Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(35): 39939-39950, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-35998337

ABSTRACT

We study the effect of (2,3,4,5,6-pentafluorophenyl)alkylamine additives with differing alkyl chain lengths (methyl, ethyl, and n-propyl) on the performance of methylammonium lead triiodide (MAPbI3) perovskite solar cells. The results show that the length of the alkyl chain between the 2,3,4,5,6-pentafluorophenyl group and ammonium moiety has a critical effect on the perovskite film structure and subsequent device performance. The 2,3,4,5,6-pentafluorophenyl ammonium additive with the shortest linking group (a methylene unit), namely (2,3,4,5,6-pentafluorophenyl)methylammonium iodide, was found to be distributed throughout the bulk of the perovskite film with a 2D phase only being observable at high concentrations (>30 mol%). In contrast, the additives with ethyl and n-propyl linking groups phase-separate during solution processing and are found to concentrate at the surface of the perovskite film. Photoluminescence measurements showed that the fluorinated additives passivated the surface defects on the perovskite grains. Of the three additives, inverted devices containing 0.32 mol% of the 2,3,4,5,6-pentafluorophenyl ammonium additive with the methylene linking group achieved a maximum power conversion efficiency of 22.0%, with the device efficiency decreasing with increasing additive concentration. In contrast, the devices composed of the additive with the longest alkyl linker, 3-(2,3,4,5,6-pentafluorophenyl)propylammonium iodide, had the poorest performance, with PCEs less than that of the neat MAPbI3 control and decreasing with increasing additive concentration.

2.
ACS Appl Mater Interfaces ; 9(15): 13396-13405, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28368094

ABSTRACT

We have investigated a series of commercially available alkenyl carboxylic acids with different alkenyl chain lengths (trans-2-hexenoic acid (CA-6), trans-2-decenoic acid (CA-10), 9-tetradecenoic acid (CA-14)) for use as solvent additives in polymer-polymer non-fullerene solar cells. We systematically investigated their effect on the film absorption, morphology, carrier generation, transport, and recombination in all-polymer solar cells. We revealed that these additives have a significant impact on the aggregation of polymer acceptor, leading to improved phase segregation in the blend film. This in-depth understanding of the additives effect on the nanomorphology in all-polymer solar cell can help further boost the device performance. By using CA-10 with the optimal alkenyl chain length, we achieved fine phase separation, balanced charge transport, and suppressed recombination in all-polymer solar cells. As a result, an optimal power conversion efficiency (PCE) of 5.71% was demonstrated which is over 50% higher than that of the as-cast device (PCE = 3.71%) and slightly higher than that of devices with DIO treatment (PCE = 5.68%). Compared with widely used DIO, these halogen-free alkenyl carboxylic acids have a more sustainable processing as well as better performance, which may make them more promising candidates for use as processing additives in organic non-fullerene solar cells.

3.
Adv Mater ; 27(21): 3318-24, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-25899940

ABSTRACT

Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive.

4.
Small ; 11(27): 3344-50, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25682920

ABSTRACT

Organic halide salts are successfully incorporated in perovskite-based planar-heterojunction solar cells as both the processing additive and interfacial modifier to improve the morphology of the perovskite light-absorbing layer and the charge collecting property of the cathode. As a result, perovskite solar cells exhibit a significant improvement in power conversion efficiency (PCE) from 10% of the reference device to 13% of the modified devices.

5.
Adv Mater ; 26(16): 2486-93, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24464733

ABSTRACT

Transient photocurrent measurements are used to investigate the effects of processing additives on charge transport in small molecule bulk heterojunction solar cells. The additive decreased carrier recombination rates and improved carrier mobility, both of which are beneficial to carrier extraction. Geminate recombination of charge transfer excitons is ruled out by the data.

SELECTION OF CITATIONS
SEARCH DETAIL