Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(3): 1797-1810, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38206382

ABSTRACT

The phytotoxicities of a selection of eudesmanolides and guaianolides, including natural products and new derivatives obtained by semisynthesis from plant-isolated sesquiterpene lactones, were evaluated in bioassays against three weeds of concern in agriculture (Amaranthus viridis L., Echinochloa crus-galli L., and Lolium perenne L.). Both eudesmanolides and guaianolides were active against the root and shoot growth of all the species, with the eudesmanolides generally showing improved activities. The IC50 values obtained for the herbicide employed as positive control (on root and shoot growth, respectively, A. viridis: 27.8 and 85.7 µM; E. crus-galli: 167.5 and 288.2 µM; L. perenne: 99.1 and 571.4 µM) were improved in most of the cases. Structure-activity relationships were discussed, finding that hydroxylation of the A-ring and C-13 as well as the position, number, and orientation of the hydroxyl groups and the presence of an unsaturated carbonyl group can significantly influence the level of phytotoxicity. γ-Cyclocostunolide was the most active compound in the series, followed by others such as dehydrozaluzanin C and α-cyclocostunolide (outstanding their IC50 values on A. viridis)─natural products that can therefore be suggested as models for herbicide development if further research indicates effectiveness on a larger scale and environmental safety in ecotoxicological assessments.


Subject(s)
Amaranthus , Echinochloa , Herbicides , Lolium , Sesquiterpenes , Plant Weeds
2.
Sci Total Environ ; 765: 142707, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33069475

ABSTRACT

In this study, a one pot facile synthesis of ferromagnetic manganese ferrite nanoparticles (MnFe2O4) was carried out using chemical co-precipitation method for mineralization of azo dye (Congo red (CR)) in aqueous solution under visible light irradiation. The synthesized MnFe2O4 nanoparticles were highly crystalline and showed face-centred cubic (FCC) structure with average particle size of 58 ± 4 nm. The BET analysis of the MnFe2O4 nanoparticles revealed the mesoporous distribution of material with high surface area can provide large electro active sites and short diffusion paths for the transport of ions which plays a vital role in the photocatalytic degradation of CR. The point of zero charge (pHPZC) was observed to be 6.7 indicating favourable condition for material-anionic dye interaction. The XPS studies revealed that the large amounts of oxygen vacancies were produced due to the defects in the lattice oxygen. The MnFe2O4 nanoparticles mineralised 98.3 ± 0.2% of 50 mg/L CR within 30 min when tested in photocatalytic reactor under 565 nm. The particles were recoverable under the influence of an external magnet after the photocatalytic reaction and were reusable. The recovered nanoparticles showed 96% of CR degradation efficiency even after five cycles of reuse. The by-product analysis with GC-MS indicated mineralization of CR into simple alcohols and acids. The aqueous solution containing mineralised CR was nontoxic to Trigonella foenumgraecum and Vigna mungo seeds and favoured increased germination, plumule and radicle length when compared to untreated CR.


Subject(s)
Magnets , Nanoparticles , Catalysis , Ferric Compounds , Light , Manganese Compounds
3.
J Environ Manage ; 223: 1086-1097, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29735295

ABSTRACT

In this study, CuO/Cu(OH)2 (denoted as CuONs) nanostructures were synthesized relying to a cheap and rapid chemical co-precipitation method using copper sulfate and liquid ammonia as precursors. Results obtained from X-ray diffraction, and field emission scanning electron microscopy analysis revealed the crystalline nature of synthesized CuONs. Fourier transform infrared spectroscopy and energy dispersive spectroscopy studies showed interactions between copper and oxygen atoms. Synthesized CuONs showed the size in the range of 20-30 nm using high resolution transmission electron microscopy analysis. The photocatalytic degradation performance of Reactive Green 19A (RG19A) dye using CuONs was evaluated. The results showed that CuONs exhibited 98% degradation efficiency after 12 h and also complete mineralization in form of reducing chemical oxygen demand (COD) (84%) and total organic carbon (TOC) (80%). The nanocatalyst was recovered from the dye containing solution and its catalytic activity can be reused up to four times efficiently. CuONs was also able to decolorize actual textile effluent (80% in terms of the American Dye Manufacturers' Institute (ADMI) value) with significant reductions in COD (72%) and TOC (69%). Phytotoxicity studies revealed that the degradation products of RG19A and textile effluent were scarcely toxic in nature, thereby increasing the applicability of CuONs for the treatment of textile wastewater. Additionally, the CuONs showed a maximum antibacterial effect against human pathogens which also displayed synergistic antibacterial potential related to commercial antibiotics. Moreover, CuONs displayed strong antioxidant activity in terms of ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (IC50: 51 µg/mL) and DPPH (1,1-diphenyl-2-picrylhydrazyl) (IC50: 60 µg/mL) radical scavenging. The CuONs exhibited dose dependent response against tumor rat C6 cell line (IC50: 60 µg/mL) and may serve as anticancer agents.


Subject(s)
Coloring Agents/isolation & purification , Nanostructures , Textile Industry , Water Purification , Animals , Anti-Bacterial Agents , Catalysis , Copper , Hydroxides , Rats , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL