Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 265(Pt 1): 130906, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493611

ABSTRACT

The pre-hydrolysis liquor (PHL) produced during pulp dissolution and biomass refining is mainly composed of hemicellulose and lignin, and it is a potential source for production of value-added materials and platform chemicals; however, their utilization has been a serious challenge. In this study, we proposed a green and simple strategy to simultaneously prepare size-controlled functional lignin nanoparticles (LNPs) and levulinic acid (LA) from PHL as the raw material. The as-prepared LNPs exhibited remarkable stability thanks to the presence of saccharides with abundant oxygen-containing groups and surface charges, which prevented aggregation and maintained long-term storage stability. Trace amounts of the LNPs (≤ 0.2 wt%) could stabilize various Pickering emulsions, even with oil-to-water ratios as high as 5:5 (v/v). Subsequently, the remaining PHL was directly used to produce LA without adding a catalyst; under optimal conditions (160 °C and 1 h), the yield of LA was 56.3 % based on the dry saccharide content in the raw PHL. More importantly, p-toluenesulfonic acid (p-TsOH), the only reactive reagent used during the entire preparation process, including the two preparation steps of the LNPs and LA, was reusable, and the recovery rate was >70 % after five cycles. Overall, this green and simple strategy effectively and comprehensively utilized the PHL and showed potential for producing biobased nanomaterials and platform chemicals.


Subject(s)
Levulinic Acids , Nanoparticles , Populus , Lignin/chemistry , Hydrolysis , Wood/chemistry , Carbohydrates/analysis
2.
Bioresour Technol ; 366: 128227, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36332860

ABSTRACT

Sludge hydrolysis is a vital step in anaerobic digestion of sludge. This study compared the efficacy of free versus immobilized enzymes at different concentrations in promoting sludge disintegration. Pretreatment with 1,000 mg/L immobilized enzymes was more efficient in promoting sludge disintegration than free enzymes at the same concentration. Under the optimized conditions, volatile fatty acids (VFAs) were produced at 10.6 g/L, accounting for 85 % of total soluble chemical oxygen demand. Improved VFA production was attributed to the release of large amounts of polysaccharides and proteins from the enzymatically pretreated sludge. Released organic matter are the substrates for VFAs generated by the determined microbial community of Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi. In this study, anaerobic fermentation was used to successfully convert organic matter in sludge into high-value-added VFAs. Therefore, this process can be selected as a strategy to reduce carbon emissions from wastewater treatment plants (WWTPs).


Subject(s)
Enzymes, Immobilized , Sewage , Sewage/microbiology , Fermentation , Anaerobiosis , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Fatty Acids, Volatile/metabolism
3.
Front Chem ; 10: 991230, 2022.
Article in English | MEDLINE | ID: mdl-36051623

ABSTRACT

Here, a Co-Metal Organic Framework/pre-hydrolysis (Co-MOF/pre-hydrolysis) solution carbon material is prepared by a mild and environmentally-friendly hydrothermal carbonization technique using a pulping pre-hydrolysis solution as the raw material and Co-MOF as the metal dopant. The stable hollow structure provide sufficient space for particle shrinkage and expansion, while the low density and large specific surface area of the long, hairy tentacle structure provide a greater contact area for ions, which shorten the transmission path of electrons and charges. The materials exhibit excellent specific capacitance (400 F/g, 0.5 A/g) and stability (90%, 10,000 cycles). The Change of different concentration ratios in the structures significantly affect the electrochemical performance. The specific surface area of the carbon materials prepared by ultra-filtration increased, but the specific surface area decrease as ultrafiltration concentration increase. The specific capacitance decrease from 336 F/g for C-ZIF-67-1/3 volume ultrafiltration to 258 F/g for C-ZIF-67-1/5 ultrafiltration. The results indicate that energy storage by the carbon materials relied on a synergistic effect between their microporous and mesoporous structures. The micropores provide storage space for the transmission of ions, while the mesopores provide ion transport channels. The separation of large and small molecules after ultrafiltration concentration limit the ion transmission and energy storage of the pores.

4.
Nanomaterials (Basel) ; 11(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34835600

ABSTRACT

The presence of lignin hampers the utilization of hemicelluloses in the pre-hydrolysis liquor (PHL) from the kraft-based dissolving pulp production process. In this paper, a novel process for removing lignin from PHL was proposed by effectively recycling catalysts of BiOCl/BiOBr. During the whole process, BiOCl and BiOBr were not only adsorbents for removing lignin, but also photocatalysts for degrading lignin. The results showed that BiOCl and BiOBr treatments caused 36.3% and 33.9% lignin removal, respectively, at the optimized conditions, and the losses of hemicellulose-derived saccharides (HDS) were both 0.1%. The catalysts could be regenerated by simple photocatalytic treatment and obtain considerable CO and CO2. After 15 h of illumination, 49.9 µmol CO and 553.0 µmol CO2 were produced by BiOCl, and 38.7 µmol CO and 484.3 µmol CO2 were produced by BiOBr. Therefore, both BiOCl and BiOBr exhibit excellent adsorption and photocatalytic properties for lignin removal from pre-hydrolysis.

5.
J Hazard Mater ; 402: 123573, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32738785

ABSTRACT

The viscose fiber production process is accompanied by the accumulation of pulp-impregnated effluent (PIE), including hemicellulose and large amounts of alkali, and discharge of PIE will cause environment pollution. This paper aims to relieve the inhibition of high concentration of alkali on xylose production from hydrolysis of hemicellulose in PIE. Based on the fact that solid acid uses H+ at the acid sites to exchange with cations in PIE and can be recycled, a two-step method including an extra pretreatment process before pre-hydrolysis (SPP) is proposed. After the alkali was removed by the H+ dissociated from solid acid in the extra pretreatment process, the pH of PIE dropped from 14 to 4, and the content of Na+ and proteins was reduced by 99.13 % and 78.51 %, respectively. After SPP, the polymerization degree of the hemicellulose decreased by 73.4 %, and the subsequent enzymatic hydrolysis process was promoted. Finally, the xylose yield of SPP followed by enzymatic hydrolysis reached 57.15 g/L, which was 145.38 % more than that of enzymatic hydrolysis alone. The load of a downstream ion purification procedure was relieved compared to that of inorganic acid hydrolysis. The development of SPP contributes to the resource utilization of high alkali concentration wastewater.


Subject(s)
Alkalies , Xylose , Hydrolysis , Polysaccharides
6.
Bioresour Technol ; 320(Pt A): 124298, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33129086

ABSTRACT

Oil palm (Elaeis guineensis) trunk chips were processed by steam explosion under different steam conditions, followed by alkaline extraction and fermentation to produce efficient lignocellulosic ethanol as sustainable alternative energy resource. The optimum condition of steam explosion was attained at 210°C for 4 min (α-cellulose: 58.83% and lignin: 27.12%). Taguchi 3 factor design [(sodium hydroxide concentration (NaOH), temperature and time)] was performed to optimize alkaline extraction. The optimum condition at 15% NaOH, 90°C for 60 min gave highest percentage α-cellulose: 87.14% and lowest percentage of lignin: 6.13%. Simultaneous saccharification and fermentation (SSF) involved 10% dry weight pretreated fibers, Celluclast 1.5L (15 FPU /gram substrate), Novozyme 188 (15 IU/gram substrate) and Saccharomyces cerevisiae SC90. The highest ethanol concentration (CP) produced during SSF was 44.25 g/L. Nonetheless, pre-hydrolysis simultaneous saccharification and fermentation gave 31.22 g/L (CP). All results suggested that optimized two step pretreatment produced efficient ethanol.


Subject(s)
Ethanol , Saccharomyces cerevisiae , Cellulose/metabolism , Fermentation , Hydrolysis , Lignin/metabolism , Saccharomyces cerevisiae/metabolism
7.
Biotechnol Biofuels ; 13(1): 188, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33292538

ABSTRACT

BACKGROUND: The presence of soluble lignin, furfural and hydroxymethylfurfural (HMF) in industrial pre-hydrolysis liquor (PHL) from the pulping process can inhibit its bioconversion into bioethanol and other biochemicals. Although various technologies have been developed to remove these inhibitors, certain amounts of sugars are also inevitably removed during the treatment process. Hence, polystyrene divinylbenzene (PS-DVB) resin was used as an adsorptive material to simultaneously remove fermentation inhibitors while retaining sugars with high yields to improve the fermentability of PHL after acid hydrolysis by enriching its xylose concentration. The fermentability of acid-hydrolyzed PHL (A-PHL) was evaluated by the bioconversion into ethanol and xylosic acid (XA) after treatment with PS-DVB resin. RESULTS: The results showed that the highest xylose concentration (101.1 g/L) in PHL could be obtained by acid hydrolysis at 100 °C for 80 min with 4% acid, while the concentration of fermentation inhibitors (furfural, HMF and lignin) in PHL could also be significantly improved during the acid-hydrolysis process. After treatment with PS-DVB resin, not only were 97% of lignin, 92% of furfural, and 97% of HMF removed from A-PHL, but also 96% of xylose was retained for subsequent fermentation. With resin treatment, the fermentability of A-PHL could be improved by 162-282% for ethanol production from A-PHL containing 30-50 g/L xylose and by 18-828% for XA production from A-PHL containing 90-150 g/L xylose. CONCLUSIONS: These results confirmed that PS-DVB resin can remove inhibitors from PHL before producing value-added products by bioconversion. In addition, this work will ideally provide a concept for producing value-added chemicals from pre-hydrolysis liquor, which is regarded as the waste stream in the pulping process.

8.
Int J Biol Macromol ; 163: 1989-1994, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32946940

ABSTRACT

The removal of lignin is important to the recovery of saccharides from the pre-hydrolysis liquor (PHL) in kraft-based dissolved pulp production. A one-step process for lignin removal from PHL via treatment with horseradish peroxidase (HRP) in the presence of Ca2+ was proposed, and its principle was studied. The results demonstrated synergy between HRP and Ca2+ in lignin removal from PHL, whereas NH4+ had little effect on lignin removal. HRP treatment in the presence of 60 mmol/L of Ca2+ resulted in a lignin removal of 64.8% accompanied by a saccharide loss of 14.2%. HRP catalyzed both the polymerization and depolymerization of the lignin in the PHL. The HRP-catalyzed lignin polymerization rendered some lignin insoluble enabling it to be directly removed. The HRP-catalyzed depolymerization of lignin decreased its molecular weight with an evident increase in its carboxyl content. The insoluble complexes formed between the lignin with carboxyl and the Ca2+ facilitated the removal of the depolymerized lignin.


Subject(s)
Horseradish Peroxidase/pharmacology , Hydrolysis/drug effects , Lignin/isolation & purification , Sugars/chemistry , Calcium/chemistry , Horseradish Peroxidase/chemistry , Lignin/chemistry
9.
Polymers (Basel) ; 11(10)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557834

ABSTRACT

In this study, the effect of a combined treatment consisting of calcium hydroxide (CH) followed by activated carbon (AC) on the purification of hemicellulose in the pre-hydrolysis liquor (PHL) from pulping process has been evaluated. The results show that lignin and furfural of PHL are efficiently removed, and the lignin removal is achieved by forming complexes onto CH particles in the CH treatment process, while acetic acid (acetate) is formed from the hydrolysis of acetyl groups present in the dissolved hemicelluloses in the PHL. The loss of xylo-oligosaccharides (XOS) is moderate, even at a high CH dosage of 0.8% while the xylose concentration is essentially unchanged. For the AC treatment, the optimal treating pH can enhance the interactions between AC and residual lignin and change the zeta potential of AC resulting in improved lignin adsorption onto AC. An increase of AC dosage has the tendency to adsorb more XOSDP>6 than XOSDP2~6. Overall, 66.9% of lignin and 70.1% of furfural removals are achieved under the optimal conditions of CH and AC treatment process, with a 5.9% total xylosugars loss. The present combination of CH and AC treatment process was more effective and selective for purification of xylosugars of PHL.

10.
Carbohydr Polym ; 213: 296-303, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30879672

ABSTRACT

Pre-hydrolysis liquor (PHL) from the kraft-based dissolving pulp process contains large amounts of hemicelluloses, which is usually treated as an effluent and further efforts have to be involved to eliminate the pollution disposal. However, the hemicelluloses-rich PHL is a promising candidate for the production of carbon microspheres via hydrothermal carbonization. The yield of the carbon microspheres directly derived from the hydrothermal carbonization of the hemicelluloses-rich PHL (22.1%) was almost twice than that from xylose (13.1%). Furthermore, sulfuric acid and the lignin in the PHL could significantly improve the yield and change the size of the carbon microspheres obtained from the PHL. Additionally, the activated carbon microspheres functionalized with acrylic acid showed improved adsorption capacities for Pb(II) ion (273.4 mg/g) and methylene blue (701.3 mg/g). The hydrothermal carbonization of the PHL not only utilizes the hemicelluloses in the PHL, but also reduces the pollution load of the PHL significantly.


Subject(s)
Carbon/chemistry , Polysaccharides/chemistry , Hydrolysis , Microspheres , Particle Size , Surface Properties
11.
Biotechnol Biofuels ; 11: 337, 2018.
Article in English | MEDLINE | ID: mdl-30598699

ABSTRACT

BACKGROUND: In the kraft-based dissolving pulp production process, pre-hydrolysis liquor (PHL) is produced, which contains hemicelluloses, lignin, furfural and acetic acid. PHL is currently burned in the recovery boiler of the kraft pulping process, but it can be utilized for the generation of high-valued products, such as xylitol and xylanase, via fermentation processes. However, some PHL constituents, e.g., furfural and lignin, are contaminants for fermentation processes and they must be eliminated for production of value-added products. RESULTS: In this work, a process is introduced for removing contaminants of PHL. Ca(OH)2 treatment is the first step of this process, which removed 41.2% of lignin and negligible amount of sugars. In this step, a notable increase in the concentration of acetic acid was achieved (ranging from 6.2 to 11.7 g/L). In the second step, the implementation of adsorption using activated carbon (AC) at 1 wt% dosage led to additional 32% lignin and 5.9% xylosugar removals. In addition, laccase assisted activated carbon treatment led to further removal of lignin via accelerating lignin polymerization and adsorption on AC (i.e., removal from PHL). Overall, 90.7% of lignin, 100% of furfural, 5.7% of xylose, and 12% of xylan were removed from PHL, while the concentration of acetic acid became twofolds in the PHL. CONCLUSIONS: This study reports an attractive process for purifying sugars and acetic acid of PHL. This process may be implemented for producing sugar-based value-added products from PHL. It also discusses the mechanism of Ca(OH)2 treatment, AC adsorption and laccase assisted activated carbon treatment for lignin removal.

12.
Carbohydr Polym ; 174: 385-391, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28821082

ABSTRACT

In this study, the pre-hydrolysis liquor (PHL) was recycled during aspen chip water pre-hydrolysis, and the effects of PHL recycling on the extraction and accumulation of the hemicellulosic saccharides especially that with high molecular weight in the PHL were studied. The results showed that the concentration of hemicellulose saccharides in PHL depended on the pre-hydrolysis temperature and PHL recycling times. Compared to the unrecycled PHL, the concentration of hemicellulosic saccharides in PHL increased significantly when recycling PHL once or twice at 170°C. Furthermore, the amount of high-molecular-weight hemicelluloses (HMHs) in PHL recycled once at 170°C increased from 2.58g/L (unrecycled) to 6.18g/L, but the corresponding average molecular weight of HMHs decreased from 9.2kDa to 7.6kDa. The concentration of hemicellulosic saccharides in PHL decreased with PHL recycling time at 180°C, accompanied by the formation of a significant amount of furfural.

13.
Waste Manag ; 68: 128-138, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28709740

ABSTRACT

Methane production potential of tropical fruit wastes, namely lady-finger banana peel, rambutan waste and longan waste were compared using BMP assay and stoichiometric modified Buswell and Mueller equation. Methane yields based on volatile solid (VS) were in the order of ground banana peel, chopped banana peel, chopped longan waste, and chopped rambutan waste (330.6, 268.3, 234.6 and 193.2 mLCH4/gVS) that corresponded to their calculated biodegradability. In continuous operations of banana peel digestion at feed concentrations based on total solid (TS) 1-2%, mesophilic single stage digester run at 20-day hydraulic retention time (20-day HRT) failed at 2%TS, but successfully recovered at 1.5%TS. Pre-hydrolysis thermophilic reactor (4-d HRT) was placed as pre-treatment to mesophilic reactor (20-d HRT). Higher biogas (with an evolution of H2) and energy yields were obtained and greater system stability was achieved over the single stage digestion, particularly at higher solid feedstock. The best performance of two stage digestion was 68.5% VS destruction and energy yield of 2510.9kJ/kgVS added at a feed concentration of 2%TS.


Subject(s)
Bioreactors , Musa , Anaerobiosis , Fruit , Hydrolysis , Methane
14.
Comput Biol Chem ; 69: 96-109, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28600956

ABSTRACT

The most representative member of the Ras subfamily is its HRas isoform. Ras proteins being GTPases, possess an intrinsic activity to hydrolyze the GTP molecule to GDP. During the transition phases, between active and inactive states, P-loop and switch regions show maximum variations. Various hot-spot Ras mutants (G12V, A59G, Q61L etc) have been reported, that limit the protein's conformation in the permanent active state. In the present study, we aim to explore the structural dynamics of one such crucial mutant of Ras namely A59G which belongs to the conserved Switch II region of the protein. Approximately ∼15µs of Classical Molecular Dynamics (CMD) simulations have been carried out on the mutant and wild-type complexes. Further, a metadynamics simulation of 500ns was also carried out, which suggests an energy barrier of ∼9.56kcal/mol between wild-type and mutant conformation. We demonstrate the role of water molecule in maintaining the required interaction networks in the pre-hydrolysis state, its impact on A59G mutation, distinct orientation of the Gln61 residue in two conformations, disruption of crucial Gly60 and γ phosphate and the change in the Switch II region. The outcome of our study captures the pre-hydrolysis state of the HRas protein. It also establishes the fact that this mutation makes the movement of Switch II region and the conserved DXXGQ motif highly constrained, which is known to be an important requirement for hydrolysis. This suggests that the A59G mutation may decrease the rate of intrinsic hydrolysis as well as GAP-mediated hydrolysis.


Subject(s)
Molecular Dynamics Simulation , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Humans , Hydrolysis
15.
Bioresour Technol ; 234: 8-14, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28315605

ABSTRACT

Herein, bacterial cellulose (BC) was synthesized by acetobacter xylinum via organic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source. Acetic acid was applied to pretreat the corn stalk, then, the prehydrolysate was detoxified by sequential steps of activated carbon and ion exchange resin treatment prior to use as carbon source to cultivate acetobacter xylinum. Moreover, the recovery of acetic acid was achieved for facilitating the reduction of cost. The results revealed that the combination method of detoxification treatment was very effective for synthesis of BC, yield could be up to 2.86g/L. SEM analysis showed that the diameter size of BC between 20 and 70mm. In summary, the process that bacterial cellulose was biosynthesized via prehydrolysate from agricultural corn stalk used as carbon source is feasible, and the ability to recover organic acid make it economical, sustainable and green, which fits well into the biorefinery concept.


Subject(s)
Zea mays , Acetic Acid , Carbon , Cellulose , Gluconacetobacter xylinus , Hydrolysis
16.
Carbohydr Polym ; 156: 409-416, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-27842840

ABSTRACT

Cellulose nanocrystals were isolated from oil palm trunk by total chlorine free method. The samples were either water pre-hydrolyzed or non-water pre-hydrolyzed, subjected to soda pulping, acidified and ozone bleached. Cellulose and cellulose nanocrystal (CNC) physical, chemical, thermal properties, and crystallinity index were investigated by composition analysis, scanning electron microscopy, transmission electron microscopy, fourier transform infrared, thermogravimetric analysis and X-ray diffraction. Water pre-hydrolysis reduced lignin (<0.5%) and increased holocellulose (99.6%) of ozone-bleached cellulose. Water pre-hydrolyzed cellulose exhibited surface fibrillation and peeling off after acid hydrolysis process compared to non-fibrillated of non-water pre-hydrolyzed cellulose. Water pre-hydrolysis improved final CNC crystallinity (up to 75%) compared to CNC without water pre-hydrolysis crystallinity (69%). Cellulose degradation was found to occur during ozone bleaching stage but CNC showed an increase in crystallinity after acid hydrolysis. Thus, oil palm trunk CNC can be potentially applied in pharmaceutical, food, medical and nanocomposites.


Subject(s)
Arecaceae/chemistry , Cellulose/chemistry , Cellulose/isolation & purification , Nanoparticles/chemistry , Plant Stems/chemistry , Hydrolysis , Water/chemistry
17.
Bioresour Technol ; 216: 754-60, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27295253

ABSTRACT

A feasible approach was developed to produce furfural from the pre-hydrolysis liquor of corncob via biochar catalysts as the solid acid catalyst in a new biphasic system with dichloromethane (DCM) as the organic phase and the concentrated pre-hydrolysis liquor (CPHL) containing NaCl as the aqueous phase. The biochar catalyst possessing many acidity groups (SO3H, COOH and phenolic OH groups) was prepared by the carbonization and sulfonation process of the corncob hydrolyzed residue. The influence of the catalytic condition on furfural yield and selectivity was comparatively studied. It was found that 81.14% furfural yield and 83.0% furfural selectivity were obtained from CPHL containing 5wt% xylose using this biochar catalyst in the CPHL-NaCl/DCM biphasic system at 170°C for 60min. In addition, with the regeneration process, this catalyst displayed the high performance and excellent recyclability.


Subject(s)
Biotechnology/methods , Charcoal/metabolism , Furaldehyde/metabolism , Waste Disposal, Fluid , Acids/chemistry , Carbon/chemistry , Catalysis , Hydrolysis , Photoelectron Spectroscopy , Recycling , Sulfonic Acids/chemistry , Temperature , Thermogravimetry , Time Factors , Water/chemistry
18.
Carbohydr Polym ; 147: 133-138, 2016 Aug 20.
Article in English | MEDLINE | ID: mdl-27178917

ABSTRACT

The study was conducted to evaluate the quality of dissolving pulp of Musa sapientum L. (banana) plant stem and its potential for biorefinery. Introduction of pre-hydrolysis prior to any alkaline pulping process helps to reduce the content of hemicellulose and consequently produce acceptably high content of cellulose pulp. Water pre-hydrolysis was done at 150°C for 90min. The amount of lignin, xylan and glucan in the extracted pre-hydrolysis liquor (PHL) was 1.6, 4.9 and 1.6%, respectively. Pulping of pre-extracted chips was done following soda-AQ, alkaline sulfite and kraft process. The ratio of chip to liquor was 1:7 for both pre-hydrolysis and pulping. The kraft pulping process with 20% active alkali and 25% sulfidity at 150°C for 90min showed the best result. The lowest kappa number was 26.2 with a considerable pulp yield of 32.7%. The pulp was bleached by acidic NaClO2 and the consistency was 10% based on air-dried pulp. The lowest amount of 7% NaClO2 was used for the bleaching sequence of D0ED1ED2. After D0ED1ED2 bleaching, the pulp showed that α-cellulose, brightness and ash were 91.9, 77.9 and 1.6% respectively. The viscosity was 19.9cP. Hence, there is a possibility to use banana plant stem as a raw material for dissolving grade pulp and other bioproducts.


Subject(s)
Musa/chemistry , Paper , Plant Stems/chemistry , Cellulose , Hydrolysis , Lignin , Viscosity
19.
Carbohydr Polym ; 115: 44-8, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25439866

ABSTRACT

Jute stick is woody portion of jute plant, which remain as leftover after extracting bast fibre. Presently, it is being used for fencing in the rural area. In this investigation, biorefinery concept was initiated in producing dissolving pulp from jute stick by pre-hydrolysis kraft process. At 170°C for 1h of pre-hydrolysis, 70% of hemicelluloses was dissolved with negligible loss of α-cellulose. At this condition, 75% of dissolved sugars in the pre-hydrolysis liquor were in the oligomeric form. The pre-hydrolysed jute stick was subsequently pulped by kraft process with the variation of active alkali. The pulp yield was 36.2% with kappa number 18.5 at the conditions of 16% active alkali for 2h of cooking at 170°C. Final pulp was produced with 92% α-cellulose and 89% brightness after D0EpD1EpD1 bleaching. The produced dissolving pulp can be used in rayon production.

20.
Bioresour Technol ; 169: 9-18, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25016219

ABSTRACT

Co-fermentation of glucose and xylose from lignocelluloses is an efficient approach to increasing ethanol production. Simultaneous saccharification and co-fermentation (SSCF) of corn stover pretreated with aqueous ammonia was performed using engineered yeast with xylose utilization pathway. Thus far, the effect of the several key factors on SSCF was investigated, including temperature, inoculation size, pre-hydrolysis and pH. Ethanol concentration was achieved to 36.5 g/L during SSCF process with 6% glucan loading. The addition of Tween 20 reduced enzyme loading, i.e., from 15 to 7.5 FPU/gglucan with the same final ethanol concentration. The ethanol concentration was achieved to 70.1g/L at 12% glucan loading. Yeast feeding, combined with substrate and enzyme feeding, was proved to be an efficient approach for SSCF with high solid loading.


Subject(s)
Ammonia/pharmacology , Carbohydrate Metabolism/drug effects , Fermentation/drug effects , Metabolic Engineering/methods , Saccharomyces cerevisiae/metabolism , Waste Products , Zea mays/chemistry , Batch Cell Culture Techniques , Hydrogen-Ion Concentration , Hydrolysis/drug effects , Saccharomyces cerevisiae/drug effects , Temperature , Time Factors , Xylose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL