Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396833

ABSTRACT

Bradyrhizobium diazoefficiens can live inside soybean root nodules and in free-living conditions. In both states, when oxygen levels decrease, cells adjust their protein pools by gene transcription modulation. PhaR is a transcription factor involved in polyhydroxyalkanoate (PHA) metabolism but also plays a role in the microaerobic network of this bacterium. To deeply uncover the function of PhaR, we applied a multipronged approach, including the expression profile of a phaR mutant at the transcriptional and protein levels under microaerobic conditions, and the identification of direct targets and of proteins associated with PHA granules. Our results confirmed a pleiotropic function of PhaR, affecting several phenotypes, in addition to PHA cycle control. These include growth deficiency, regulation of carbon and nitrogen allocation, and bacterial motility. Interestingly, PhaR may also modulate the microoxic-responsive regulatory network by activating the expression of fixK2 and repressing nifA, both encoding two transcription factors relevant for microaerobic regulation. At the molecular level, two PhaR-binding motifs were predicted and direct control mediated by PhaR determined by protein-interaction assays revealed seven new direct targets for PhaR. Finally, among the proteins associated with PHA granules, we found PhaR, phasins, and other proteins, confirming a dual function of PhaR in microoxia.


Subject(s)
Bradyrhizobium , Polyhydroxyalkanoates , Bacterial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Polyhydroxyalkanoates/metabolism , Gene Expression Regulation, Bacterial
2.
Mol Microbiol ; 121(2): 230-242, 2024 02.
Article in English | MEDLINE | ID: mdl-38105009

ABSTRACT

The MerR family of transcriptional regulators includes a variety of bacterial cytoplasmic proteins that respond to a wide range of signals, including toxins, metal ions, and endogenous metabolites. Its best-characterized members share similar structural and functional features with the family founder, the mercury sensor MerR, although most of them do not respond to metal ions. The group of "canonical" MerR homologs displays common molecular mechanisms for controlling the transcriptional activation of their target genes in response to inducer signals. This includes the recognition of distinctive operator sequences located at suboptimal σ70 -dependent promoters. Interestingly, an increasing number of proteins assigned to the MerR family based on their DNA-binding domain do not match in structure, sequence, or mode of action with any of the canonical MerR-like regulators. Here, we analyzed several members of the family, including this last group. Based on a phylogenetic analysis, and similarities in structural/functional features and position of their target operators relative to the promoter elements, we propose to assign these "atypical/divergent" MerR regulators to a phylogenetically separated group. These atypical/divergent homologs represent a new class of transcriptional regulators with novel regulatory mechanisms.


Subject(s)
DNA-Binding Proteins , Metals , DNA-Binding Proteins/metabolism , Base Sequence , Phylogeny , Promoter Regions, Genetic/genetics , Metals/metabolism , Bacterial Proteins/metabolism , Ions/metabolism , Gene Expression Regulation, Bacterial/genetics
3.
Proteins ; 91(7): 944-955, 2023 07.
Article in English | MEDLINE | ID: mdl-36840694

ABSTRACT

Intrinsically disordered proteins (IDPs) have numerous dynamic conformations. Given the difficulties in tracking temporarily folded states of this kind of protein, methods such as molecular modeling and molecular dynamics (MD) simulations make the process less costly, less laborious, and more detailed. Few plant IDPs have been characterized so far, such as proteins from the Abscisic acid, Stress and Ripening (ASR) family. The present work applied, for the first time, the two above-mentioned tools to test the feasibility of determining a three-dimensional transition model of OsASR5 and to investigate the relationship between OsASR5 and zinc. We found that one of OsASR5's conformers contains α-helices, turns, and loops and that the metal binding resulted in a predominance of α-helix. This stability is possibly imperative for the transcription factor activity. The promoter region of a sugar transporter was chosen to test this hypothesis and free energy calculations showed how the ion is mandatory for this complex formation. The results produced here aim to clarify which conformation the protein in the bound state assumes and which residues are involved in the process, besides developing the understanding of how the flexibility of these proteins can contribute to the response to environmental stresses.


Subject(s)
Intrinsically Disordered Proteins , Molecular Dynamics Simulation , Zinc , Intrinsically Disordered Proteins/chemistry , Entropy , Promoter Regions, Genetic , Protein Conformation
4.
Behav Brain Res ; 419: 113680, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34822947

ABSTRACT

Conversion of the cellular prion protein (PrPC) into the scrapie form (PrPSc) is the leading step to the development of transmissible spongiform encephalopathies (TSEs), still incurable neurodegenerative disorders. Interaction of PrPC with cellular and synthetic ligands that induce formation of scrapie-like conformations has been deeply investigated in vitro. Different nucleic acid (NA) sequences bind PrP and convert it to ß-sheet-rich or unfolded species; among such NAs, a 21-mer double-stranded DNA, D67, was shown to induce formation of PrP aggregates that were cytotoxic. However, in vivo effects of these PrP-DNA complexes were not explored. Herein, aggregates of recombinant full-length PrP (rPrP23-231) induced by interaction with the D67 aptamer were inoculated into the lateral ventricle of Swiss mice and acute effects were investigated. The aggregates had no influence on emotional, locomotor and motor behavior of mice. In contrast, mice developed cognitive impairment and hippocampal synapse loss, which was accompanied by intense activation of glial cells in this brain region. Our results suggest that the i.c.v. injection of rPrP:D67 aggregates is an interesting model to study the neurotoxicity of aggregated PrP in vivo, and that glial cell activation may be an important step for behavioral and cognitive dysfunction in prion diseases.


Subject(s)
Aptamers, Nucleotide/pharmacology , Behavior, Animal/drug effects , Cognitive Dysfunction/chemically induced , Hippocampus/drug effects , Prion Proteins/pharmacology , Synapses/drug effects , Animals , Disease Models, Animal , Lateral Ventricles/drug effects , Male , Mice
5.
Int J Mol Sci ; 22(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884849

ABSTRACT

Human Antigen Leukocyte-G (HLA-G) gene encodes an immune checkpoint molecule that has restricted tissue expression in physiological conditions; however, the gene may be induced in hypoxic conditions by the interaction with the hypoxia inducible factor-1 (HIF1). Hypoxia regulatory elements (HRE) located at the HLA-G promoter region and at exon 2 are the major HIF1 target sites. Since the G allele of the -964G > A transversion induces higher HLA-G expression when compared to the A allele in hypoxic conditions, here we analyzed HIF1-HRE complex interaction at the pair-atom level considering both -964G > A polymorphism alleles. Mouse HIF2 dimer crystal (Protein Data Bank ID: 4ZPK) was used as template to perform homology modelling of human HIF1 quaternary structure using MODELLER v9.14. Two 3D DNA structures were built from 5'GCRTG'3 HRE sequence containing the -964G/A alleles using x3DNA. Protein-DNA docking was performed using the HADDOCK v2.4 server, and non-covalent bonds were computed by DNAproDB server. Molecular dynamic simulation was carried out per 200 ns, using Gromacs v.2019. HIF1 binding in the HRE containing -964G allele results in more hydrogen bonds and van der Waals contact formation than HRE with -964A allele. Protein-DNA complex trajectory analysis revealed that HIF1-HRE-964G complex is more stable. In conclusion, HIF1 binds in a more stable and specific manner at the HRE with G allele.


Subject(s)
HLA-G Antigens/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Response Elements/genetics , Alleles , Binding Sites , Exons , HLA-G Antigens/chemistry , HLA-G Antigens/genetics , Humans , Hydrogen Bonding , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Molecular Docking Simulation , Promoter Regions, Genetic , Protein Binding , Thermodynamics
6.
J Biol Chem ; 288(28): 20510-9, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23733186

ABSTRACT

Two paralog transcriptional regulators of the MerR family, CueR and GolS, are responsible for monovalent metal ion sensing and resistance in Salmonella enterica. Although similar in sequence and also in their target binding sites, these proteins differ in signal detection and in the set of target genes they control. Recently, we demonstrated that selective promoter recognition depends on the presence of specific bases located at positions 3' and 3 within the operators they interact with. Here, we identify the amino acid residues within the N-terminal DNA-binding domain of these sensor proteins that are directly involved in operator discrimination. We demonstrate that a methionine residue at position 16 of GolS, absolutely conserved among GolS-like proteins but absent in all CueR-like xenologs, is the key to selectively recognize operators that harbor the distinctive GolS-operator signature, whereas the residue at position 19 finely tunes the regulator/operator interaction. Furthermore, swapping these residues switches the set of genes recognized by these transcription factors. These results indicate that co-evolution of a regulator and its cognate operators within the bacterial cell provides the conditions to avoid cross-recognition and guarantees the proper response to metal injury.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Metals/metabolism , Promoter Regions, Genetic , Salmonella enterica/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Binding Sites/genetics , Cations, Monovalent/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Methionine/chemistry , Methionine/genetics , Methionine/metabolism , Models, Molecular , Mutation , Oligonucleotides/genetics , Oligonucleotides/metabolism , Protein Binding , Protein Structure, Tertiary , Salmonella enterica/genetics , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL