Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149.632
Filter
1.
Article in English | MEDLINE | ID: mdl-38990697

ABSTRACT

Introduction: Although postoperative antibiotic prophylaxis has not been shown to prevent surgical site infections, prolonged antibiotic administration is common in low- and middle-income countries. We developed a quality improvement program to reduce unnecessary postoperative antibiotics through hospital-specific guideline development and the use of a brief, multidisciplinary discussion of antibiotic indication, choice, and duration during clinical rounds. We assessed reduction in the number of patients receiving ≥24 h of antibiotic prophylaxis after clean and clean-contaminated surgery. Methods: We piloted the program at a referral hospital in Ethiopia from February to September 2023. After a 6-week baseline assessment, multidisciplinary teams adapted international guidelines for surgical prophylaxis to local disease burden, medication availability, and cost restrictions; stakeholders from surgical departments provided feedback. Surgical teams implemented a "timeout" during rounds to apply these guidelines to patient care; compliance with the timeout and antibiotic administration was assessed throughout the study period. Results: We collected data from 636 patients; 159 (25%) in the baseline period and 477 (75%) in the intervention period. The percentage of patients receiving ≥24 h of antibiotic prophylaxis after surgery decreased from 50.9% in the baseline period to 40.9% in the intervention period (p = 0.027) and was associated with a 0.5 day reduction in postoperative length of stay (p = 0.047). Discussion: This antibiotic stewardship pilot program reduced postoperative antibiotic prophylaxis in a resource-constrained setting in Sub-Saharan Africa and was associated with shorter length of stay. This program has the potential to reduce unnecessary antibiotic use in this population.

2.
Article in English | MEDLINE | ID: mdl-38990705

ABSTRACT

Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP), a significant worldwide public health threat, is common in patients in intensive care units. Methods: A retrospective study was conducted over a period of 22 months to assess the risk factors associated with infection caused by CRKP isolates. Strain identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and antimicrobial sensitivity was assessed using the micro broth dilution method and Kirby-Bauer test. The genes blaKPC, blaOXA-48, blaNDM, blaVIM, and blaGES were amplified using polymerase chain reaction (PCR), followed by sequencing of the PCR products. The polymerase hypermucoviscosity phenotype was determined using the string test. Capsular serotypes (K1, K2) and presence of the virulence gene (rmpA) in positive isolates were investigated using phenotypic tests followed by PCR. Results: Length of hospitalization and use of carbapenems were associated with CRKP infection. CRKP isolates exhibited extensive drug resistance, but retained sensitivity to colistin and ceftazidime-avibactam (CZA). The main gene detected in 35 CRKP isolates was blaKPC-2. In addition, 11 strains were positive in the string test, and two of these strains carried rmpA. Conclusions: Prolonged hospitalization and carbapenem exposure increased the risk of CRKP infection in intensive care unit (ICU) patients. The prevalence of CRKP carrying the blaKPC-2 gene was high, and suspected hypervirulent carbapenem-resistant K. pneumoniae isolates were scattered.

3.
ACS Infect Dis ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990785

ABSTRACT

Fungal keratitis (FK) is a leading cause of preventable blindness and eye loss. The poor antifungal activity, increased drug resistance, limited corneal permeability, and unsatisfactory biosafety of conventional antifungal eye drops are among the majority of the challenges that need to be addressed for currently available antifungal drugs. Herein, this study proposes an effective strategy that employs chitosan-poly(ethylene glycol)-LK13 peptide conjugate (CPL) in the treatment of FK. Nanoassembly CPL can permeate the lipophilic corneal epithelium in the transcellular route, and its hydrophilicity surface is a feature to drive its permeability through hydrophilic stroma. When encountering fungal cell membrane, CPL dissembles and exposes the antimicrobial peptide (LK13) to destroy fungal cell membranes, the minimum inhibitory concentration values of CPL against Fusarium solani (F. solani) are always not to exceed 8 µg peptide/mL before and after drug resistance induction. In a rat model of Fusarium keratitis, CPL demonstrates superior therapeutic efficacy than commercially available natamycin ophthalmic suspension. This study provides more theoretical and experimental supports for the application of CPL in the treatment of FK.

4.
Proc Natl Acad Sci U S A ; 121(29): e2315310121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990944

ABSTRACT

Bacitracin is a macrocyclic peptide antibiotic that is widely used as a topical treatment for infections caused by gram-positive bacteria. Mechanistically, bacitracin targets bacteria by specifically binding to the phospholipid undecaprenyl pyrophosphate (C55PP), which plays a key role in the bacterial lipid II cycle. Recent crystallographic studies have shown that when bound to C55PP, bacitracin adopts a highly ordered amphipathic conformation. In doing so, all hydrophobic side chains align on one face of the bacitracin-C55PP complex, presumably interacting with the bacterial cell membrane. These insights led us to undertake structure-activity investigations into the individual contribution of the nonpolar amino acids found in bacitracin. To achieve this we designed, synthesized, and evaluated a series of bacitracin analogues, a number of which were found to exhibit significantly enhanced antibacterial activity against clinically relevant, drug-resistant pathogens. As for the natural product, these next-generation bacitracins were found to form stable complexes with C55PP. The structure-activity insights thus obtained serve to inform the design of C55PP-targeting antibiotics, a key and underexploited antibacterial strategy.


Subject(s)
Anti-Bacterial Agents , Bacitracin , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacitracin/pharmacology , Bacitracin/chemistry , Structure-Activity Relationship , Drug Resistance, Bacterial/drug effects , Vancomycin/pharmacology , Vancomycin/chemistry , Vancomycin/analogs & derivatives , Drug Design , Polyisoprenyl Phosphates/metabolism , Polyisoprenyl Phosphates/chemistry , Polyisoprenyl Phosphates/pharmacology
5.
J Agric Food Chem ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991049

ABSTRACT

Polyunsaturated fatty acids (PUFAs) are essential nutrients for the human body, playing crucial roles in reducing blood lipids, anti-inflammatory responses, and anticancer effect. Quinoa is a nutritionally sound food source, rich in PUFAs. This study investigates the role of quinoa polyunsaturated fatty acids (QPAs) on quelling drug resistance in colorectal cancer. The results reveal that QPA downregulates the expression of drug-resistant proteins P-gp, MRP1, and BCRP, thereby enhancing the sensitivity of colorectal cancer drug-resistant cells to the chemotherapy drug. QPA also inhibits the stemness of drug-resistant colorectal cancer cells by reducing the expression of the stemness marker CD44. Consequently, it suppresses the downstream protein SLC7A11 and leads to ferroptosis. Additionally, QPA makes the expression of ferritin lower and increases the concentration of free iron ions within cells, leading to ferroptosis. Overall, QPA has the dual-function reversing drug resistance in colorectal cancer by simultaneously inhibiting stemness and inducing ferroptosis. This study provides a new option for chemotherapy sensitizers and establishes a theoretical foundation for the development and utilization of quinoa.

6.
J Environ Manage ; 366: 121757, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991336

ABSTRACT

To address the negative environmental and economic impact of the large amounts of solid waste generated during travertine mining and to reduce the dependence on natural aggregates and cement for pervious concrete pavement applications, travertine waste, as aggregate and powder, was used for the travertine powder pervious concrete (TPPC) to improve the utilization of solid waste and decrease CO2 emissions. The experimental results showed that using 25% travertine aggregate and 5% powder results in a compressive strength reduction of only 9.8% to 25.92 MPa but a significant improvement in water permeability of 57.1% from 3.89 to 6.11 mm/s. To improve the performance of TPPC, further research was done on the effect of sand addition rate (SAR) on TPPC's density, compressive strength, porosity, water permeability, freeze-thaw resistance and heavy metal removal capacity to obtain an optimal incorporation ratio. As SAR rises, the compressive strength of TPPC with sand (STPC) initially increases and then decreases, while permeability behaves inversely. At 3% SAR, the compressive strength reached a maximum of 26.51 MPa, primarily due to the sand added to fill in some of the pores and stabilize the gradation. After 25 cycles, the strength loss rate of STPC varies from 11.39 to 17.93% and the freeze-thaw resistance is most excellent when SAR is 3%. The removal rate of heavy metals using the immersion method was found to be significantly higher (83.4-100%) compared to the rapid method (11.7-28.1%). Therefore, the 3% SAR was recommended for the mixture design of STPC. A laboratory-scale version of the pavement was constructed to assess the efficacy of STPC pavement (STPCP) in reducing runoff and removing heavy metals. The results showed that STPCP could remove more than 94% of runoff with varying intensities after 1 h. The STPCP exhibited removal rates ranging from 42.0 to 99.4% for Cd2+ and 79.5-95.4% for Cu2+. STPCP also attained a removal rate above 98% for Pb2+ after 30 min, demonstrating its environmental friendliness.

7.
Schizophr Res ; 270: 441-450, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991420

ABSTRACT

BACKGROUND: Early identification of treatment non-response in first-episode psychosis (FEP) is essential to outcome. Despite indications that exposure to childhood trauma (CT) can have adverse effects on illness severity, its impact on treatment non-response and the interplay with other pre-treatment characteristics is sparsely investigated. We use a lack of clinical recovery as an early indicator of treatment resistance to investigate the relationship between CT and treatment resistance status at one-year follow-up and the potential mediation of this effect by other pre-treatment characteristics. METHODS: This prospective one-year follow-up study involved 141 participants recruited in their first year of treatment for a schizophrenia-spectrum disorder. We investigated clinical status, childhood trauma (CT), premorbid adjustment (PA), and duration of untreated psychosis (DUP) at baseline and clinical status at one-year follow-up. Ordinal regression analyses were conducted to investigate how PA and DUP affected the relationship between CT and one-year outcome in FEP. RESULTS: 45 % of the FEP sample reported moderate to severe CT, with significantly higher levels of CT in the early treatment resistant group compared to participants with full or partial early recovery. Ordinal regression analysis showed that CT was a significant predictor of being in a more severe outcome group (OR = 4.59). There was a partial mediation effect of PA and a full mediation effect of DUP on the effect of CT on outcome group membership. DISCUSSION: Our findings indicate that reducing treatment delays may mitigate the adverse effects of CT on clinical outcomes and support the inclusion of broad trauma assessment in FEP services.

8.
Int J Parasitol Drugs Drug Resist ; 25: 100556, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38991432

ABSTRACT

Benzimidazole (BZ) anthelmintics are among the most important treatments for parasitic nematode infections in the developing world. Widespread BZ resistance in veterinary parasites and emerging resistance in human parasites raise major concerns for the continued use of BZs. Knowledge of the mechanisms of resistance is necessary to make informed treatment decisions and circumvent resistance. Benzimidazole resistance has traditionally been associated with mutations and natural variants in the C. elegans beta-tubulin gene ben-1 and orthologs in parasitic species. However, variants in ben-1 alone do not explain the differences in BZ responses across parasite populations. Here, we examined the roles of five C. elegans beta-tubulin genes (tbb-1, mec-7, tbb-4, ben-1, and tbb-6) in the BZ response as well as to determine if another beta-tubulin acts redundantly with ben-1. We generated C. elegans strains with a loss of each beta-tubulin gene, as well as strains with a loss of tbb-1, mec-7, tbb-4, or tbb-6 in a genetic background that also lacks ben-1. We found that the loss of ben-1 conferred the maximum level of resistance following exposure to a single concentration of albendazole, and the loss of a second beta-tubulin gene did not alter the level of resistance. However, additional traits other than larval development could be affected by the loss of additional beta-tubulins, and the roles of other beta-tubulin genes might be revealed at different albendazole concentrations. Therefore, further work is needed to fully define the possible roles of other beta-tubulin genes in the BZ response.

9.
J Clin Virol ; 174: 105711, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38991458

ABSTRACT

BACKGROUND: As nucleos/tide analogue (NA) therapy (e.g. entecavir and tenofovir) for chronic Hepatitis B virus (HBV) infection becomes more widely indicated and available, understanding drug resistance is essential. A systematic review to quantify resistance to these agents has not previously been undertaken. METHODS: We performed a systematic review and random-effects meta-analysis to estimate the risk of HBV resistance to entecavir and tenofovir. We searched nine databases up to 29-Aug-23. We included studies of HBV infection featuring >10 individuals, written in English, reporting treatment ≥48 weeks, with assessment of HBV resistance based on viral sequence data. Data were analysed according to prior exposure history to NA, and choice of NA agent. Analyses were performed in R. FINDINGS: 62 studies involving a total of 12,358 participants were included. For entecavir, in treatment-naive individuals (22 studies; 4326 individuals), resistance increased over time to 0.9 % at ≥5 years (95 %CI 0.1-2.3 %), and resistance was increased in NA-experienced individuals (18 studies; 1112 individuals), to 20.1 % (95 %CI 1.6-50.1 %) at ≥5 years. For tenofovir, pooled resistance risk was 0.0 % at all time points, whether previously NA naive (11 studies; 3778 individuals) or experienced (19 studies; 2059 individuals). There was a lack of consistent definitions, poor global representation and insufficient metadata to support subgroup analysis. INTERPRETATION: We have generated the first pooled estimates of HBV entecavir and tenofovir resistance over time. HBV resistance to entecavir in treatment-experienced groups in particular may represent a clinical and public health challenge. To date, tenofovir appears to have an excellent resistance profile, but due to data gaps, we caution that existing studies under-estimate the true real-world risk of resistance. Robust prospective data collection is crucial to reduce health inequities and reduce blind-spots in surveillance as treatment is rolled out more widely.

10.
J Diabetes Complications ; 38(8): 108796, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38991491

ABSTRACT

AIMS: To elucidate the clinical and pathological characteristics of gestational diabetes mellitus (GDM) with high and low insulin resistance. METHODS: In total, 1393 GDM and 1001 non-GDM singleton deliveries were included in this study. Insulin resistance subtypes were classified according to the HOMA2-IR value. Clinical data were analyzed using SPSS 26.0. Placenta samples were collected for pathological analysis. RESULTS: Maternal age and fasting glucose were identified as independent risk factors for GDM with high insulin resistance (p < 0.01), while fasting glucose was the sole risk factor for GDM with low insulin resistance (p < 0.001). Fetal distress was associated with both of GDM subtypes (both p < 0.01), while anemia, fetal growth restriction, large for gestational age and intrahepatic cholestasis in pregnancy were related to specific GDM insulin resistance subtype. In addition, GDM with high insulin resistance showed an increase of syncytial knots with down-regulation of PI3K/AKT signaling, while GDM with low insulin resistance showed normal syncytial knot counts and up-regulation of PI3K/AKT signaling. CONCLUSIONS: Our findings provide novel perspectives to the clinical and pathological comprehensions of GDM with high and low insulin resistance, which might facilitate the mechanism study of GDM and its precision pregnancy management.

11.
J Diabetes Complications ; 38(8): 108798, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38991492

ABSTRACT

AIMS: Type 1 diabetes has been associated with mitochondrial dysfunction. However, the mechanism of this dysfunction in adults remains unclear. METHODS: A secondary analysis was conducted using data from several clinical trials measuring in-vivo and ex-vivo mitochondrial function in adults with type 1 diabetes (n = 34, age 38.8 ± 14.6 years) and similarly aged controls (n = 59, age 44.6 ± 13.9 years). In-vivo mitochondrial function was assessed before, during, and after isometric exercise with 31phosphorous magnetic resonance spectroscopy. High resolution respirometry of vastus lateralis muscle tissue was used to assess ex-vivo measures. RESULTS: In-vivo data showed higher rates of anaerobic glycolysis (p = 0.013), and a lower maximal mitochondrial oxidative capacity (p = 0.012) and mitochondrial efficiency (p = 0.024) in adults with type 1 diabetes. After adjustment for age and percent body fat maximal mitochondrial capacity (p = 0.014) continued to be lower and anaerobic glycolysis higher (p = 0.040) in adults with type 1 diabetes. Ex-vivo data did not demonstrate significant differences between the two groups. CONCLUSIONS: The in-vivo analysis demonstrates that adults with type 1 diabetes have mitochondrial dysfunction. This builds on previous research showing in-vivo mitochondrial dysfunction in youths with type 1 diabetes and suggests that defects in substrate or oxygen delivery may play a role in in-vivo dysfunction.

12.
Int J Sport Nutr Exerc Metab ; : 1-3, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991545

ABSTRACT

A comprehensive recent study by Trommelen et al. demonstrated that muscle tissue exhibits a greater capacity to incorporate exogenous exogenous protein-derived amino acids into bound muscle protein than was previously appreciated, at least when measured in "anabolically sensitive," recreationally active (but not resistance-trained), young men following resistance exercise. Moreover, this study demonstrated that the duration of the postprandial period is modulated by the dose of ingested protein contained within a meal, that is, the postexercise muscle protein synthesis response to protein ingestion was more prolonged in 100PRO than 25PRO. Both observations represent important scientific advances in the field of protein metabolism. However, we respectfully caution that the practical implications of these findings may have been misinterpreted, at least in terms of dismissing the concept of protein meal distribution as an important factor in optimizing muscle tissue anabolism and/or metabolic health. Moreover, based on emerging evidence, this idea that the anabolic response to protein ingestion has no upper limit does not appear to translate to resistance-trained young women.

13.
J Hazard Mater ; 476: 135160, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38991646

ABSTRACT

The heterotrophic nitrification-aerobic denitrification (HNAD) strain Exiguobacterium H1 (H1) was isolated in this study. The changes in nitrogen metabolism functions of H1 strain were discussed in presence of disinfectants chloroxylenol (PCMX) and benzethonium chloride (BEC) alone and combined pollution (PCMX+BEC). The H1 strain could use NH4+-N, NO2--N and NO3--N as nitrogen sources and had good nitrogen removal performance under conditions of C/N ratio 25, pH 5-8, 25-35 oC and sodium acetate as carbon. PCMX and BEC alone exhibited hormesis effects on H1 strain which promoted the growth of H1 strain at low concentrations but inhibited it at high concentrations, and combined pollution showed synergistic inhibitory on H1 strain. H1 strain owned a full nitrogen metabolic pathway according to functional genes quantification. PCMX encouraged nitrification process of H1, while BEC and combined pollution mostly blocked nitrogen removal. PCMX, but not BEC, mainly led to the enrichment of resistance genes. These findings will aid in systematic assessment of contaminant tolerance characteristics of HNAD strain and its application prospects.

14.
J Appl Microbiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991986

ABSTRACT

AIM: The high incidence of virus-related infections and the large diffusion of drug-resistant pathogens stimulate the search and identification of new antiviral agents with a broad spectrum of action. Antivirals can be designed to act on a single target by interfering with a specific step in the viral lifecycle. On the contrary, antiviral peptides (AVPs) are known for acting on a wide range of viruses, with a diversified mechanism of action targeting virus and/or host cell. In the present study, we evaluated the antiviral potential of the peptide Hylin-a1 secreted by the frog Hypsiobas albopunctatus against members of the Herpesviridae family. METHODS AND RESULTS: The inhibitory capacity of the peptide was evaluated in vitro by plaque assays in order to understand the possible mechanism of action. The results were also confirmed by Real-Time PCR and Western blot evaluating the expression of viral genes. Hylin-a1 acts to block the herpetic infection interfering at the early stages of both herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infection. Its mechanism is mainly directed on the membrane, probably by damaging the viral envelope. The same effect was also observed against HSV-1 strains resistant to acyclovir. CONCLUSIONS: The data presented in this study, such as the increased activity of the peptide when combined to acyclovir, a weak hemolytic profile, an anti-inflammatory effect, and a tolerable half-life in serum, indicates Hylin-a1 as a novel antiherpetic molecule with promising potential in the clinical setting.

15.
Sci Rep ; 14(1): 16059, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992159

ABSTRACT

Cholangiocarcinoma (CCA) is often diagnosed late, leading to incomplete tumor removal, drug resistance and reduced chemotherapy efficacy. Curcumin has the potential for anti-cancer activity through various therapeutic properties and can improve the efficacy of chemotherapy. We aimed to investigate the synergistic effect of a combination of curcumin and gemcitabine against CCA, targeting the LAT2/glutamine pathway. This combination synergistically suppressed proliferation in gemcitabine-resistant CCA cells (KKU-213BGemR). It also resulted in a remarkable degree of CCA cell apoptosis and cell cycle arrest, characterized by a high proportion of cells in the S and G2/M phases. Knockdown of SLC7A8 decreased the expressions of glutaminase and glutamine synthetase, resulting in inhibited cell proliferation and sensitized CCA cells to gemcitabine treatment. Moreover, in vivo experiments showed that a combination curcumin and gemcitabine significantly reduced tumor size, tumor growth rate and LAT2 expression in a gemcitabine-resistant CCA xenograft mouse model. Suppression of tumor progression in an orthotopic CCA hamster model provided strong support for clinical application. In conclusion, curcumin synergistically enhances gemcitabine efficacy against gemcitabine-resistant CCA by induction of apoptosis, partly via inhibiting LAT2/glutamine pathway. This approach may be an alternative strategy for the treatment of gemcitabine-resistant in CCA patients.


Subject(s)
Apoptosis , Cell Proliferation , Cholangiocarcinoma , Curcumin , Deoxycytidine , Drug Resistance, Neoplasm , Drug Synergism , Gemcitabine , Glutamine , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Animals , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Humans , Curcumin/pharmacology , Drug Resistance, Neoplasm/drug effects , Mice , Glutamine/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Glutaminase/metabolism , Glutaminase/antagonists & inhibitors , Male
16.
Sci Total Environ ; : 174594, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992349

ABSTRACT

During the recent times, environmental antibiotic resistance genes (ARGs) and their potential transfer to other bacterial hosts of pathogenic importance are of serious concern. However, the dissemination strategies of such ARGs are largely unknown. We tested that saprotrophic soil fungi differentially enriched antibiotic resistant bacteria (ARBs) and subsequently contributed in spatial distribution of selective ARGs. Wafergen qPCR analysis of 295 different ARGs was conducted for manure treated pre-sterilized soil incubated or not with selected bacterial-fungal consortia. The qPCR assay detected unique ARGs specifically found in the mycosphere of ascomycetous and basidiomycetous fungi. Both fungi exerted potentially different selection pressures on ARBs, resulting in different patterns of ARGs dissemination (to distant places) along their respective growing fungal highways. The relative abundance of mobile genetic elements (MGEs) was significantly decreased along fungal highways compared to the respective inoculation points. Moreover, the decrease in MGEs and ARGs (along fungal highways) was more prominent over time which depicts the continuous selection pressure of growing fungi on ARBs for enrichment of particular ARGs in mycosphere. Such data also indicate the potential role of saprotrophic soil fungi to facilitate horizontal gene transfer within mycospheric environmental settings. Our study, therefore, advocates to emphasize the future investigations for such (bacteria-fungal) interactive microbial consortia for potential (spatial) dissemination of resistance determinants which may ultimately increase the exposure risks of ARGs.

17.
Chemosphere ; : 142829, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992444

ABSTRACT

Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum ß-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulfate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. blaTEM, blaSHV, and blaCTX-M was carried out. The most prevalent gene was blaTEM (69.23%), followed by blaSHV (46.15%), and blaCTX-M (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment.

18.
Cancer Lett ; : 217107, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992489

ABSTRACT

Glioblastoma (GBM) presents a daunting challenge due to its resistance to temozolomide (TMZ), a hurdle exacerbated by the proneural-to-mesenchymal transition (PMT) from a proneural (PN) to a mesenchymal (MES) phenotype. TAGLN2 is prominently expressed in GBM, particularly in the MES subtype compared to low-grade glioma (LGG) and the PN subtype. Our research reveals TAGLN2's involvement in PMT and TMZ resistance through a series of in vitro and in vivo experiments. TAGLN2 knockdown can restrain proliferation and invasion, trigger DNA damage and apoptosis, and heighten TMZ sensitivity in GBM cells. Conversely, elevating TAGLN2 levels amplifies resistance to TMZ in cellular and intracranial xenograft mouse models. We demonstrate the interaction relationship between TAGLN2 and ERK1/2 through co-immunoprecipitation (Co-IP) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectrometry analysis. Knockdown of TAGLN2 results in a decrease in the expression of p-ERK1/2, whereas overexpression of TAGLN2 leads to an increase in p-ERK1/2 expression within the nucleus. Subsequently, the regulatory role of TAGLN2 in the expression and control of MGMT has been demonstrated. Finally, the regulation of TAGLN2 by NF-κB has been validated through chromatin immunoprecipitation and ChIP-PCR assays. In conclusion, our results confirm that TAGLN2 exerts its biological functions by interacting with the ERK/MGMT axis and being regulated by NF-κB, thereby facilitating the acquisition of promoting PMT and increased resistance to TMZ therapy in glioblastoma. These results provide valuable insights for the advancement of targeted therapeutic approaches to overcome TMZ resistance in clinical treatments.

19.
Parasit Vectors ; 17(1): 300, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992693

ABSTRACT

BACKGROUND: The widespread use of insecticide-treated nets (ITNs) has significantly contributed to the reduction in malaria cases and deaths observed across Africa. Unfortunately, this control strategy is threatened by the rapid spread of pyrethroid resistance in malaria vectors. Dual-active-ingredient insecticidal nets are now available to mitigate the impact of pyrethroid resistance. To facilitate evidence-based decisions regarding product selection in specific use settings, data are needed on the efficacy of these different nets against local mosquito populations. METHODS: Two experimental hut trials were performed in Za-Kpota, southern Benin in 2021 to evaluate the performance of Interceptor G2 (BASF), Royal Guard (Disease Control Technologies) and PermaNet 3.0 (Vestergaard Frandsen), all dual-active-ingredient bednets, in comparison to untreated or standard pyrethroid-treated bednets, against free-flying wild Anopheles gambiae mosquitoes. The performance of some of these next-generation nets was compared to the same type of nets that have been in use for up to 2 years. Mosquitoes collected in the huts were followed up after exposure to assess the sublethal effects of treatments on certain life-history traits. RESULTS: The predominant species in the study site was Anopheles gambiae sensu stricto (An. gambiae s.s.). Both Anopheles coluzzii and An. gambiae s.s. were resistant to pyrethroids (deltamethrin susceptibility was restored by piperonyl butoxide pre-exposure). In the experimental hut trials, the highest blood-feeding inhibition (5.56%) was recorded for the Royal Guard net, relative to the standard PermaNet 2.0 net (44.44% inhibition). The highest 72-h mortality rate (90.11%) was recorded for the Interceptor G2 net compared to the PermaNet 2.0 net (56.04%). After exposure, the risk of death of An. gambiae sensu lato (An. gambiae s.l.) was 6.5-fold higher with the Interceptor G2 net and 4.4-fold higher with the PermaNet 3.0 net compared to the respective untreated net. Lower mosquito mortality was recorded with an aged Interceptor G2 net compared to a new Interceptor G2 net. Oviposition rates were lower in mosquitoes collected from huts containing ITNs compared to those of untreated controls. None of the mosquitoes collected from huts equipped with Royal Guard nets laid any eggs. CONCLUSIONS: The Royal Guard and Interceptor G2 nets showed a potential to significantly improve the control of malaria-transmitting vectors. However, the PermaNet 3.0 net remains effective in pyrethroid-resistant areas.


Subject(s)
Anopheles , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides , Malaria , Mosquito Control , Mosquito Vectors , Pyrethrins , Animals , Anopheles/drug effects , Benin , Pyrethrins/pharmacology , Mosquito Control/methods , Insecticides/pharmacology , Mosquito Vectors/drug effects , Malaria/prevention & control , Malaria/transmission , Female
20.
Environ Pollut ; : 124520, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992827

ABSTRACT

This study assessed the effectiveness of nano zero-valent iron loaded on biochar (BC-nZVI) during swine manure composting. BC-nZVI significantly reduced the abundance of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs). BC-nZVI modified the preference of MGEs to carry ARGs and MRGs, and the corrosion products of BC-nZVI could destroy cell structure, hinder electron transfer between cells, and weaken the association between ARGs, MRGs, and host bacteria. Functional genes analysis revealed that BC-nZVI down-regulated the abundance of genes affecting the transmission and metabolism of ARGs and MRGs, including type IV secretion systems, transporter systems, two-component systems, and multidrug efflux pumps. Furthermore, the BC-nZVI decreased genes related to flagella and pili production and cell membrane permeability, thereby hindering the transfer of ARGs, MRGs, and MGEs in the environment. Redundancy analysis demonstrated that changes in the microbial community induced by BC-nZVI were pivotal factors impacting the abundance of ARGs, MRGs, and MGEs. Overall, this study confirmed the efficacy of BC-nZVI in reducing resistance genes during swine manure composting, offering a promising environmental strategy to mitigate the dissemination of these contaminants.

SELECTION OF CITATIONS
SEARCH DETAIL
...