Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Total Environ ; : 176804, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39389126

ABSTRACT

Numerous tire additives are high-production volume chemicals that are used extensively worldwide. However, their presence and partitioning behavior remain largely unknown, particularly in marine environments. This study is the first to reveal the spatiotemporal distribution, multimedia partitioning, and transport processing of 22 tire additives and their transformation products (TATPs) in a highly urbanized estuary (n = 166). Nineteen, 18, and 20 TATPs were detectable in water, suspended particulate matter (SPM), and sediments, respectively, with total levels of 59.7-2021 ng/L, 164-6935 ng/g, and 4.66-58.4 ng/g, respectively. The multimedia partitioning mechanisms of TATPs are governed by their molecular weight, hydrophobicity, and biodegradation rate. Mass inventories coupled with model simulations have revealed that substantial quantities of TATPs accumulate within estuarine environments, and these compounds can be continuously transported into the ocean, particularly during the wet season. According to the multi-criteria evaluation approach, four and three TATPs were identified as high-priority pollutants during the dry and wet seasons, respectively. Unexpectedly, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone was only listed as a medium-priority pollutant. This study underscores the importance of marine surveillance and advocates for particular attention to these ubiquitous but underexplored TATPs in future studies.

2.
Environ Sci Technol ; 58(32): 14506-14517, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39087809

ABSTRACT

With the development of large numbers of novel organophosphate esters (OPEs) alternatives, it is imperative to screen and identify those with high priority. In this study, surface water, biofilms, and freshwater snails were collected from the flow-in rivers of Taihu Lake Basin, China. Screened by target, suspect, and nontarget analysis, 11 traditional and 14 novel OPEs were identified, of which 5 OPEs were first discovered in Taihu Lake Basin. The OPE concentrations in surface water ranged from 196 to 2568 ng/L, with the primary homologue tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) being newly identified, which was likely derived from the transformation of tris(2,4-ditert-butylphenyl) phosphite. The majority of the newly identified OPEs displayed substantially higher bioaccumulation and biomagnification potentials in the biofilm-snail food chain than the traditional ones. Quantitative structure-property relationship models revealed both hydrophobicity and polarity influenced the bioaccumulation and biomagnification of the OPEs, while electrostatic attraction also had a contribution to the bioaccumulation in the biofilm. TDtBPP was determined as the utmost priority by toxicological priority index scheme, which integrated concentration, bioaccumulation, biomagnification, acute toxicity, and endocrine disrupting potential of the identified OPEs. These findings provide novel insights into the behaviors of OPEs and scientific bases for better management of high-risk pollutants in aquatic ecosystem.


Subject(s)
Esters , Organophosphates , Water Pollutants, Chemical , Quantitative Structure-Activity Relationship , Animals , Environmental Monitoring , China , Snails
3.
Environ Sci Technol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016874

ABSTRACT

Emerging aryl organophosphate esters (aryl-OPEs) have been employed as substitutes for organohalogen flame retardants in recent years; however, their environmental occurrence and associated impacts in urban estuarine sediments have not been adequately investigated, impeding regulatory decision-making. Herein, field-based investigations and modeling based on surface sediment and sediment core analysis were employed to uncover the historical pollution and current environmental impacts of aryl-OPEs in the Pearl River Estuary, South China. Our results revealed a substantial increase in aryl-OPE emission, particularly emerging aryl-OPEs, through sediment transport to the estuary since the 2000s. The emerging aryl-OPEs comprised 83% of the total annual input in the past decade, with an average annual input of 155,000 g. Additionally, the emerging-to-traditional aryl-OPE concentration ratios increased with decreasing distance from the shore, peaking in the highly urbanized riverine outlets. These findings indicate that inventories of emerging aryl-OPEs are likely increasing in estuarine sediments and their emissions are surpassing those of traditional aryl-OPEs. Our risk-based priority screening approach indicates that some emerging aryl-OPEs, particularly bisphenol A bis(diphenyl phosphate), can pose a higher environmental risk than traditional aryl-OPEs in estuarine sediments. Overall, our study highlights the importance of recognizing the environmental impacts of emerging aryl-OPEs.

4.
J Hazard Mater ; 474: 134651, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38843640

ABSTRACT

As emerging pollutants, antidepressants (AD) must be urgently investigated for risk identification and assessment. This study constructed a comprehensive-effect risk-priority screening system (ADRank) for ADs by characterizing AD functionality, occurrence, persistence, bioaccumulation and toxicity based on the integrated assignment method. A classification model for ADs was constructed using an improved mixup-transformer deep learning method, and its classification accuracy was compared with those of other models. The accuracy of the proposed model improved by up to 23.25 % compared with the random forest model, and the reliability was 80 % more than that of the TOPSIS method. A priority screening candidate list was proposed to screen 33 high-priority ADs. Finally, SHapley Additive explanation (SHAP) visualization, molecular dynamics, and amino acid analysis were performed to analyze the correlation between AD structure and toxic receptor binding characteristics and reveal the differences in AD risk priority. ADs with more intramolecular hydrogen bonds, higher hydrophobicity, and electronegativity had a more significant risk. Van der Waals and electrostatic interactions were the primary influencing factors, and significant differences in the types and proportions of the main amino acids in the interaction between ADs and receptors were observed. The results of the study provide constructive schemes and insights for AD priority screening and risk management.


Subject(s)
Antidepressive Agents , Deep Learning , Antidepressive Agents/chemistry , Risk Assessment , Humans , Environmental Pollutants/toxicity , Environmental Pollutants/chemistry
5.
Environ Sci Technol ; 57(31): 11656-11665, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37503546

ABSTRACT

Due to their prevalence in urban contaminated water, the driving factors of organophosphate esters (OPEs) need to be well examined, and their related ecological impacts should include that of their transformation products (TPs). Additionally, a robust framework needs to be developed to integrate multiple variables related to ecological impacts for improving the ecological health assessment. Therefore, OPEs and TPs in urban stormwater and wastewater in Hong Kong were analyzed to fill these gaps. The results revealed that the total concentrations of OPEs in stormwater were positively correlated with the area of transportation land. Individual TP concentrations and the mass ratios of individual TPs/OPEs were somewhat higher in sewage effluents than that in stormwater. OPEs generally showed relatively higher risk quotients than TPs; however, the total risk quotients increased by approximately 38% when TPs were factored in. Moreover, the molecular docking results suggested that the investigated TPs might cause similar endocrine disruption in marine organisms as their parent OPEs. This study employed the Toxicological-Priority-Index scheme to successfully integrate the ecological risks and endocrine-disrupting effects to refine the ecological health assessment of the exposure to OPEs and their TPs, which can better inform the authority on the prioritization for regulating these contaminants of emerging concern in urban built environments.


Subject(s)
Flame Retardants , Water Pollutants, Chemical , Sewage , Water Pollutants, Chemical/analysis , Molecular Docking Simulation , Environmental Monitoring/methods , Organophosphates , Esters , China , Flame Retardants/analysis
6.
Sci Total Environ ; 893: 164881, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37321500

ABSTRACT

Increasing and widely detected contaminants of emerging concern (CECs) pose a threat to drinking water safety. Compared with traditional methods, the exposure-activity ratio (EAR) method based on the ToxCast database may have unique advantages in risk assessment of drinking water sources because it provides massive multi-target high-throughput screening toxicity effect data assessment for chemicals with missing traditional toxicity data. In this study, 112 CECs at 52 sampling sites in drinking water sources in Zhejiang Province of eastern China were investigated. Based on EARs and occurrence, priority chemicals were identified as difenoconazole (priority level 1), dimethomorph (priority level 2), acetochlor, caffeine, carbamazepine, carbendazim, paclobutrazol and pyrimethanil (priority level 3). Different from single observable biological effect in traditional methods, a variety of observable biological effects caused by high-risk targets were explored through adverse outcomes pathways (AOPs), revealing ecological risks as well as human health risks, for example, hepatocellular adenomas and carcinomas. Furthermore, the difference between the maximum EAR for a given chemical in a sample (EARmax) and the toxicity quotient (TQ) in priority screening of CECs was compared. The results show that screening priority CECs based on the EAR method is acceptable and more sensitive, suggesting the difference between in vitro and in vivo toxic effects and the necessity of incorporating the harm degree of biological effects into the EAR method to screen priority chemicals in the future.


Subject(s)
Adverse Outcome Pathways , Drinking Water , Water Pollutants, Chemical , Humans , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Risk Assessment/methods
7.
J Environ Manage ; 341: 118068, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37137268

ABSTRACT

Pollutant release inventories are used for environmental policy making to reduce toxic pollutants, even though the quantity-based inventory analysis does not take into account the relative toxicity of pollutants. To overcome this limit, life cycle impact assessment (LCIA)-based inventory analysis was developed but still has a high uncertainty from modelling the site- and time-specific fates and transports of pollutants. Thus, this study develops a methodology to evaluate toxicity potentials based on the concentration of pollutants in the exposure to humans in order to circumvent the uncertainty and subsequently screen priority toxins in pollutant release inventories. This methodology combines (i) analytical measurement of the concentration of the pollutants exposed to humans; (ii) application of toxicity effect characterization factors for pollutants; and (iii) identification of priority toxins and industries based on the toxicity potential evaluation results. To demonstrate the methodology, a case study is considered, evaluating toxicity potentials from the ingestion of heavy metals in seafood organisms and then identifying priority toxins and industry sectors in a pollutant release inventory. The results of the case study show that the methodology-based priority pollutant is different from the quantity- and LCIA-based ones. Therefore, the methodology can contribute to making effective environmental policy.


Subject(s)
Environmental Pollutants , Metals, Heavy , Humans , Environmental Pollutants/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis
8.
BMC Infect Dis ; 23(1): 231, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37059987

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is a major public health challenge worldwide. However, the aetiological and disease severity-related pathogens associated with CAP in adults in China are not well established based on the detection of both viral and bacterial agents. METHODS: A multicentre, prospective study was conducted involving 10 hospitals located in nine geographical regions in China from 2014 to 2019. Sputum or bronchoalveolar lavage fluid (BALF) samples were collected from each recruited CAP patient. Multiplex real-time PCR and bacteria culture methods were used to detect respiratory pathogens. The association between detected pathogens and CAP severity was evaluated. RESULTS: Among the 3,403 recruited eligible patients, 462 (13.58%) had severe CAP, and the in-hospital mortality rate was 1.94% (66/3,403). At least one pathogen was detected in 2,054 (60.36%) patients, with two or more pathogens were co-detected in 725 patients. The ten major pathogens detected were Mycoplasma pneumoniae (11.05%), Haemophilus influenzae (10.67%), Klebsiella pneumoniae (10.43%), influenza A virus (9.49%), human rhinovirus (9.02%), Streptococcus pneumoniae (7.43%), Staphylococcus aureus (4.50%), adenovirus (2.94%), respiratory syncytial viruses (2.35%), and Legionella pneumophila (1.03%), which accounted for 76.06-92.52% of all positive detection results across sampling sites. Klebsiella pneumoniae (p < 0.001) and influenza viruses (p = 0.005) were more frequently detected in older patients, whereas Mycoplasma pneumoniae was more frequently detected in younger patients (p < 0.001). Infections with Klebsiella pneumoniae, Staphylococcus aureus, influenza viruses and respiratory syncytial viruses were risk factors for severe CAP. CONCLUSIONS: The major respiratory pathogens causing CAP in adults in China were different from those in USA and European countries, which were consistent across different geographical regions over study years. Given the detection rate of pathogens and their association with severe CAP, we propose to include the ten major pathogens as priorities for clinical pathogen screening in China.


Subject(s)
Community-Acquired Infections , Legionella pneumophila , Pneumonia, Bacterial , Pneumonia , Humans , Adult , Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/complications , Prospective Studies , Pneumonia/diagnosis , Pneumonia/epidemiology , Pneumonia/etiology , Streptococcus pneumoniae , Mycoplasma pneumoniae , Respiratory Syncytial Viruses , Klebsiella pneumoniae , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/etiology
9.
Sci Total Environ ; 856(Pt 1): 159016, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36162578

ABSTRACT

Surface water provides ecological services such as drinking water supply. However, contaminants of emerging concern (CECs) are rising concerns because they are ubiquitously detected in surface water and pose potential risks to the aquatic environment and human health. This study investigated the occurrence of 165 CECs in surface water from drinking water source areas along the lower reaches of the Yangtze River to prioritize the CECs and to estimate potential biological activity based on exposure-activity ratio (EAR). A total of 70 CECs were detected in the surface water at least once at the selected 17 sampling sites, and their concentrations ranged from 0.592 to 4650 ng/L. Twenty-four CECs were detected at each site, and these were mostly pharmaceutical and personal care products and pesticides. Sucralose, 1H-benzotriazole and carbendazim were the most common CECs with high median concentrations in the study area. Specifically, sucralose, an artificial sweetener, was presented at each site with the highest median concentration (3010 ng/L), which indicated that anthropogenic inputs are an important source of contaminants. Medroxyprogesterone and trenbolone were identified as the priority contaminants of interest, with maximum EARchemical values of 0.389 and 0.183, respectively. Among all the sites, the higher cumulative EARmixture value was found from Nantong City (0.765), which indicated that this site could have a relatively greater potential for biological effects, and these effects were mainly due to medroxyprogesterone and trenbolone. In regard to the bioactivity of all detected CECs, nuclear receptors showed the greatest potential bioactivity in this region, particularly androgen receptor-mediated bioactivity, which is most likely affected organisms residing in the source water area. These results suggest that the drinking water sources from the studied region are contaminated with CECs, and highlight the prioritization of future monitoring and research to protect source waters.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Rivers/chemistry , Environmental Monitoring , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Trenbolone Acetate , Medroxyprogesterone
SELECTION OF CITATIONS
SEARCH DETAIL