Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Language
Publication year range
1.
Sensors (Basel) ; 23(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37631747

ABSTRACT

Developing a low-cost wireless energy meter with power quality measurements for smart grid applications represents a significant advance in efficient and accurate electric energy monitoring. In increasingly complex and interconnected electric systems, this device will be essential for a wide range of applications, such as smart grids, by introducing a real-time energy monitoring system. In light of this, smart meters can offer greater opportunities for sustainable and efficient energy use and improve the utilization of energy sources, especially those that are nonrenewable. According to the 2020 International Energy Agency (IEA) report, nonrenewable energy sources represent 65% of the global supply chain. The smart meter developed in this work is based on the ESP32 microcontroller and easily accessible components since it includes a user-friendly development platform that offers a cost-effective solution while ensuring reliable performance. The main objective of developing the smart meters was to enhance the software and simplify the hardware. Unlike traditional meters that calculate electrical parameters by means of complex circuits in hardware, this project performed the calculations directly on the microcontroller. This procedure reduced the complexity of the hardware by simplifying the meter design. Owing to the high-performance processing capability of the microcontroller, efficient and accurate calculations of electrical parameters could be achieved without the need for additional circuits. This software-driven approach with simplified hardware led to benefits, such as reduced production costs, lower energy consumption, and a meter with improved accuracy, as well as updates on flexibility. Furthermore, the integrated wireless connectivity in the microcontroller enables the collected data to be transmitted to remote monitoring systems for later analysis. The innovative feature of this smart meter lies in the fact that it has readily available components, along with the ESP32 chip, which results in a low-cost smart meter with performance that is comparable to other meters available on the market. Moreover, it is has the capacity to incorporate IoT and artificial intelligence applications. The developed smart meter is cost effective and energy efficient, and offers benefits with regard to flexibility, and thus represents an innovative, efficient, and versatile solution for smart grid applications.

2.
Sensors (Basel) ; 23(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36991619

ABSTRACT

Novelty detection is a statistical method that verifies new or unknown data, determines whether these data are inliers (within the norm) or outliers (outside the norm), and can be used, for example, in developing classification strategies in machine learning systems for industrial applications. To this end, two types of energy that have evolved over time are solar photovoltaic and wind power generation. Some organizations around the world have developed energy quality standards to avoid known electric disturbances; however, their detection is still a challenge. In this work, several techniques for novelty detection are implemented to detect different electric anomalies (disturbances), which are k-nearest neighbors, Gaussian mixture models, one-class support vector machines, self-organizing maps, stacked autoencoders, and isolation forests. These techniques are applied to signals from real power quality environments of renewable energy systems such as solar photovoltaic and wind power generation. The power disturbances that will be analyzed are considered in the standard IEEE-1159, such as sag, oscillatory transient, flicker, and a condition outside the standard attributed to meteorological conditions. The contribution of the work consists of the development of a methodology based on six techniques for novelty detection of power disturbances, under known and unknown conditions, over real signals in the power quality assessment. The merit of the methodology is a set of techniques that allow to obtain the best performance of each one under different conditions, which constitutes an important contribution to the renewable energy systems.

3.
Heliyon ; 9(2): e13650, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36852035

ABSTRACT

Main objective of this paper is the optimal distribution of the fundamental non-efficient load current terms between the inverters -Energy Gateways (EGs)- connected in grid-tied microgrids (MGs). The main feature of the presented approach is the use of the EGs as controlled current sources that can compensate fundamental non-efficient load current terms in addition to the generation of fundamental positive-sequence active current, avoiding the use of shunt active power filters. The approach relies on the so-called System of Constant References (SoCR) that is based on the symmetrical components decomposition and dq0 transformation. SoCR procedure decouples efficient and non-efficient components of the instantaneous load currents, transforming all of them into six constant references. The optimization algorithm uses a new approach for the calculation of the peak currents in each phase, avoiding non-convex problems when determining the currents of the EGs considering their operating limits. A medium-power size MG that includes photovoltaic and wind generators, as well as, a battery energy storage system is considered to evaluate the capabilities of the proposal. There were evaluated four scenarios: baseline, balanced distribution, proportional distribution, and optimal distribution. All scenarios, except optimal distribution scenario, surpass the current limits for the EGs connected. The results highlight the benefits of using the EGs as active agents in MG efficient operation and demonstrate how the optimization approach achieves the goal of maintaining the generation capabilities of EGs at the same time that compensates the non-efficient current terms demanded by the load.

4.
Sensors (Basel) ; 21(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198887

ABSTRACT

The study of power quality (PQ) has gained relevance over the years due to the increase in non-linear loads connected to the grid. Therefore, it is important to study the propagation of power quality disturbances (PQDs) to determine the propagation points in the grid, and their source of generation. Some papers in the state of the art perform the analysis of punctual measurements of a limited number of PQDs, some of them using high-cost commercial equipment. The proposed method is based upon a developed proprietary system, composed of a data logger FPGA with GPS, that allows the performance of synchronized measurements merged with the full parameterized PQD model, allowing the detection and tracking of disturbances propagating through the grid using wavelet transform (WT), fast Fourier transform (FFT), Hilbert-Huang transform (HHT), genetic algorithms (GAs), and particle swarm optimization (PSO). Measurements have been performed in an industrial installation, detecting the propagation of three PQDs: impulsive transients propagated at two locations in the grid, voltage fluctuation, and harmonic content propagated to all the locations. The results obtained show that the low-cost system and the developed methodology allow the detection of several PQDs, and track their propagation within a grid with 100% accuracy.


Subject(s)
Algorithms , Wavelet Analysis , Fourier Analysis
5.
Sensors (Basel) ; 21(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921195

ABSTRACT

Optical Current Transformers (OCTs) and Optical Voltage Transformers (OVTs) are an alternative to the conventional transformers for protection and metering purposes with a much smaller footprint and weight. Their advantages were widely discussed in scientific and technical literature and commercial applications based on the well-known Faraday and Pockels effect. However, the literature is still scarce in studies evaluating the use of optical transformers for power quality purposes, an important issue of power system designed to analyze the various phenomena that cause power quality disturbances. In this paper, we constructed a temperature-independent prototype of an optical voltage transformer based on fiber Bragg grating (FBG) and piezoelectric ceramics (PZT), adequate to be used in field surveys at 13.8 kV distribution lines. The OVT was tested under several disturbances defined in IEEE standards that can occur in the electrical power system, especially short-duration voltage variations such as SAG, SWELL, and INTERRUPTION. The results demonstrated that the proposed OVT presents a dynamic response capable of satisfactorily measuring such disturbances and that it can be used as a power quality monitor for a 13.8 kV distribution system. Test on the proposed system concluded that it was capable to reproduce up to the 41st harmonic without significative distortion and impulsive surges up to 2.5 kHz. As an advantage, when compared with conventional systems to monitor power quality, the prototype can be remote-monitored, and therefore, be installed at strategic locations on distribution lines to be monitored kilometers away, without the need to be electrically powered.

6.
Heliyon ; 7(3): e06475, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33748505

ABSTRACT

This research proposes a high-performance algorithm for the compression rate of electrical power quality signals, using wavelet transformation. To manage the massive amount of data the telecommunications networks are constantly acquiring it is necessary to study techniques for data compression, which will save bandwidth and reduce costs extensively by avoiding having massive data storage facilities. First biorthogonal wavelet level six transform is applied, however after compression, the reconstructed signal will have a different amplitude and it will be shifted when compared to the original one. Then, normalization is used (for amplitude correction between the original signal and reconstructed one) by multiplying the reconstructed signal by the result of the division between the original signal maximum magnitude and the reconstructed signal maximum magnitude. Thirdly, the ripple in the reconstructed signal is eliminated by applying a moving average filter. Finally, the shifting is corrected by finding the difference between the maximum points in a cycle of the original signal and the reconstructed one. After the compression algorithm was performed the best rates are 99.803% for compression rate, RTE 99.9479%, NMSE 0.000434, and Cross-Correlation 0.999925. Finally, this works presents two new performance criteria, compression time and recovery time, both of them in a real scenario will determinate how fast the algorithm can perform.

7.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64(spe): e21210156, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285564

ABSTRACT

Abstract Microgrids have been widely applied to improve the energy quality parameters of a distribution system locally, in addition to ensuring the operation of the system in an isolated manner. The Model Predictive Control (MPC) is a great solution to guarantee the operation of the system considering forecasting models and also physical restrictions of the system, which ensure the optimal operation of the Microgrid. However, the construction of a control scheme following the objectives established in order to meet the connected and isolated operation of a Microgrid is still a challenge. This paper proposes the development of an MPC control scheme that assures optimal system operation in connected and islanded mode, improving power quality indexes, ensuring network requirements, and extending battery life cycle. The proposed control operation in the connected mode can attend to the needs of the Microgrid, reducing the impacts of peak demand and the intermittent variations in renewable generation, where a linear objective function is developed for this purpose. In the islanded mode, grid requirements are guaranteed through load shedding, considering improvements in continuity indicators. Forecasting models are implemented considering the MPC approach and a detailed network model is developed. Simulation results highlight the effectiveness of the proposed control strategy.


Subject(s)
Quality Control , Electric Wiring/standards , Batteries , Renewable Energy
8.
Braz. arch. biol. technol ; Braz. arch. biol. technol;61(spe): e18000190, 2018.
Article in English | LILACS | ID: biblio-974130

ABSTRACT

ABSTRACT Concerns about the environment and a growing demand for electricity have led to the intensive search for renewable energy sources. Photovoltaic solar energy, in the form of distributed generation, has shown a very high growth rate to an extent that in some regions it will be adopted on a large scale, thus being responsible for the supply of a significant portion of the load of this region. Some factors have favored the adoption of distributed generation: the drop in the price of solar panels and inverters, as well as its easy installation and maintenance. However, the large-scale adoption of solar distributed generation brings new challenges to the power distribution system. Network voltage control is an example. In conventional systems, voltage control is a properly addressed problem, but in networks with the presence of distributed generation, where at certain times of the day reverse energy flows can be observed, more detailed studies on voltage behavior are necessary concerning the power quality. This article makes an analysis of relevant studies on the effects that the insertion of photovoltaic distributed generation can cause in the voltage of the electric power distribution system under the optics of two phenomena: the fluctuation and the voltage ripple.


Subject(s)
Electric Wiring , Environment , Photovoltaic Energy , Solar Energy , Renewable Energy
SELECTION OF CITATIONS
SEARCH DETAIL