Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276710

ABSTRACT

A set of polyphenylene oxides incorporating DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) functionality, denoted as DOPO-R-PPO, was synthesized by copolymerization of 2,6-dimethylphenol (2,6-DMP) with various DOPO-substituted tetramethyl bisphenol monomers. In the initial step, a Friedel-Crafts acylation reaction was employed to react 2,6-DMP with different acyl chlorides, leading to the formation of ketone derivatives substituted with 2,6-dimethylphenyl groups. Subsequently, the ketones, along with DOPO and 2,6-DMP, underwent a condensation reaction to yield a series of DOPO-substituted bisphenol derivatives. Finally, polymerizations of 2,6-dimethylphenol with these DOPO-substituted bisphenols were carried out in organic solvents using copper(I) bromide/N-butyldimethylamine catalysts (CuBr/DMBA) under a continuous flow of oxygen, yielding telechelic PPO oligomers with DOPO moieties incorporated into the polymer backbone. The chemical structures of the synthesized compounds were characterized using various analytical techniques, including Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), phosphorus nuclear magnetic resonance (31P NMR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). When compared to conventional poly(2,6-dimethyl-1,4-phenylene oxide)s with a similar molecular weight range, all DOPO-PPOs exhibited higher glass transition temperatures, enhanced thermal degradability, and increased char yield formation at 800 °C without compromising solubility in organic solvents.

2.
Membranes (Basel) ; 13(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38132892

ABSTRACT

In this study, the optimal fabrication parameters of a heterogeneous anion-exchange membrane (AEM) using an ionomer binder are investigated to improve the performance of continuous electrodeionization (CEDI) for producing ultrapure water. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is selected as the base material for preparing the ionomer binder and quaternized to have various ion exchange capacities (IECs). The optimal content of ion-exchange resin (IER) powder according to the IEC of the ionomer binder is then determined through systematic analyses. In conclusion, it is revealed that a heterogeneous AEM with optimal performance can be fabricated when the IEC of the ionomer binder is lowered and the content of IER powder is also lower than that of conventional heterogeneous membranes. Moreover, crosslinked quaternized PPO (QPPO) nanofiber powder is used as an additive to improve ion conductivity without deteriorating the mechanical properties of the membrane. The membrane fabricated under optimal conditions exhibits significantly lower electrical resistance (4.6 Ω cm2) despite a low IER content (30 wt%) compared to the commercial membrane (IONAC MA-3475, 13.6 Ω cm2) while also demonstrating moderate tensile strength (9.7 MPa) and a high transport number (ca. 0.97). Furthermore, it is proven that the prepared membrane exhibits a superior ion removal rate (99.86%) and lower energy consumption (0.35 kWh) compared to the commercial membrane (99.76% and 0.4 kWh, respectively) in CEDI experiments.

3.
Membranes (Basel) ; 12(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36135851

ABSTRACT

Purification and concentration of bioalcohols is gaining new status due to their use as a promising alternative liquid biofuel. In this work, novel high-performance asymmetric membranes based on a block copolymer (BCP) synthesized from polydimethylsiloxane (PDMS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) were developed for enhanced pervaporation dehydration of ethanol. Improvement in dehydration performance was achieved by obtaining BCP membranes with a "non-perforated" porous structure and through surface and bulk modifications with graphene oxide (GO). Formation of the BCP was confirmed by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies. The changes to morphology and physicochemical properties of the developed BCP and BCP/GO membranes were studied by scanning electron (SEM) and atomic force (AFM) microscopies, thermogravimetric analysis (TGA) and contact angle measurements. Transport properties of the developed membranes were evaluated by the pervaporation dehydration of ethanol over a wide concentration range (4.4-70 wt.% water) at 22 °C. The BCP (PDMS:PPO:2,4-diisocyanatotoluene = 41:58:1 wt.% composition) membrane modified with 0.7 wt.% GO demonstrated optimal transport characteristics: 80-90 g/(m2h) permeation flux with high selectivity (76.8-98.8 wt.% water in the permeate, separation factor of 72-34) and pervaporation separation index (PSI) of 5.5-2.9.

4.
Materials (Basel) ; 15(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35269177

ABSTRACT

This paper describes the preparation and characterization of poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) highly porous monolithic aerogels with a hydrophobic nanoporous-crystalline phase and a hydrophilic sulfonated amorphous phase. The sulfonated aerogels were obtained by the sulfonation of PPO physical gels, followed by the supercritical CO2 extraction of solvents. WAXD and FTIR analysis showed that the nanoporous-crystalline phase was preserved for a degree of sulfonation up to c.a. 35%, allowing a highly volatile organic compound (VOC) sorption capacity. The sulfonated PPO aerogels exhibited a high water sorption capacity, with a water uptake of up to 500 wt%, and faster VOC sorption kinetics from water with respect to unsulfonated aerogels.

5.
Polymers (Basel) ; 14(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35160584

ABSTRACT

Anion exchange membrane fuel cells (AEMFCs) are considered superior to their counterpart proton exchange fuel cells due to their many advantages. Both fuel cells use membranes as polymer electrolytes to improve fuel-cell properties and power output. This work evaluates a series of imidazolium-quaternized poly(2,6-dimethyl-1,4-phenylene oxide) (ImPPO) functionalized zeolitic imidazole framework-8 (ZIF-8) (ImPPO/ZIF-8) as anion exchange membrane (AEM) electrolytes in a direct methanol alkaline fuel cell. FTIR and 1H NMR were used to confirm the successful membrane fabrication. SEM and TGA were used to study the morphological and thermal stability properties of the ImPPO/ZIF-8 membranes. The AEMs obtained in this work had contact angles ranging from 55.27-106.73°, water uptake from 9-83%, ion exchange capacity (IEC) from 1.93-3.15 mmol/g, and ion conductivity (IC) from 1.02-2.43 mS/cm. The best-performing membrane, ImPPO/3%ZIF-8, showed a water uptake of up to 35% at 80 °C, a swelling ratio of 15.1% after 72 h, IEC of 4.06 mmol/g, and IC of 1.96 mS/cm. A power density of 158.10 mW/cm2 was obtained. This makes ZIF-8 a good prospect as a filler for enhancing membrane properties.

6.
Molecules ; 25(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182782

ABSTRACT

High-porosity monolithic composite aerogels of syndiotactic polystyrene (sPS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) containing reduced graphene oxide (r-GO) were prepared and characterized. The composite aerogels obtained by supercritical carbon dioxide (scCO2) extraction of sPS/r-GO and PPO/r-GO gels were characterized by a fibrillar morphology, which ensured good handling properties. The polymer nanoporous crystalline phases obtained within the aerogels led to high surface areas with values up to 440 m2 g-1. The role of r-GO in aerogels was studied in terms of catalytic activity by exploring the oxidation capacity of composite PPO and sPS aerogels toward benzyl alcohol in diluted aqueous solutions. The results showed that, unlike sPS/r-GO aerogels, PPO/r-GO aerogels were capable of absorbing benzyl alcohol from the diluted solutions, and that oxidation of c.a. 50% of the sorbed benzyl alcohol molecules into benzoic acid occurred.


Subject(s)
Gels/chemistry , Graphite/chemistry , Oxygen/chemistry , Benzyl Alcohol/chemistry , Carbon Dioxide , Catalysis , Chromatography, Supercritical Fluid , Crystallization , Microscopy, Electron, Scanning , Nanopores , Oxidation-Reduction , Phase Transition , Polymers/chemistry , Polystyrenes/chemistry , Porosity , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
7.
Polymers (Basel) ; 12(10)2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33080828

ABSTRACT

Films exhibiting co-crystalline (CC) phases between a polymer host and low-molecular-mass guest molecules are relevant for many applications. As is usual for semi-crystalline polymers, axially oriented films can give relevant information on the crystalline structure, both by Wide Angle X-ray diffraction fiber patterns and by polarized Fourier-transform infrared spectroscopy. Axially oriented CC phases of poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) with 1,3,5-trimethylbenzene (mesitylene) can be simply obtained by the stretching of CC PPO films. In fact, due to the plasticization effect of this highly boiling guest, PPO orientation can occur in a stretching temperature range (170-175 °C) nearly 50 °C lower than that generally needed for PPO films (220-230 °C). This low stretching temperature range allows avoidance of polymer oxidation, as well as formation of the mesomorphic dense γ PPO phase. Axially oriented CC phases of PPO with toluene, i.e., with a more volatile guest, can be instead obtained by the stretching (in the same low temperature range: 170-175 °C) of CC PPO blend films with polystyrene.

8.
Membranes (Basel) ; 8(4)2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30518107

ABSTRACT

The emulsion polymerized mixed matrix (EPMM) method is a new approach to prepare nanocomposite membranes, in which inorganic nanoparticles are synthesized in situ at the interface of a dispersed aqueous phase in a continuous phase of polymer solution. In this paper, we report the synthesis and characterization of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based EPMM membranes, in which silica nanoparticles are synthesized by the polymerization of tetraethylorthosilicate (TEOS) in the presence of two different co-solvents, ethanol and acetone, which are soluble in both the aqueous phase and the polymer solution. The EPPM membranes prepared in the presence of acetone show greater conversions of TEOS and a different structure of the synthesized silica nanoparticles compared to the EPMM membranes prepared in the presence of ethanol. The former membranes are both more permeable and more selective for O2/N2 and CO2/CH4. Both types of EPMM membranes are more permeable than the reference PPO membranes. However, while their O2/N2 selectivity is practically unchanged, their CO2/CH4 selectivity is decreased compared to the reference PPO membranes.

9.
Chirality ; 28(1): 29-38, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26572498

ABSTRACT

This review is devoted to the chiral optical behavior of films of racemic polymers whose chirality is induced by cocrystallization with nonracemic (also temporary) guest molecules. We provide examples of macromolecular amplification of chirality, produced by molecular and supramolecular mechanisms, on industrially relevant polymers like poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) and syndiotactic polystyrene (s-PS).

10.
J Colloid Interface Sci ; 430: 24-30, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24998050

ABSTRACT

The facile surface modification of a commercial anion-exchange membrane (i.e., Neosepta-AFX, Astom Corp., Japan) was investigated with brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO), which had non-charged polar groups, and its quaternized form (QPPO) to improve the acid recovery efficiency in diffusion dialysis (DD). By coating a thin layer of BPPO on the membrane surface, the significant changes in the surface compactness and charge density were observed while the electrochemical properties were mostly maintained. From the DD experiments, it was revealed that the membrane modified with 1 wt% BPPO exhibited the moderate acid permeability as well as the highest acid selectivity (KAcid/KFe3+=48.81), which is more than double compared with that of the pristine membrane (KAcid/KFe3+=22.48) among the tested membranes. The electron-rich polar groups contained in BPPO are believed to provide moderate proton transport while the reduced swelling property of the membrane surface can effectively mitigate the crossover of metal cations. In addition, the acid selectivity (KAcid/KFe3+=30.69) was largely improved by using small molecular weight poly(ethyleneimine) (PEI, Mn=1800) with a small content (in the range of 1-5 wt%) as a solution additive for the growing size of metal species by the formation of polymer-metal complexes.

SELECTION OF CITATIONS
SEARCH DETAIL