Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2837: 67-87, 2024.
Article in English | MEDLINE | ID: mdl-39044076

ABSTRACT

RNA structure is crucial for RNA function, including in viral cis-elements such as the hepatitis B virus (HBV) RNA encapsidation signal ε. Interacting with the viral polymerase ε mediates packaging of the pregenomic (pg) RNA into capsids, initiation of reverse transcription, and it affects the mRNA functions of pgRNA. As free RNA, the 61-nucleotide (nt) ε sequence adopts a bipartite stem-loop structure with a central bulge and an apical loop. Due to stable Watson-Crick base pairing, this was already predicted by early RNA folding programs and confirmed by classical enzymatic and chemical structure probing. A newer, high-resolution probing technique exploits the selective acylation of solvent-accessible 2'-hydroxyls in the RNA backbone by electrophilic compounds such as 2-methylnicotinic acid imidazolide (NAI), followed by mapping of the modified sites by primer extension. This SHAPE principle has meanwhile been extended to numerous applications. Here we provide a basic protocol for NAI-based SHAPE of isolated HBV ε RNA which already provided insights into the impact of mutations, and preliminarily, of polymerase binding on the RNA structural dynamics. While the focus is on NAI modification, we also briefly cover target RNA preparation by in vitro transcription, primer extension using a radiolabeled primer, and analysis of the resulting cDNAs by denaturing polyacrylamide gelelectrophoresis (PAGE). Given the high tolerance of SHAPE chemistry to different conditions, including applicability in live cells, we expect this technique to greatly facilitate deciphering the conformational dynamics underlying the various functions of the ε element, especially in concert with the recently solved three-dimensional structure of the free RNA.


Subject(s)
Hepatitis B virus , Nucleic Acid Conformation , RNA, Viral , Hepatitis B virus/genetics , RNA, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/metabolism , Acylation , Virus Assembly
2.
Enzymes ; 50: 195-226, 2021.
Article in English | MEDLINE | ID: mdl-34861937

ABSTRACT

Hepatitis B virus (HBV) is a hepatotropic, partially double-stranded DNA virus that replicates by reverse transcription and is a major cause of chronic liver disease and hepatocellular carcinoma. Reverse transcription is catalyzed by the four-domain multifunctional HBV polymerase (P) protein that has protein-priming, RNA- and DNA-dependent DNA synthesis (i.e., reverse transcriptase), and ribonuclease H activities. P also likely promotes the three strand transfers that occur during reverse transcription, and it may participate in immune evasion by HBV. Reverse transcription is primed by a tyrosine residue in the amino-terminal domain of P, and P remains covalently attached to the product DNA throughout reverse transcription. The reverse transcriptase activity of P is the target for the nucleos(t)ide analog drugs that dominate HBV treatment, and P is the target of ongoing efforts to develop new drugs against both the reverse transcriptase and ribonuclease H activities. Despite the unusual reverse transcription pathway catalyzed by P and the importance of P to HBV therapy, understanding the enzymology and structure of HBV P severely lags that of the retroviral reverse transcriptases due to substantial technical challenges to studying the enzyme. Obtaining a better understanding of P will broaden our appreciation of the diversity among reverse transcribing elements in nature, and will help improve treatment for people chronically infected with HBV.


Subject(s)
Hepatitis B virus , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA Replication , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Humans , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , RNA-Directed DNA Polymerase/pharmacology
3.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753499

ABSTRACT

Hepadnaviruses, with the human hepatitis B virus as prototype, are small, enveloped hepatotropic DNA viruses which replicate by reverse transcription of an RNA intermediate. Replication is initiated by a unique protein-priming mechanism whereby a hydroxy amino acid side chain of the terminal protein (TP) domain of the viral polymerase (P) is extended into a short DNA oligonucleotide, which subsequently serves as primer for first-strand synthesis. A key component in the priming of reverse transcription is the viral RNA element epsilon, which contains the replication origin and serves as a template for DNA primer synthesis. Here, we show that recently discovered non-enveloped fish viruses, termed nackednaviruses [C. Lauber et al., Cell Host Microbe 22, 387-399 (2017)], employ a fundamentally similar replication mechanism despite their huge phylogenetic distance and major differences in genome organization and viral lifestyle. In vitro cross-priming studies revealed that few strategic nucleotide substitutions in epsilon enable site-specific protein priming by heterologous P proteins, demonstrating that epsilon is functionally conserved since the two virus families diverged more than 400 Mya. In addition, other cis elements crucial for the hepadnavirus-typical replication of pregenomic RNA into relaxed circular double-stranded DNA were identified at conserved positions in the nackednavirus genomes. Hence, the replication mode of both hepadnaviruses and nackednaviruses was already established in their Paleozoic common ancestor, making it a truly ancient and evolutionary robust principle of genome replication that is more widespread than previously thought.


Subject(s)
DNA Replication , DNA, Viral/biosynthesis , Evolution, Molecular , Hepadnaviridae/physiology , Reverse Transcription , Viral Proteins/metabolism , Virus Replication , Conserved Sequence , Hepadnaviridae/classification , Hepadnaviridae/genetics , Hepatitis B virus/classification , Hepatitis B virus/genetics , Phylogeny , RNA, Viral/genetics , Replication Origin , Viral Proteins/genetics
4.
Molecules ; 25(19)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992516

ABSTRACT

Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral reverse transcriptase with epsilon (ε), a cis-acting regulatory signal located at the 5' terminus of pre-genomic RNA (pgRNA), and several host-encoded chaperone proteins. Binding of the viral polymerase (P protein) to ε is necessary for pgRNA encapsidation and synthesis of a short primer covalently attached to its terminal domain. Although we identified small molecules that recognize HBV ε RNA, these failed to inhibit protein-primed DNA synthesis. However, since initiation of HBV (-) strand DNA synthesis occurs within a complex of viral and host components (e.g., Hsp90, DDX3 and APOBEC3G), we considered an alternative therapeutic strategy of allosteric inhibition by disrupting the initiation complex or modifying its topology. To this end, we show here that 3,7-dihydroxytropolones (3,7-dHTs) can inhibit HBV protein-primed DNA synthesis. Since DNA polymerase activity of a ribonuclease (RNase H)-deficient HBV reverse transcriptase that otherwise retains DNA polymerase function is also abrogated, this eliminates direct involvement of RNase (ribonuclease) H activity of HBV reverse transcriptase and supports the notion that the HBV initiation complex might be therapeutically targeted. Modeling studies also provide a rationale for preferential activity of 3,7-dHTs over structurally related α-hydroxytropolones (α-HTs).


Subject(s)
DNA Replication/drug effects , DNA, Viral/metabolism , Hepatitis B virus/physiology , RNA, Viral/metabolism , RNA-Directed DNA Polymerase/metabolism , Tropolone/analogs & derivatives , Viral Proteins/metabolism , Virus Replication/drug effects , APOBEC-3G Deaminase/metabolism , DEAD-box RNA Helicases/metabolism , HEK293 Cells , HSP90 Heat-Shock Proteins/metabolism , Humans , Tropolone/pharmacology
5.
Viruses ; 12(5)2020 05 22.
Article in English | MEDLINE | ID: mdl-32455999

ABSTRACT

Approximately 250 million people are living with chronic hepatitis B virus (HBV) infections, which claim nearly a million lives annually. The target of all current HBV drug therapies (except interferon) is the viral polymerase; specifically, the reverse transcriptase domain. Although no high-resolution structure exists for the HBV polymerase, several recent advances have helped to map its functions to specific domains. The terminal protein (TP) domain, unique to hepadnaviruses such as HBV, has been implicated in the binding and packaging of the viral RNA, as well as the initial priming of and downstream synthesis of viral DNA-all of which make the TP domain an attractive novel drug target. This review encompasses three types of analysis: sequence conservation analysis, secondary structure prediction, and the results from mutational studies. It is concluded that the TP domain of HBV polymerase is comprised of seven subdomains (three unstructured loops and four helical regions) and that all three loop subdomains and Helix 5 are the major determinants of HBV function within the TP domain. Further studies, such as modeling inhibitors of these critical TP subdomains, will advance the TP domain of HBV polymerase as a therapeutic drug target in the progression towards a cure.


Subject(s)
Evolution, Molecular , Hepatitis B virus/enzymology , Hepatitis B virus/genetics , Protein Domains/genetics , RNA-Directed DNA Polymerase/genetics , Hepatitis B, Chronic , Humans , Mutation , RNA Recognition Motif Proteins , RNA, Viral/genetics , Sequence Analysis , Viral Proteins/genetics
6.
Biomolecules ; 9(11)2019 10 24.
Article in English | MEDLINE | ID: mdl-31653090

ABSTRACT

Bacteriophage Phi29 DNA polymerase belongs to the protein-primed subgroup of family B DNA polymerases that use a terminal protein (TP) as a primer to initiate genome replication. The resolution of the crystallographic structure showed that it consists of an N-terminal domain with the exonuclease activity and a C-terminal polymerization domain. It also has two subdomains specific of the protein-primed DNA polymerases; the TP Regions 1 (TPR1) that interacts with TP and DNA, and 2 (TPR2), that couples both processivity and strand displacement to the enzyme. The superimposition of the structures of the apo polymerase and the polymerase in the polymerase/TP heterodimer shows that the structural changes are restricted almost to the TPR1 loop (residues 304-314). In order to study the role of this loop in binding the DNA and the TP, we changed the residues Arg306, Arg308, Phe309, Tyr310, and Lys311 into alanine, and also made the deletion mutant Δ6 lacking residues Arg306-Lys311. The results show a defective TP binding capacity in mutants R306A, F309A, Y310A, and Δ6. The additional impaired primer-terminus stabilization at the polymerization active site in mutants Y310A and Δ6 allows us to propose a role for the Phi29 DNA polymerase TPR1 loop in the proper positioning of the DNA and TP-priming 3'-OH termini at the preinsertion site of the polymerase to enable efficient initiation and further elongation steps during Phi29 TP-DNA replication.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , Viral Proteins/chemistry , Catalytic Domain , DNA-Directed DNA Polymerase/genetics , Mutagenesis, Site-Directed , Polymerization , Viral Proteins/genetics
7.
Methods Mol Biol ; 1540: 157-177, 2017.
Article in English | MEDLINE | ID: mdl-27975315

ABSTRACT

The hepatitis B virus (HBV) polymerase synthesizes the viral DNA genome from the pre-genomic RNA (pgRNA) template through reverse transcription. Initiation of viral DNA synthesis is accomplished via a novel protein priming mechanism, so named because the polymerase itself acts as a primer, whereby the initiating nucleotide becomes covalently linked to a tyrosine residue on the viral polymerase. Protein priming, in turn, depends on specific recognition of the packaging signal on pgRNA called epsilon. These early events in viral DNA synthesis can now be dissected in vitro as described here.The polymerase is expressed in mammalian cells and purified by immunoprecipitation. The purified protein is associated with host cell factors, is enzymatically active, and its priming activity is epsilon dependent. A minimal epsilon RNA construct from pgRNA is co-expressed with the polymerase in cells. This RNA binds to and co-immunoprecipitates with the polymerase. Modifications can be made to either the epsilon RNA or the polymerase protein by manipulating the expression plasmids. Also, the priming reaction itself can be modified to assay for the initiation or subsequent DNA synthesis during protein priming, the susceptibility of the polymerase to chemical inhibitors, and the precise identification of the DNA products upon their release from the polymerase. The identity of associated host factors can also be evaluated. This protocol closely mirrors our current understanding of the RNA binding and protein priming steps of the HBV replication cycle, and it is amenable to modification. It should therefore facilitate both basic research and drug discovery.


Subject(s)
Gene Products, pol/metabolism , Hepatitis B virus/physiology , RNA, Viral/genetics , Transcription, Genetic , Cell Line , DNA Cleavage , DNA-Binding Proteins , Enzyme Activation , Gene Expression , Gene Products, pol/genetics , Gene Products, pol/isolation & purification , Hepatitis B virus/enzymology , Humans , In Vitro Techniques , Multiprotein Complexes , Nuclear Proteins/metabolism , Phosphoric Diester Hydrolases , Plasmids/genetics , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Reverse Transcription , Transcription Factors/metabolism , Transfection , Virus Replication
8.
J Virol ; 91(3)2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27852858

ABSTRACT

Hepatitis B virus (HBV) encodes a multifunction reverse transcriptase or polymerase (P), which is composed of several domains. The terminal protein (TP) domain is unique to HBV and related hepadnaviruses and is required for specifically binding to the viral pregenomic RNA (pgRNA). Subsequently, the TP domain is necessary for pgRNA packaging into viral nucleocapsids and the initiation of viral reverse transcription for conversion of the pgRNA to viral DNA. Uniquely, the HBV P protein initiates reverse transcription via a protein priming mechanism using the TP domain as a primer. No structural homologs or high-resolution structure exists for the TP domain. Secondary structure prediction identified three disordered loops in TP with highly conserved sequences. A meta-analysis of mutagenesis studies indicated these predicted loops are almost exclusively where functionally important residues are located. Newly constructed TP mutations revealed a priming loop in TP which plays a specific role in protein-primed DNA synthesis beyond simply harboring the site of priming. Substitutions of potential sites of phosphorylation surrounding the priming site demonstrated that these residues are involved in interactions critical for priming but are unlikely to be phosphorylated during viral replication. Furthermore, the first 13 and 66 TP residues were shown to be dispensable for protein priming and pgRNA binding, respectively. Combining current and previous mutagenesis work with sequence analysis has increased our understanding of TP structure and functions by mapping specific functions to distinct predicted secondary structures and will facilitate antiviral targeting of this unique domain. IMPORTANCE: HBV is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. One important feature of this virus is its polymerase, the enzyme used to create the DNA genome from a specific viral RNA by reverse transcription. One region of this polymerase, the TP domain, is required for association with the viral RNA and production of the DNA genome. Targeting the TP domain for antiviral development is difficult due to the lack of homology to other proteins and high-resolution structure. This study mapped the TP functions according to predicted secondary structure, where it folds into alpha helices or unstructured loops. Three predicted loops were found to be the most important regions functionally and the most conserved evolutionarily. Identification of these functional subdomains in TP will facilitate its targeting for antiviral development.


Subject(s)
Gene Products, pol/genetics , Gene Products, pol/metabolism , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Protein Interaction Domains and Motifs , Amino Acid Sequence , Conserved Sequence , Gene Products, pol/chemistry , Humans , Models, Molecular , Mutation , Phenotype , Protein Conformation, alpha-Helical , RNA, Messenger/genetics , RNA, Viral , RNA-Binding Proteins
9.
Antiviral Res ; 123: 132-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26408354

ABSTRACT

Hepatitis B virus (HBV) infections rely on the proper functioning of the viral polymerase enzyme, a specialized reverse transcriptase (RT) with multiple activities. All currently approved antiviral drugs for the treatment of chronic HBV infection, except for interferon, target the RT and belong to the same chemical class - they are all nucleoside analogs. Viral DNA synthesis is carried out by the RT enzyme in several different steps, each with distinct RT conformational requirements. In principle, each stage may be targeted by distinct antiviral drugs. In particular, the HBV RT has the unique ability to initiate viral DNA synthesis using itself as a protein primer in a novel protein priming reaction. In order to help identify RT inhibitors and study their mechanisms of action, a number of experimental systems have been developed, each varying in its ability to dissect the protein priming stage and subsequent stages of viral DNA synthesis at the molecular level. Two of the most effective drugs to date, entecavir and tenofovir, can inhibit both the protein priming and the subsequent DNA elongation stages of HBV DNA synthesis. Interestingly, clevudine, a thymidine analog, can inhibit both protein priming and DNA elongation in a non-competitive manner and without being incorporated into the viral DNA. Thus, a nucleoside RT inhibitor (NRTI) can functionally mimic a non-NRTI (NNRTI) in its inhibition of the HBV RT. Therefore, novel NRTIs as well as NNRTIs may be developed to inhibit the DNA synthesis activity of the HBV RT. Furthermore, additional activities of the RT that are also essential to HBV replication, including specific recognition of the viral RNA and its packaging into viral nucleocapsids, may be exploited for antiviral development. To achieve a more potent inhibition of viral replication and ultimately cure chronic HBV infection, the next generation of anti-HBV therapies will likely need to include NRTIs, NNRTIs, and other agents that target the viral RT as well as other viral and host factors in various combinations. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B."


Subject(s)
Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Hepatitis B virus/enzymology , RNA-Directed DNA Polymerase/metabolism , Reverse Transcriptase Inhibitors/isolation & purification , Reverse Transcriptase Inhibitors/pharmacology , Drug Discovery/methods , Drug Discovery/trends , Humans
10.
Emerg Microbes Infect ; 2(9): e56, 2013 Sep.
Article in English | MEDLINE | ID: mdl-26038488

ABSTRACT

Hepatitis B virus (HBV) infection remains a global health problem with over 350 million chronically infected, causing an increased risk of cirrhosis and hepatocellular carcinoma. Current antiviral chemotherapy for HBV infection include five nucleos(t)ide analog reverse transcriptase inhibitors (NRTIs) that all target one enzymatic activity, DNA strand elongation, of the HBV polymerase (HP), a specialized reverse transcriptase (RT). NRTIs are not curative and long-term treatment is associated with toxicity and the emergence of drug resistant viral mutations, which can also result in vaccine escape. Recent studies on the multiple functions of HP have provided important mechanistic insights into its diverse roles during different stages of viral replication, including interactions with viral pregenomic RNA, RNA packaging into nucleocapsids, protein priming, minus- and plus-strand viral DNA synthesis, RNase H-mediated degradation of viral RNA, as well as critical host interactions that regulate the multiple HP functions. These diverse functions provide ample opportunities to develop novel HP-targeted antiviral treatments that should contribute to curing chronic HBV infection.

SELECTION OF CITATIONS
SEARCH DETAIL