Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52.849
Filter
1.
Methods Mol Biol ; 2855: 185-194, 2025.
Article in English | MEDLINE | ID: mdl-39354309

ABSTRACT

Reversed-phase ultrahigh-performance liquid chromatography-mass spectrometry (RP-UHPLC/MS) method is optimized for the quantitation of a large number of lipid species in biological samples, primarily in human plasma and serum. The method uses a C18 bridged ethylene hybrid (BEH) column (150 × 2.1 mm; 1.7 µm) for the separation of lipids from 23 subclasses with a total run time of 25 min. Lipid species separation allows the resolution of isobaric and isomeric lipid forms. A triple quadrupole mass spectrometer is used for targeted lipidomic analysis using multiple reaction monitoring (MRM) in the positive ion mode. Data are evaluated by Skyline software, and the concentrations of analytes are determined using internal standards per each individual lipid class.


Subject(s)
Chromatography, Reverse-Phase , Lipidomics , Lipids , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Humans , Lipidomics/methods , Lipids/analysis , Mass Spectrometry/methods , High-Throughput Screening Assays/methods , Tandem Mass Spectrometry/methods , Software , Liquid Chromatography-Mass Spectrometry
2.
Biomaterials ; 313: 122771, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39190940

ABSTRACT

The notorious tumor microenvironment (TME) usually becomes more deteriorative during phototherapeutic progress that hampers the antitumor efficacy. To overcome this issue, we herein report the ameliorative and adaptive nanoparticles (TPASIC-PFH@PLGA NPs) that simultaneously reverse hypoxia TME and switch photoactivities from photothermal-dominated state to photodynamic-dominated state to maximize phototherapeutic effect. TPASIC-PFH@PLGA NPs are designed by incorporating oxygen-rich liquid perfluorohexane (PFH) into the intraparticle microenvironment to regulate the intramolecular motions of AIE photosensitizer TPASIC. TPASIC exhibits a unique aggregation-enhanced reactive oxygen species (ROS) generation feature. PFH incorporation affords TPASIC the initially dispersed state, thus promoting active intramolecular motions and photothermal conversion efficiency. While PFH volatilization leads to nanoparticle collapse and the formation of tight TPASIC aggregates with largely enhanced ROS generation efficiency. As a consequence, PFH incorporation not only currently promotes both photothermal and photodynamic efficacies of TPASIC and increases the intratumoral oxygen level, but also enables the smart photothermal-to-photodynamic switch to maximize the phototherapeutic performance. The integration of PFH and AIE photosensitizer eventually delivers more excellent antitumor effect over conventional phototherapeutic agents with fixed photothermal and photodynamic efficacies. This study proposes a new nanoengineering strategy to ameliorate TME and adapt the treatment modality to fit the changed TME for advanced antitumor applications.


Subject(s)
Fluorocarbons , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Tumor Microenvironment , Nanoparticles/chemistry , Tumor Microenvironment/drug effects , Animals , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Cell Line, Tumor , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Humans , Mice , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/pathology , Mice, Inbred BALB C , Photothermal Therapy/methods , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Phototherapy/methods , Female
3.
Methods Mol Biol ; 2856: 293-308, 2025.
Article in English | MEDLINE | ID: mdl-39283460

ABSTRACT

In order to analyze the three-dimensional genome architecture, it is important to simulate how the genome is structured through the cell cycle progression. In this chapter, we present the usage of our computation codes for simulating how the human genome is formed as the cell transforms from anaphase to interphase. We do not use the global Hi-C data as an input into the genome simulation but represent all chromosomes as linear polymers annotated by the neighboring region contact index (NCI), which classifies the A/B type of each local chromatin region. The simulated mitotic chromosomes heterogeneously expand upon entry to the G1 phase, which induces phase separation of A and B chromatin regions, establishing chromosome territories, compartments, and lamina and nucleolus associations in the interphase nucleus. When the appropriate one-dimensional chromosomal annotation is possible, using the protocol of this chapter, one can quantitatively simulate the three-dimensional genome structure and dynamics of human cells of interest.


Subject(s)
Anaphase , Chromatin , Genome, Human , Interphase , Humans , Anaphase/genetics , Interphase/genetics , Chromatin/genetics , Chromatin/metabolism , Computer Simulation , Chromosomes, Human/genetics , Mitosis/genetics
4.
Biomaterials ; 313: 122775, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39241549

ABSTRACT

Acute Myocardial Infarction (AMI) has seen rising cases, particularly in younger people, leading to public health concerns. Standard treatments, like coronary artery recanalization, often don't fully repair the heart's microvasculature, risking heart failure. Advances show that Mesenchymal Stromal Cells (MSCs) transplantation improves cardiac function after AMI, but the harsh microenvironment post-AMI impacts cell survival and therapeutic results. MSCs aid heart repair via their membrane proteins and paracrine extracellular vesicles that carry microRNA-125b, which regulates multiple targets, preventing cardiomyocyte death, limiting fibroblast growth, and combating myocardial remodeling after AMI. This study introduces ultrasound-responsive phase-change bionic nanoparticles, leveraging MSCs' natural properties. These particles contain MSC membrane and microRNA-125b, with added macrophage membrane for stability. Using Ultrasound Targeted Microbubble Destruction (UTMD), this method targets the delivery of MSC membrane proteins and microRNA-125b to AMI's inflamed areas. This aims to enhance cardiac function recovery and provide precise, targeted AMI therapy.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Myocardial Infarction , Nanoparticles , Myocardial Infarction/therapy , Animals , Nanoparticles/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Recovery of Function , Mesenchymal Stem Cell Transplantation/methods , Humans , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice , Microbubbles , Ultrasonic Waves
5.
Food Chem ; 462: 141007, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39216376

ABSTRACT

In this study, covalent organic frameworks (COFs) were grown in situ on magnetic nitrogen-doped graphene foam (MNGF), and the resulting composite of COFs-modified MNGF (MNC) was wrapped by molecularly imprinted polymers (MNC@MIPs) for specifically capturing SAs. A magnetic solid phase extraction (MSPE) method for SAs was established using MNC@MIPs with good magnetic responsiveness. The adsorption performance of MNC@MIPs was superior to that of non-molecularly imprinted polymers (MNC@NIPs), with shorter adsorption/desorption time and higher imprinting factors. A high-efficiency SAs analytical method was developed by fusing HPLC and MNC@MIPs-based MSPE. This approach provides excellent precision, a low detection limit, and wide linearity. By analyzing fish samples, the feasibility of the approach was confirmed, with SAs recoveries and relative standard deviations in spiked samples in the ranges of 77.2-112.7 % and 2.0-7.2 %, respectively. This study demonstrated the potential use of MNC@MIPs-based MSPE for efficient extraction and quantitation of trace hazards in food.


Subject(s)
Fishes , Food Contamination , Metal-Organic Frameworks , Molecularly Imprinted Polymers , Solid Phase Extraction , Sulfonamides , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Animals , Molecularly Imprinted Polymers/chemistry , Adsorption , Food Contamination/analysis , Metal-Organic Frameworks/chemistry , Sulfonamides/isolation & purification , Sulfonamides/chemistry , Sulfonamides/analysis , Molecular Imprinting , Polymers/chemistry
6.
Food Chem ; 462: 141024, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39217751

ABSTRACT

With the aim of expanding the potential application scope of mulberries, eleven pH-switchable deep eutectic solvents were screened for the ultrasonic-assisted extraction of mulberry polysaccharides, and a salt/salt aqueous two-phase system was constructed for the efficient separation of mulberry polysaccharides by regulating the system pH. DES-9 (tetraethylammonium chloride: octanoic acid molar ratio = 1: 2) with a critical response pH value of approximately 6.1 was concluded to be the best extraction solvent for extracting mulberry polysaccharides. A maximum polysaccharide extraction yield of 270.71 mg/g was obtained under the optimal conditions. The maximum polysaccharide extraction efficiency was 78.09 % for the pH-driven tetraethylammonium chloride/K2HPO4 aqueous two-phase system. An acidic ß-pyran mulberry polysaccharide with a low-molecular weight of 9.26 kDa and a confirmed monosaccharide composition were obtained. This efficient and environmentally friendly polysaccharide separation method offers a new approach for the efficient extraction and utilization of other plant polysaccharides.


Subject(s)
Deep Eutectic Solvents , Morus , Plant Extracts , Polysaccharides , Morus/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Hydrogen-Ion Concentration , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Deep Eutectic Solvents/chemistry , Chemical Fractionation/methods , Molecular Weight , Fruit/chemistry , Sodium Chloride/chemistry
7.
Food Chem ; 462: 140936, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39232273

ABSTRACT

Aromatic amino acid oxidation products (AAAOPs) are newly discovered risk substances of thermal processes. Due to its significant polarity and trace level in food matrices, there are no efficient pre-treatment methods available to enrich AAAOPs. Herein, we proposed a magnetic cationic covalent organic framework (Fe3O4@EB-iCOF) as an adsorbent for dispersive magnetic solid-phase extraction (DMSPE). Benefiting from the unique charged characteristics of Fe3O4@EB-iCOF, AAAOPs can be enriched through electrostatic interaction and π-π interactions. Under the optimal DMSPE conditions, the combined HPLC-MS/MS method demonstrated good linearity (R2 ≥ 0.990) and a low detection limit (0.11-7.5 µg·kg-1) for AAAOPs. In addition, the method was applied to real sample and obtained satisfactory recoveries (86.8 % âˆ¼ 109.9 %). Especially, we applied this method to the detection of AAAOPs in meat samples and conducted a preliminarily study on its formation rules, which provides a reliable basis for assessing potential dietary risks.


Subject(s)
Amino Acids, Aromatic , Oxidation-Reduction , Solid Phase Extraction , Solid Phase Extraction/methods , Amino Acids, Aromatic/chemistry , Amino Acids, Aromatic/analysis , Amino Acids, Aromatic/isolation & purification , Tandem Mass Spectrometry , Metal-Organic Frameworks/chemistry , Hot Temperature , Food Contamination/analysis , Chromatography, High Pressure Liquid , Animals , Adsorption , Meat/analysis , Food, Processed
8.
J Environ Sci (China) ; 150: 622-631, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306434

ABSTRACT

The non-aqueous solid-liquid biphasic solvent of 2-amino-2-methyl-1-propanol (AMP)/piperazine (PZ)/dipropylene glycol dimethyl ether (DME) features a high CO2 absorption loading, favorable phase separation behavior and high regeneration efficiency. Different with the liquid-liquid phase change solvent, the reaction kinetics of CO2 capture into solid-liquid biphasic solvent was rarely studied. In the present work, the reaction kinetics of CO2 absorption into AMP/PZ/DME solid-liquid biphasic solvent was investigated into the double stirred kettle reactor. The absorption reaction followed a pseudo-first-order kinetic model according to the zwitterion mechanism. The overall reaction rate constant (kov) and the enhancement factor (E) of CO2 absorption both increased with increasing temperature. The total mass transfer resistance of the absorbent decreased with increasing temperature and increased with increasing absorption loading, so the higher reaction temperature was conducive to the absorption, and the liquid phase mass transfer resistance was the main factor affecting the absorption rate.


Subject(s)
Carbon Dioxide , Solvents , Carbon Dioxide/chemistry , Kinetics , Solvents/chemistry , Models, Chemical , Piperazines/chemistry , Piperazine/chemistry , Propanolamines
9.
J Environ Sci (China) ; 150: 692-703, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306440

ABSTRACT

Nitrogen oxides (NOx) are crucial in tropospheric photochemical ozone (O3) production and oxidation capacity. Currently, the widely used NOx measurement technique is chemiluminescence (CL) (CL-NOx), which tends to overestimate NO2 due to atmospheric oxidation products of NOx (i.e., NOz). We developed and characterized a NOx measurement system using the cavity attenuated phase shift (CAPS) technique (CAPS-NOx), which is free from interferences with nitrogen-containing species. The NOx measured by the CAPS-NOx and CL-NOx analyzers were compared. Results show that both analyzers showed consistent measurement results for NO, but the NO2 measured by the CAPS-NOx analyzer (NO2_CAPS) was mostly lower than that measured by the CL-NOx analyzer (NO2_CL), which led to the deviations in O3 formation sensitivity regime and Ox (= O3 + NO2) sources (i.e., regional background and photochemically produced Ox) determined by the ozone production efficiencies (OPE) calculated from NO2_CL and NO2_CAPS. Overall, OPE_CL exceeded OPE_CAPS by 18.9%, which shifted 3 out of 13 observation days from the VOCs-limited to the transition regime when judging using OPE_CL, as compared to calculations using OPE_CAPS. During the observation period, days dominated by regional background Ox accounted for 46% and 62% when determined using NO2_CL and NO2_CAPS, respectively. These findings suggest that the use of the CL-NOx analyzer tends to underestimate both the VOCs-limited regime and the regional background Ox dominated days. The newly built CAPS-NOx analyzer here can promote the accurate measurement of NO2, which is meaningful for diagnosing O3 formation regimes and Ox sources.


Subject(s)
Air Pollutants , Environmental Monitoring , Nitrogen Oxides , Ozone , Nitrogen Oxides/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Environmental Monitoring/instrumentation , Ozone/analysis , Atmosphere/chemistry
10.
Food Chem ; 462: 140996, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213962

ABSTRACT

The mechanisms of trypsin hydrolysis time on the structure of soy protein hydrolysate fibril aggregates (SPHFAs) and the stability of SPHFAs-high internal phase Pickering emulsions (HIPPEs) were investigated. SPHFAs were prepared using soy protein hydrolysate (SPH) with different trypsin hydrolysis time (0 min-120 min) to stabilize SPHFAs-HIPPEs. The results showed that moderate trypsin hydrolysis (30 min, hydrolysis degree of 2.31 %) induced SPH unfolding and increased the surface hydrophobicity of SPH, thereby promoting the formation of flexible SPHFAs with maximal thioflavin T intensity and ζ-potential. Moreover, moderate trypsin hydrolysis improved the viscoelasticity of SPHFAs-HIPPEs, and SPHFAs-HIPPEs remained stable after storage at 25 °C for 80 d and heating at 100 °C for 1 h. Excessive trypsin hydrolysis (> 30 min) decreased the stability of SPHFAs-HIPPEs. In conclusion, moderate trypsin hydrolysis promoted the formation of flexible SPHFAs with high surface charge by inducing SPH unfolding, thereby promoting the stability of SPHFAs-HIPPEs.


Subject(s)
Emulsions , Hydrophobic and Hydrophilic Interactions , Protein Hydrolysates , Soybean Proteins , Trypsin , Trypsin/chemistry , Hydrolysis , Emulsions/chemistry , Soybean Proteins/chemistry , Protein Hydrolysates/chemistry , Protein Aggregates
SELECTION OF CITATIONS
SEARCH DETAIL