Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Toxicol Mech Methods ; 34(4): 369-384, 2024 May.
Article in English | MEDLINE | ID: mdl-38064719

ABSTRACT

Continuous smoking leads to adaptive regulation and physiological changes in lung tissue and cells, and is an inductive factor for many diseases, making smokers face the risk of malignant and nonmalignant diseases. The impact of research in this area is getting more and more in-depth, but the stimulant effect, mechanism of action and response mechanism of the main cells in the lungs caused by smoke components have not yet been fully elucidated, and the early diagnosis and identification of various diseases induced by smoke toxins have not yet formed a systematic relationship method. In this study, single-cell transcriptome data were generated from three lung samples of smokers and nonsmokers through scRNA-seq technology, revealing the influence of smoking on lung tissue and cells and the changes in immune response. The results show that: through UMAP cell clustering, 16 intermediate cell states of 23 cell clusters of the four main cell types in the lung are revealed, the differences of the main cell groups between smokers and nonsmokers are explained, and the human lung cells are clarified. Components and their marker genes, screen for new marker genes that can be used in the evolution of intermediate-state cells, and at the same time, the analysis of lung cell subgroups reveals the changes in the intermediate state of cells under smoke stimulation, forming a subtype intermediate state cell map. Pseudo-time ordering analysis, to determine the pattern of dynamic processes experienced by cells, differential expression analysis of different branch cells, to clarify the expression rules of cells at different positions, to clarify the evolution process of the intermediate state of cells, and to clarify the response of lung tissue and cells to smoke components mechanism. The development of this study provides new diagnosis and treatment ideas for early disease detection, identification, disease prevention and treatment of patients with smoking-related diseases, and lays a theoretical foundation based on cell and molecular regulation.

SELECTION OF CITATIONS
SEARCH DETAIL