Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Vet Res ; 85(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38457913

ABSTRACT

OBJECTIVE: This study evaluated the effects of scanning position and contrast medium injection rate on pulmonary CT perfusion (CTP) images in healthy dogs. ANIMALS: 7 healthy Beagles. METHODS: Experiments involved 4 conditions: dorsal and sternal recumbency at 2.5 mL/s (first) and sternal recumbency with additional rates of 1.5 and 3.5 mL/s (second). Various parameters, including the initial time of venous enhancement (Tv), peak time of arterial enhancement (PTa), and peak enhancement values of the artery, were measured. The PTa to Tv interval was calculated. Perfusion mapping parameters (pulmonary blood flow, pulmonary blood volume, mean transit time, time to maximum, and time to peak) were determined in different lung regions (left and right dorsal, middle, and ventral). RESULTS: There are significant variations in most perfusion mapping parameters based on the pulmonary parenchymal location. Dorsal recumbency had a lower peak value of arterial enhancement than sternal recumbency. Pulmonary blood flow in the dorsal region and mean transit time and time to maximum in all regions showed no significant differences based on position. Pulmonary blood volume and time to peak varied with scanning position. The PTa to Tv interval did not differ based on the injection rate, but the injection time at 1.5 mL/s was longer than at other rates. All perfusion mapping parameters of the ventral region increased with higher injection rates. CLINICAL RELEVANCE: The recommended CTP imaging approach in dogs is a low injection rate of 1.5 mL/s in the sternal recumbency. This study provides reference ranges for perfusion parameters based on the pulmonary parenchymal location, contributing to the acquisition and application of pulmonary CTP images for differential diagnosis in small-breed dogs.


Subject(s)
Contrast Media , Lung , Tomography, X-Ray Computed , Animals , Dogs , Tomography, X-Ray Computed/veterinary , Lung/diagnostic imaging , Lung/blood supply , Contrast Media/administration & dosage , Male , Female , Pulmonary Circulation/physiology
2.
Radiol Clin North Am ; 56(4): 521-534, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29936945

ABSTRACT

Dual energy computed tomography is becoming increasingly widespread in clinical practice. It can expand on the traditional density-based data achievable with single energy computed tomography by adding novel applications to help reach a more accurate diagnosis. The implementation of this technology in cardiothoracic vascular imaging allows for improved image contrast, metal artifact reduction, generation of virtual unenhanced images, virtual calcium subtraction techniques, cardiac and pulmonary perfusion evaluation, and plaque characterization. The improved diagnostic performance afforded by dual energy computed tomography is not associated with an increased radiation dose. This review provides an overview of dual energy computed tomography cardiothoracic vascular applications.


Subject(s)
Heart Diseases/diagnostic imaging , Lung Diseases/diagnostic imaging , Artifacts , Coronary Vessels/diagnostic imaging , Heart/diagnostic imaging , Humans , Lung/blood supply , Lung/diagnostic imaging , Radiography, Dual-Energy Scanned Projection , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL