Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Electron. j. biotechnol ; Electron. j. biotechnol;54: 8.6-93, nov.2021. ilus, graf
Article in English | LILACS | ID: biblio-1511205

ABSTRACT

BACKGROUND Planctomycetes is a phylum of biofilm-forming bacteria with numerous biosynthetic gene clusters, offering a promising source of new bioactive secondary metabolites. However, the current generation of chemically defined media achieves only low biomass yields, hindering research on these species. We therefore developed a chemically defined medium for the model organism Planctopirus limnophila to increase biomass production. RESULTS We found that P. limnophila grows best with a 10 mM sodium phosphate buffer. The replacement of complex nitrogen sources with defined amino acid solutions did not inhibit growth. Screening for vitamin requirements revealed that only cyanocobalamin (B12) is needed for growth. We used response surface methodology to optimize the medium, resulting in concentrations of 10 g/L glucose, 34 mL/L Hutner's basal salts, 23.18 mM KNO3, 2.318 mM NH4Cl and 0.02 mg/L cyanocobalamin. The analysis of amino acid consumption allowed us to develop a customized amino acid solution lacking six of the amino acids present in Aminoplasmal 10%. Fed-batch cultivation in a bioreactor using the optimized medium achieved a final DOD600 of 46.8 ± 0.5 after 108 h, corresponding to a cell dry weight of 13.6 ± 0.7 g/L. CONCLUSIONS The optimized chemically defined medium allowed us to produce larger amounts of biomass more quickly than reported in earlier studies. Further research should focus on triggering P. limnophila biofilm formation to activate the gene clusters responsible for secondary metabolism


Subject(s)
Planctomycetales/metabolism , Planctomycetales/chemistry , Amino Acids/chemistry , Biomass , Planctomycetales/growth & development , Amino Acids/metabolism
2.
Braz J Microbiol ; 52(3): 1397-1404, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33852152

ABSTRACT

Planctomycetes are bacteria found in several environments, such as mangroves. In the coastline of the State of Sao Paulo (Brazilian Southeast), mangroves occur in different stages of environmental contamination, promoted by the proximity to the city and industrial activities. One of these mangroves (located in the city of Bertioga) is characterized by the high impact due to past petroleum and ongoing urban contamination. We isolated five bacteria affiliated to Planctomycetes from this mangrove and further subjected them to phenotypical and genetic analysis. The tolerance for salinity was demonstrated by the cultivation under distinct concentrations of NaCl. The ability of this bacterium to use diverse carbon sources was revealed by the use of 30 C-sources from a total of 31 tests. We found the isolate Rhodopirellula sp. MGV very closely affiliated to species of the genus Rhodopirellula, harboring a genome with 7.16 Mbp and 55.3% of GC. The annotation of the 77 contigs resulted in 6.284 CDS, with a remarkable occurrence of sequences associated with aromatic carbon metabolism. In conclusion, we present the isolation and characterization of a Planctomycetes from mangroves, suggesting its participation in the degradation of hydrocarbons present in the contaminated mangroves studied.


Subject(s)
Hydrocarbons , Planctomycetales , Water Pollution, Chemical , Bacteria , Brazil , Carbon , Genomics , Hydrocarbons/metabolism , Phylogeny , Planctomycetales/genetics , Planctomycetales/metabolism , Wetlands
3.
Extremophiles ; 20(6): 811-820, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27502056

ABSTRACT

Gimesia maris and Rubinisphaera brasiliensis are slightly halophilic representatives of the deep-branching phylum Planctomycetes. For osmoadaptation both species accumulated α-glutamate, sucrose, ectoine and hydroxyectoine. A major role was found for ectoine, hydroxyectoine as well as sucrose under hyper-osmotic shock conditions. Nevertheless, the levels of sucrose were up-regulated by the increased salinity levels and also by low nitrogen availability. Additionally, G. maris accumulated glucosylglycerate (GG) as major solute specifically under low nitrogen levels, which prompted us to analyse the transcript abundance of two homologues genes known for the biosynthesis of GG, namely glucosyl-3-phosphoglycerate synthase (GpgS) and glucosyl-3-phosphoglycerate phosphatase (GpgP). By qPCR using a suitable reference gene selected in this study, the transcript abundance of the biosynthetic genes was quantified in G. maris cells under hyper-osmotic shock or under low nitrogen conditions. The gpgS gene was induced under nitrogen-limiting conditions suggesting that GG synthesis is regulated primarily at the transcription level. Moreover, the expression of a gene coding for a putative sucrose-phosphorylase (Spase) located upstream the gpgS and gpgP genes was up-regulated, predicting a metabolic role of Spase probably related to GG synthesis.


Subject(s)
Bacteria/genetics , Glucosides/metabolism , Glyceric Acids/metabolism , Osmotic Pressure , Salt Tolerance , Bacteria/enzymology , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Nitrogen/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Plankton/enzymology , Plankton/genetics , Plankton/metabolism
4.
Microb Ecol ; 71(1): 100-12, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26547568

ABSTRACT

We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.


Subject(s)
Alkanes/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Geologic Sediments/microbiology , Water Pollutants, Chemical/metabolism , Bacteria/classification , Bacteria/genetics , Biodegradation, Environmental , Biodiversity , Geologic Sediments/analysis , Hydrogen-Ion Concentration , Molecular Sequence Data , Phylogeny , Seawater/analysis , Seawater/microbiology , Water Pollutants, Chemical/analysis
5.
Stand Genomic Sci ; 9: 10, 2014.
Article in English | MEDLINE | ID: mdl-25780503

ABSTRACT

Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448(T), were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published and the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. Phylogenomic analyses indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. In addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.

SELECTION OF CITATIONS
SEARCH DETAIL