Res ; 266: 122330, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39216125

ABSTRACT

CrAssphage has been recognized as the most abundant and human-specific bacteriophage in the human gut. Consequently, crAssphage has been used as a microbial source tracking (MST) marker to monitor human fecal contamination. Many crAss-like phages (CLPs) have been recently discovered, expanding the classification into the new order Crassvirales. This study aims to assess CLP prevalence in South Korea and develop a detection system for MST applications. Thirteen CLPs were identified in six human fecal samples and categorized into seven genera via metagenomic analysis. The major head protein (MHP) displayed increased sequence similarity within each genus. Eight PCR primer candidates, designed from MHP sequences, were evaluated in animal and human feces. CLPs were absent in animal feces except for those from raccoons, which hosted genera VI, VIIa, and VIIb. CLPs were detected in 91.52% (54/59) of humans, with genus VI (38 out of 59) showing the highest prevalence, nearly double that of p-crAssphage in genus I (22 out of 59). This study highlights genus VI as a potent MST marker, broadening the detection range for CLPs. Human-specific and selectively targeted MST markers can significantly impact hygiene regulations, lowering public health costs through their application in screening liver, sewage, wastewater, and various environmental samples.

13.
Diagn Microbiol Infect Dis ; 110(3): 116397, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39126826

ABSTRACT

Here, we characterize the complete genome sequence of Escherichia coli isolated from a newborn affected by bacterial meningitis in Italy. Genome of E. coli strain 1455 harbored a circular chromosome and two plasmids of 167.740-bp and 4.073-bp in length, respectively. E. coli 1455 belonged to the ST3, serotype O17:H18 and carried different determinants including resistance to B-lactams, tetracyclines, and quinolones. In addition, genome of E. coli strain 1455 harbored 5 integrated pro-phage regions mainly located in the chromosome, while most of the virulence factors associated to the invasiveness and clinical severity and different antimicrobial resistance determinants (blaTEM-1, tet(A) and qnrS1) were located in the 167-Kb plasmid. Taken together, our findings suggest a possible widespread of a virulence factors-carrying plasmid worldwide and highlight the importance of genomic characterization in the diffusion of public health threats.


Subject(s)
Escherichia coli , Genome, Bacterial , Meningitis, Escherichia coli , Plasmids , Virulence Factors , Infant, Newborn , Italy , Humans , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Escherichia coli/classification , Genome, Bacterial/genetics , Virulence Factors/genetics , Plasmids/genetics , Meningitis, Escherichia coli/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Whole Genome Sequencing , Meningitis, Bacterial/microbiology , Serogroup , Microbial Sensitivity Tests , Genomics
14.
Environ Pollut ; 359: 124713, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39134166

ABSTRACT

Antibiotic resistance genes (ARGs) have been extensively observed in bacterial DNA, and more recently, in phage particles from various water sources and food items. The pivotal role played by ARG transmission in the proliferation of antibiotic resistance and emergence of new resistant strains calls for a thorough understanding of the underlying mechanisms. The aim of this study was to assess the suitability of the prototypical p-crAssphage, a proposed indicator of human fecal contamination, and the recently isolated crAssBcn phages, both belonging to the Crassvirales group, as potential indicators of ARGs. These crAss-like phages were evaluated alongside specific ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, blaVIM, blaOXA-48, qnrA, qnrS, tetW and sul1) within the total DNA and phage DNA fractions in water and food samples containing different levels of fecal pollution. In samples with high fecal load (>103 CFU/g or ml of E. coli or somatic coliphages), such as wastewater and sludge, positive correlations were found between both types of crAss-like phages and ARGs in both DNA fractions. The strongest correlation was observed between sul1 and crAssBcn phages (rho = 0.90) in sludge samples, followed by blaCTX-M-9 and p-crAssphage (rho = 0.86) in sewage samples, both in the phage DNA fraction. The use of crAssphage and crAssBcn as indicators of ARGs, considered to be emerging environmental contaminants of anthropogenic origin, is supported by their close association with the human gut. Monitoring ARGs can help to mitigate their dissemination and prevent the emergence of new resistant bacterial strains, thus safeguarding public health.


Subject(s)
Bacteriophages , Feces , Feces/microbiology , Feces/virology , Bacteriophages/genetics , Environmental Monitoring/methods , Humans , Drug Resistance, Microbial/genetics , Wastewater/virology , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Sewage , Anti-Bacterial Agents/pharmacology
15.
Ann Clin Microbiol Antimicrob ; 23(1): 73, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164718

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is the most commonly encountered pathogen in clinical practice. Widespread use of broad-spectrum antibiotics has led to the current global dissemination of carbapenem-resistant K. pneumoniae, which poses a significant threat to antibacterial treatment efficacy and public health. Outer membrane vesicles (OMVs) have been identified as carriers capable of facilitating the transfer of virulence and resistance genes. However, the role of OMVs in carbapenem-resistant K. pneumoniae under external pressures such as antibiotic and phage treatments remains unclear. METHODS: To isolate and purify OMVs under the pressure of phages and tigecycline, we subjected K. pneumoniae 0692 harboring plasmid-mediated blaNDM-1 and blaKPC-2 genes to density gradient separation. The double-layer plate method was used to isolate MJ1, which efficiently lysed K. pneumoniae 0692 cells. Transmission electron microscopy (TEM) was used to characterize the isolated phages and extract OMV groups for relevant morphological identification. Determination of protein content of each OMV group was conducted through bicinchoninic acid assay (BCA) and proteomic analysis. RESULTS: K. pneumoniae 0692 released OMVs in response to different environmental stimuli, which were characterized through TEM as having the typical structure and particle size of OMVs. Phage or tigecycline treatment alone resulted in a slight increase in the mean protein concentration of OMVs secreted by K. pneumoniae 0692 compared to that in the untreated group. However, when phage treatment was combined with tigecycline, there was a significant reduction in the average protein concentration of OMVs compared to tigecycline treatment alone. Proteomics showed that OMVs encapsulated numerous functional proteins and that under different external stresses of phages and tigecycline, the proteins carried by K. pneumoniae 0692-derived OMVs were significantly upregulated or downregulated compared with those in the untreated group. CONCLUSIONS: This study confirmed the ability of OMVs to carry abundant proteins and highlighted the important role of OMV-associated proteins in bacterial responses to phages and tigecycline, representing an important advancement in microbial resistance research.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Carbapenems , Klebsiella pneumoniae , Proteomics , Tigecycline , Tigecycline/pharmacology , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Humans , Extracellular Vesicles/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Plasmids/genetics , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
16.
Heliyon ; 10(15): e35666, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170521

ABSTRACT

"An impregnable stronghold where one or more warrior clans can evade enemy attacks" may serve as a description of bacterial biofilm on a smaller level than human conflicts. Consider this hypothetical conflict: who would emerge victorious? The occupants of secure trenches or those carrying out relentless assault? Either faction has the potential for triumph; the defenders will prevail if they can fortify the trench with unwavering resolve, while the assailants will succeed if they can devise innovative means to breach the trench. Hence, bacterial biofilms pose a significant challenge and are formidable adversaries for medical professionals, often leading to the failure of antibiotic treatments in numerous hospital infections. Phage engineering has become the foundation for the targeted enhancement of various phage properties, facilitating the eradication of biofilms. Researchers across the globe have studied the impact of engineered phages and phage-derived enzymes on biofilms formed by difficult-to-treat bacteria. These novel biological agents have shown promising results in addressing biofilm-related challenges. The compilation of research findings highlights the impressive capabilities of engineered phages in combating antibiotic-resistant bacteria, superbugs, and challenging infections. Specifically, these engineered phages exhibit enhanced biofilm destruction, penetration, and prevention capabilities compared to their natural counterparts. Additionally, the engineered enzymes derived from phages demonstrate improved effectiveness in addressing bacterial biofilms. As a result, these novel solutions, which demonstrate high penetration, destruction, and inhibition of biofilms, can be regarded as a viable option for addressing infectious biofilms in the near future.

17.
Bio Protoc ; 14(16): e5050, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39210957

ABSTRACT

The bacterial membrane vesicles (MVs) are non-replicative, nanoscale structures that carry specific cargos and play multiple roles in microbe-host interactions. An appropriate MV isolation method that mimics complex pathogen infections in vivo is needed. After bacterial MVs extraction, flagella or pili can be frequently observed along with MVs by transmission electron microscope (TEM). Recently, MVs from Pseudomonas aeruginosa were found to coexist with Pf4 phages, and this MV-phages complex exhibited a different impact on host cell innate immunity compared with MVs or phages solely. The presence of this MVs-phages complex simulates the real condition of complex pathogen infections within the host. This protocol outlines the extraction of the MVs and Pf4 phages complex of P. aeruginosa PAO1, including the respective isolation and qualification approaches. Our step-by-step bacterial MVs-phages complex extraction protocol provides valuable insights for further studying microbe-host cell interactions and the development of novel phage therapies. Key features • Detailed density gradient extraction procedures of MVs-phages complex • TEM, plaque assay, and PCR to verify the coexistence of MVs and phages • The obtained MVs-phages complex can be used for exploring phage-microbe-host cell interactions Graphical overview.

18.
Gels ; 10(8)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39195022

ABSTRACT

There is great interest in developing effective therapies for the treatment of skin wounds accompanied by deep tissue losses and severe infections. We have attempted to prepare biohybrids formed of agglomerates of mesenchymal stem cells (MSCs) with gelatin hydrogel beads (GEL beads) delivering bacteriophages (phages) as antibacterial agents and/or basic fibroblast growth factor (bFGF) for faster and better healing, providing combined therapies for these types of skin wounds. The gelatin beads were produced through a two-step process using basic and/or acidic gelatins with different isoelectric points. Escherichia coli (E. coli) and its specific T4 phages were propagated. Phages and/or bFGF were loaded within the GELs and their release rates and modes were obtained. The phage release from the basic GEL beads was quite fast; in contrast, the bFGF release from the acidic GEL beads was sustained, as anticipated. MSCs were isolated from mouse adipose tissues and 2D-cultured. Agglomerates of these MSCs with GEL beads were formed and maturated in 3D cultures, and their time-dependent changes were followed. In these 3D culture experiments, it was observed that the agglomerates with GEL beads were very healthy and the MSCs formed tissue-like structures in 7 days, while the MSC agglomerates were not healthy and shrunk considerably as a result of cell death.

19.
mSphere ; 9(7): e0048124, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38980067

ABSTRACT

The annual meeting for the Intermountain Branch was held in April 2024 on the campus of Brigham Young University. There were 127 branch members from Utah, Idaho, and Nevada who attended the meeting and were composed of undergraduate students, graduate or medical students, and faculty. This report highlights the diversity of, and the emerging trends in, the research conducted by American Society for Microbiology members in the Intermountain Branch.


Subject(s)
Microbiology , Microbiology/education
20.
Virus Res ; 347: 199435, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986742

ABSTRACT

The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus Pectobacteriaceae are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents. In this study we isolated soft rot bacteria from potato tubers and plant tissue displaying soft rot or black leg symptoms collected in Danish fields. We then used the isolated bacterial strains as hosts for phage isolation. Using organic waste, we isolated phages targeting different species within Pectobacterium. Here we focus on seven of these phages representing a new genus primarily targeting P. brasiliense; phage Ymer, Amona, Sabo, Abuela, Koroua, Taid and Pappous. TEM image of phage Ymer showed siphovirus morphotype, and the proposed Ymer genus belongs to the class Caudoviricetes, with double-stranded DNA genomes varying from 39 kb to 43 kb. In silico host range prediction using a CRISPR-Cas spacer database suggested both P. brasiliense, P. polaris and P. versatile as natural hosts for phages within the proposed Ymer genus. A following host range experiment, using 47 bacterial isolates from Danish tubers and plants symptomatic with soft rot or black leg disease verified the in silico host range prediction, as the genus as a group were able to infect all three Pectobacterium species. Phages did, however, primarily target P. brasiliense isolates and displayed differences in host range even within the species level. Two of the phages were able to infect two or more Pectobacterium species. Despite no nucleotide similarity with any phages in the NCBI database, the proposed Ymer genus did share some similarity at the protein level, as well as gene synteny, with currently known phages. None of the phages encoded integrases or other genes typically associated with lysogeny. Similarly, no virulence factors nor antimicrobial resistance genes were found, and combined with their ability to infect several soft rot-causing Pectobacterium species from Danish fields, demonstrates their potential as biocontrol agents against soft rot and black leg diseases in potatoes.


Subject(s)
Bacteriophages , Host Specificity , Pectobacterium , Plant Diseases , Solanum tuberosum , Pectobacterium/virology , Pectobacterium/genetics , Pectobacterium/pathogenicity , Solanum tuberosum/microbiology , Solanum tuberosum/virology , Plant Diseases/microbiology , Plant Diseases/virology , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/classification , Denmark , Genome, Viral , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL