Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Rev Med Virol ; 34(5): e2581, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39243203

ABSTRACT

Poxviridae is a diverse family of double-stranded DNA viruses, historically significant for diseases like smallpox caused by variola virus (VARV). These viruses exhibit unique cytoplasmic replication strategies, large genomes encoding numerous proteins, and the ability to cause severe cutaneous and systemic diseases. Recent attention has focused on their neurotropic potential, including mechanisms of CNS invasion, immune-mediated damage, and clinical manifestations such as encephalitis and myelitis. This review synthesises current knowledge on poxvirus neurotropism, highlighting pathophysiological mechanisms and clinical implications.


Subject(s)
Poxviridae Infections , Poxviridae , Humans , Poxviridae/physiology , Poxviridae/genetics , Poxviridae/pathogenicity , Poxviridae Infections/virology , Poxviridae Infections/pathology , Animals , Viral Tropism
2.
Cureus ; 16(8): e67872, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39328711

ABSTRACT

Monkeypox (Mpox) has emerged as a significant threat to the global population. Initially identified in a rural area of Africa in 1970, after the eradication of smallpox, it spread rapidly across various African nations. The ongoing evolution of the monkeypox virus (MPXV), which causes Mpox, and its potential for cross-species transmission led to a global outbreak in 2022. Despite the control measures during the outbreak, Mpox cases continue in several African nations, posing a persistent public health threat. Global surveillance is crucial to eradicating MPXV from human populations and preventing its resurgence. Factors contributing to MPXV's increased transmissibility and immune evasion include its mutation rate, adaptability, and genetic evolution. Therefore, understanding the epidemiology and virology of Mpox is essential for developing effective prevention and control strategies. This study explores the history of human Mpox, the complexity of MPXV, how it replicates, and drug-resistant mutations. It will also stress how important it is to study how the circadian clock affects virus replication in infectious diseases in order to effectively fight this new public health threat. Understanding these aspects is crucial for developing effective strategies against Mpox as well as addressing the challenges posed by genetic mutations and resistance. The compiled information in this review underscores the critical need for continued research and monitoring to tackle the evolving dynamics of Mpox and its broader impact on global health.

3.
Microorganisms ; 12(9)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39338574

ABSTRACT

Mpox, also known as Monkeypox, is an infectious disease known to spread via direct contact and fomites, which poses a significant contagion risk in surgical settings and may increase the challenges already posed by COVID-19. Within the three years following the outbreak of Mpox, we conducted a review of the impact of Mpox on surgical practice. We searched Pubmed/Medline and Scopus, focusing on original studies and case reports in English or German. Our search terms included "Mpox", "Monkeypox", and "Surgery". Out of 60 clinical or epidemiological studies, as well as expert opinions, brief reports, and pertinent literature reviews, eight were included after full-text assessment. We also incorporated two pertinent literature reviews, including a total of 10 papers, in this analysis. The main topics addressed by the literature are 1. manifestations of Mpox for surgical consideration or urgent management, for which it is important to consider whether a surgical approach is needed to address long-term Mpox-related lesions and 2. infection control in surgical settings, especially considering its impact on elective surgery and the well-being of healthcare workers. Mpox could affect surgical services and access to operating theaters. Unlike COVID-19, Mpox, compared to initial concerns, has not substantially compromised surgical delivery. However, limited reports exist on the surgical impact of Mpox. It is crucial to involve surgeons in Mpox diagnosis, educate surgical practitioners on its mimicry of common surgical conditions, enhance infection control during surgery, and ensure access to corrective surgery as a means of tackling the stigmatization associated with Mpox and sexually transmitted diseases in general.

4.
J Infect Public Health ; 17(7): 102431, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820901

ABSTRACT

Mpox is a zoonotic disease that became epidemic in multiple countries in 2022. There is a lack of published systematic reviews on natural animal infection due to Mpox. We performed a systematic literature review with meta-analysis to assess animal Mpox prevalence. We performed a random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence interval (95%CI) for prevalence studies. After the screening, 15 reports were selected for full-text assessment and included in qualitative and quantitative analyses. Ten reports assessed Mpox infection by molecular or serological tests (n = 2680), yielding a pooled prevalence of 16.0% (95%CI: 3.0-29.0%) for non-human primates; 8.0% (95%CI: 4.0-12.0%) for rodents and 1.0% (95%CI: 0.0-3.0%) for shrews. Further studies in other animals are required to define the extent and importance of natural infection due to Mpox. These findings have implications for public human and animal health. OneHealth approach is critical for prevention and control.


Subject(s)
Mpox (monkeypox) , Zoonoses , Animals , Zoonoses/epidemiology , Prevalence , Mpox (monkeypox)/epidemiology , Rodentia , Humans , Shrews , Primates
5.
Adv Exp Med Biol ; 1451: 55-74, 2024.
Article in English | MEDLINE | ID: mdl-38801571

ABSTRACT

The complex cytoplasmic DNA virus known as the fowlpox virus (FWPV) is a member of the avipoxvirus genus, Subfamily Chordopoxvirinae, and Family Poxviridae. The large genome size of FWPV makes it a potential vector for the creation of vaccines against a range of serious veterinary and human ailments. It also allows for multiple gene insertion and the generation of abortive infection in mammalian cells. The virus, which causes fowlpox in chickens and turkeys, is mainly transmitted to poultry through aerosols or biting insects. Fowlpox is a highly contagious disease that affects both domestic and wild birds, causing cutaneous and/or diphtheritic illnesses. To control the illness, strict hygiene practices and immunization with FWPV attenuated strains or antigenically similar pigeon pox virus vaccines are employed. Recent years have seen an increase in fowlpox outbreaks in chicken flocks, primarily due to the introduction of novel forms of FWPV. It is believed that the pathogenic characteristics of these strains are enhanced by the integration of reticuloendotheliosis virus sequences of variable lengths into the FWPV genome. The standard laboratory diagnosis of FPV involves histopathological analysis, electron microscopy, virus isolation on chorioallantoic membrane (CAM) of embryonated chicken eggs or cell cultures, and serologic techniques. For quick and consistent diagnosis, polymerase chain reaction (PCR) has proven to be the most sensitive method. PCR is used in concert with restriction endonuclease enzyme analysis (REA) to identify, differentiate, and characterize the molecular makeup of isolates of the fowlpox virus. Sequencing of the amplified fragments is then done.


Subject(s)
Fowlpox virus , Fowlpox , Fowlpox virus/genetics , Animals , Fowlpox/virology , Chickens/virology , Genome, Viral
6.
Adv Exp Med Biol ; 1451: 205-217, 2024.
Article in English | MEDLINE | ID: mdl-38801580

ABSTRACT

The family Poxviridae is a large family of viruses with a ubiquitous distribution, subdivided into two subfamilies: Chordopoxvirinae (poxviruses of vertebrates) and Entomopoxvirinae (poxviruses of insects). Only three species from the first subfamily, Orthopoxvirus (OPV), Molluscipoxvirus and Parapoxvirus, can infect the human being. In the paediatric population, viruses belonging to the first two subfamilies have the greatest importance. Following the eradication of smallpox in 1980, vaccination of the general population was discontinued after careful consideration of the risks and benefits. However, nearly all children and most of the world's population had little to no protection against OPV. The aim of this chapter is to review the current evidence on the aetiology, clinical manifestations, diagnosis and management of Poxviridae infections in children.


Subject(s)
Poxviridae Infections , Poxviridae , Humans , Child , Poxviridae Infections/virology , Poxviridae Infections/epidemiology , Poxviridae Infections/diagnosis , Poxviridae/classification , Poxviridae/genetics , Poxviridae/pathogenicity , Child, Preschool , Infant , Animals
8.
Trop Med Health ; 52(1): 21, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448972

ABSTRACT

For over 200 years, the name molluscum contagiosum-a dermatological disease-has unfairly associated molluscs (the second largest group of animals on the planet) with this highly contagious infectious disease. Herein, arguments are presented demonstrating the serious problem of continuing to use this name, including animal welfare concerns. Thus, to minimize any unnecessary impacts on the biodiversity and conservation of molluscs, we follow WHO best practices in naming diseases to suggest the use of the new term 'wpox' or 'water warts' as a synonym for molluscum contagiosum.

9.
Vet Pathol ; 61(4): 541-549, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38366808

ABSTRACT

Bats have many unique qualities amongst mammals; one of particular importance is their reported tolerance to viruses without developing disease. Here, the authors present evidence to the contrary by describing and demonstrating viral nucleic acids within lesions from eptesipox virus (EfPV) infection in big brown bats. One hundred and thirty bats submitted for necropsy from Saskatchewan, Canada, between 2017 and 2021 were screened for EfPV by polymerase chain reaction (PCR); 2 had amplifiable poxvirus DNA. The lesions associated with infection were oral and pharyngeal ulcerations and joint swelling in 2/2 and 1/2 cases, respectively. These changes were nonspecific for poxvirus infection, although intracytoplasmic viral inclusion bodies within the epithelium, as observed in 2/2 bats, are diagnostic when present. Viral nucleic acids, detected by in situ hybridization (ISH), were observed in the epithelium adjacent to ulcerative lesions from both cases and within the joint proliferation of 1 case. A new isolate of EfPV was obtained from 1 case and its identity was confirmed with electron microscopy and whole genome sequencing. Juxtanuclear replication factories were observed in most cells; however, rare intranuclear virus particles were also observed. The significance of the presence of virus particles within the nucleus is uncertain. Whole genome assembly indicated that the nucleotide sequence of the genome of this EfPV isolate was 99.7% identical to a previous isolate from big brown bats in Washington, USA between 2009 and 2011. This work demonstrates that bats are not resistant to the development of disease with viral infections and raises questions about the dogma of poxvirus intracytoplasmic replication.


Subject(s)
Chiroptera , Poxviridae Infections , Poxviridae , Animals , Poxviridae Infections/veterinary , Poxviridae Infections/virology , Poxviridae Infections/pathology , Chiroptera/virology , Poxviridae/isolation & purification , Poxviridae/genetics , DNA, Viral/genetics , Polymerase Chain Reaction/veterinary , Saskatchewan , Female , Male , In Situ Hybridization/veterinary , Whole Genome Sequencing , Phylogeny
10.
Biology (Basel) ; 13(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38392343

ABSTRACT

Poxviridae is a family of large, complex, enveloped, and double-stranded DNA viruses. The members of this family are ubiquitous and well known to cause contagious diseases in humans and other types of animals as well. Taxonomically, the poxviridae family is classified into two subfamilies, namely Chordopoxvirinae (affecting vertebrates) and Entomopoxvirinae (affecting insects). The members of the Chordopoxvirinae subfamily are further divided into 18 genera based on the genome architecture and evolutionary relationship. Of these 18 genera, four genera, namely Molluscipoxvirus, Orthopoxvirus, Parapoxvirus, and Yatapoxvirus, are known for infecting humans. Some of the popular members of poxviridae are variola virus, vaccine virus, Mpox (formerly known as monkeypox), cowpox, etc. There is still a pressing demand for the development of effective vaccines against poxviruses. Integrated immunoinformatics and artificial-intelligence (AI)-based methods have emerged as important approaches to design multi-epitope vaccines against contagious emerging infectious diseases. Despite significant progress in immunoinformatics and AI-based techniques, limited methods are available to predict the epitopes. In this study, we have proposed a unique method to predict the potential antigens and T-cell epitopes for multiple poxviruses. With PoxiPred, we developed an AI-based tool that was trained and tested with the antigens and epitopes of poxviruses. Our tool was able to locate 3191 antigen proteins from 25 distinct poxviruses. From these antigenic proteins, PoxiPred redundantly located up to five epitopes per protein, resulting in 16,817 potential T-cell epitopes which were mostly (i.e., 92%) predicted as being reactive to CD8+ T-cells. PoxiPred is able to, on a single run, identify antigens and T-cell epitopes for poxviruses with one single input, i.e., the proteome file of any poxvirus.

11.
Infect Disord Drug Targets ; 24(5): e150124225632, 2024.
Article in English | MEDLINE | ID: mdl-38231058

ABSTRACT

The novel bovine viral infection known as lumpy skin disease is common in most African and Middle Eastern countries, with a significant likelihood of disease transfer to Asia and Europe. Recent rapid disease spread in formerly disease-free zones highlights the need of understanding disease limits and distribution mechanisms. Capripox virus, the causal agent, may also cause sheeppox and Goatpox. Even though the virus is expelled through several bodily fluids and excretions, the most common causes of infection include sperm and skin sores. Thus, vulnerable hosts are mostly infected mechanically by hematophagous arthropods such as biting flies, mosquitoes, and ticks. As a result, milk production lowers, abortions, permanent or temporary sterility, hide damage, and mortality occur, contributing to a massive financial loss for countries that raise cattle. These illnesses are economically significant because they affect international trade. The spread of Capripox viruses appears to be spreading because to a lack of effectual vaccinations and poverty in rural areas. Lumpy skin disease has reached historic levels; as a consequence, vaccination remains the only viable option to keep the illness from spreading in endemic as well as newly impacted areas. This study is intended to offer a full update on existing knowledge of the disease's pathological characteristics, mechanisms of spread, transmission, control measures, and available vaccinations.


Subject(s)
Lumpy Skin Disease , Animals , Lumpy Skin Disease/virology , Lumpy Skin Disease/therapy , Cattle , Livestock/virology , Farmers , Lumpy skin disease virus , Humans , Vaccination/veterinary , Capripoxvirus
12.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37846926

ABSTRACT

Kinases catalyze phosphoryl transfer from a nucleoside triphosphate (usually ATP) to an amino acid on a protein for activation purposes. Although kinases are well-appreciated drug targets in different viruses and cancers, these enzymes in poxviruses received limited attention from the research community. In poxvirus, the production of infectious particles in the infected cells depends on a serine/threonine protein kinase (STK) that activates proteins implicated in the assembly of new virions. This work aimed to elucidate the structure and dynamics of the major kinase STK from Mpox virus (Orthopoxvirus). A state-of-the-art computational approach was employed to decipher the structure and dynamics of the STK using AlphaFold2 and molecular dynamics (MD) simulations. Although the predicted structure showed an atypical kinase, the overall structural fold is conserved. Binding free energy calculations via Molecular Mechanics/Generalized Born and Surface Area (MM/GBSA) determined the hotspot residues contributing to binding of ATP. The structural analysis in this work provides insights into the structure and behavior of STK in Mpox virus and possibly its closest members of Poxviridae. These findings also set the basis for setting up a thorough experimental investigation to understand the enzymatic mechanism, peptide substrate binding, and the development of small-molecule inhibitors against this kinase.Communicated by Ramaswamy H. Sarma.

13.
Bioinformation ; 19(4): 345-347, 2023.
Article in English | MEDLINE | ID: mdl-37822829

ABSTRACT

World Health Organization (WHO) Risk Group-4 (RG-4) pathogens are among the most dangerous of the emergent and re-emergent viruses. International health agencies, working in concert, bridge the gaps in health care for populations at risk for RG-4 viral pathogen exposure. RG-4 virus research incorporates Biodefense Program and Biosafety Laboratory (BSL)-4 technologies. RG-4 viruses include Arena-viridae, Filo-viridae, Flavi-viridae, Herpes-viridae, Nairo-viridae, Paramyxo-viridae, and Pox-viridae.

14.
J Biomol Struct Dyn ; : 1-16, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37776002

ABSTRACT

Monkeypox virus (MPXV) is an orthopoxvirus which causes zoonotic infection in humans. Even though sporadic cases of this infection are limited to the African continent, but if the infection continues to increase unabated, it can be a cause of serious concern for the human populace. Smallpox vaccination has been in use against monkeypox infection but it only provides mild protection. In the current study, we have screened novel small molecules (estrone fused heterocycles (EH1-EH7)) exhibiting good binding with monkeypox virus protein and related proteins from Poxviridae family of viruses via computational approaches. EH1-7 series of small molecules selected for the work have been synthesized via cycloaddition methodology. Docking and Molecular Dynamics (MD) results highlight EH4 compound to have strong binding affinity towards monkeypox and other related viral proteins selected for the study. Thus, computational outcomes suggest EH4 as a good candidate against monkeypox. Currently, no antiviral medication has been approved against monkeypox and the treatment is only via therapeutics available for smallpox and related conditions that may be helpful against monkeypox. Our study is thus an attempt to screen novel compounds against monkeypox infection, which would, in turn, facilitate development of novel therapeutics against Poxviridae family. HIGHLIGHTSMonkeypox infection is a public health emergency and necessitates immediate drug discovery.Molecular docking study to screen estrone-fused heterocycles compounds against Monkeypox and other orthopoxviruses.Molecular dynamics simulations revealed interaction/high binding affinities among EH4 heterocyclic compound and profilin-like protein from the monkeypox virus.Estrone-fused heterocycles compounds are promising anti-viral agents as per our in silico analysis.Our study provides evidence for investigating estrone-fused heterocycles compounds for further pharmacological interventions.Communicated by Ramaswamy H. Sarma.


Monkeypox: This orthopoxvirus leads to mpox (monkeypox) disease which shows symptoms similar to that smallpox, however to less severe extent.Poxviridae family: This is commonly a family of double-stranded DNA viruses. The natural hosts for these viruses are arthropods and Vertebrates.Molecular Dynamic simulation: MD simulation is crucial for determining the ligand's stability and revealing the duration of its interaction with the respective macromolecular structure.Molecular Docking: Molecular docking aids in determining specific sites where the ligand binds with the macromolecule as well as its binding affinity. Bioinformatics tools such as docking have been widely employed for aiding drug discovery efforts.Protein binding energy: On docking protein with the ligand, the binding energy shows the free energy change during binding process between protein-ligand.

17.
HIV Med ; 24(10): 1056-1065, 2023 10.
Article in English | MEDLINE | ID: mdl-37336551

ABSTRACT

INTRODUCTION: Compared with previous geographically localized outbreaks of monkeypox (MPOX), the scale of the 2022 global mpox outbreak has been unprecedented, yet the clinical features of this outbreak remain incompletely characterized. METHODS: We identified patients diagnosed with mpox by polymerase chain reaction (PCR; n = 36) from July to September 2022 at a single, tertiary care institution in the USA. Demographics, clinical presentation, infection course, and histopathologic features were reviewed. RESULTS AND CONCLUSION: Men who have sex with men (89%) and people living with HIV (97%) were disproportionately affected. While fever and chills (56%) were common, some patients (23%) denied any prodromal symptoms. Skin lesions showed a wide range of morphologies, including papules and pustules, and lesions showed localized, not generalized, spread. Erythema was also less appreciable in skin of colour patients (74%). Atypical clinical features and intercurrent skin diseases masked the clinical recognition of several cases, which were ultimately diagnosed by PCR. Biopsies showed viral cytopathic changes consistent with Orthopoxvirus infections. All patients in this case series recovered without complications, although six patients (17%) with severe symptoms were treated with tecovirimat without complication.


Subject(s)
HIV Infections , Mpox (monkeypox) , Sexual and Gender Minorities , Humans , Male , Disease Outbreaks , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Homosexuality, Male , Mpox (monkeypox)/epidemiology
18.
Health Sci Rep ; 6(6): e1352, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37334039

ABSTRACT

Background and Aims: Monkeypox (Mpox) has become a concern worldwide after spreading into nonendemic countries. The World Health Organization (WHO) has declared this a public health emergency of international concern and recommended to get vaccinated first who are at the highest risk. Risk perception and subjective norms can influence the decision of vaccine uptake. Therefore, we intended to perform a cross-sectional study on the male population in our country to assess their risk perception and subjective norms on Mpox. Methods: We measured participants' risk perception and subjective norms using Google form. Demographic profile of participants was obtained using a structured questionnaire. We performed a χ 2 test to compare the levels of risk perception and subjective norm perception and multiple logistic regression analysis to determine the association between the study parameters and the sociodemographic profile of the participants. Results: Among the participants, 93 (23.72%), 288 (73.47%), and 11 (2.81%) had high, medium, and low-risk perceptions, respectively. For subjective norms, we observed 288 (58.16%) participants had a medium, 117 (29.85%) had high, and 47 (11.99%) had low levels of subjective norms, respectively. Most participants possessed medium risk perception (73.47%) and subjective norms (58.16%). Moreover, we observed that moderate risk perception was prevalent in people with body mass index (BMI) level between 18.5 and 25 (73.3%), married (63.5%), low economic background (94.1%), living with a family (77.1%), smokers (68.4%), heterosexuals (99%), people with no/little impact of coronavirus disease 2019 (Covid-19) on life (91%). Proportions of people with moderate subjective norms BMI level of 18.5-25 (73.2%), married (60.5%), low economic status (93.9%), rural (58.8%), living with family (77.2%), nonsmokers (71.1%), and people with no/little impact of Covid-19 in their lives (91.2%). Conclusion: The majority of participants perceived medium risk perception and subjective norms related to Mpox. Furthermore, we observed a significant association between the study parameters and the sociodemographic characteristics of our study participants. We recommend that further longitudinal studies to yield more accurate results.

19.
Emerg Infect Dis ; 29(6): 1202-1205, 2023 06.
Article in English | MEDLINE | ID: mdl-37209672

ABSTRACT

We detected a novel poxvirus from a gray seal (Halichoerus grypus) from the North Sea, Germany. The juvenile animal showed pox-like lesions and deteriorating overall health condition and was finally euthanized. Histology, electron microscopy, sequencing, and PCR confirmed a previously undescribed poxvirus of the Chordopoxvirinae subfamily, tentatively named Wadden Sea poxvirus.


Subject(s)
Chordopoxvirinae , Poxviridae , Seals, Earless , Animals , Poxviridae/genetics , North Sea , Germany/epidemiology
20.
J Gen Virol ; 104(5)2023 05.
Article in English | MEDLINE | ID: mdl-37195882

ABSTRACT

Poxviridae is a family of enveloped, brick-shaped or ovoid viruses. The genome is a linear molecule of dsDNA (128-375 kbp) with covalently closed ends. The family includes the sub-families Entomopoxvirinae, whose members have been found in four orders of insects, and Chordopoxvirinae, whose members are found in mammals, birds, reptiles and fish. Poxviruses are important pathogens in various animals, including humans, and typically result in the formation of lesions, skin nodules, or disseminated rash. Infections can be fatal. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Poxviridae, which is available at ictv.global/report/poxviridae.


Subject(s)
Poxviridae , Animals , Humans , Poxviridae/genetics , Fishes , Birds , Mammals , Reptiles , Genome, Viral , Virus Replication , Virion
SELECTION OF CITATIONS
SEARCH DETAIL