Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Cell Physiol ; 239(2): e31163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009273

ABSTRACT

Many studies have indicated that tumor growth factor-beta (TGF-ß) signaling mediates radiation-induced bystander effects (RIBEs). The primary cilium (PC) coordinates several signaling pathways including TGF-ß signaling to regulate diverse cellular processes. But whether the PC participates in TGF-ß induced RIBEs remains unclear. The cellular levels of TGF-ß1 were detected by western blot analysis and the secretion of TGF-ß1 was measured by ELISA kit. The ciliogenesis was altered by CytoD treatment, STIL siRNA transfection, IFT88 siRNA transfection, or KIF3a siRNA transfection, separately, and was detected by western blot analysis and immunofluorescence staining. G0 /G1 phase cells were arrested by serum starvation and S phase cells were induced by double thymidine block. The TGF-ß1 signaling was interfered by LY2109761, a TGF-ß receptor 1 (TßR1) inhibitor, or TGF-ß1 neutral antibody. The DNA damages were induced by TGF-ß1 or radiated conditional medium (RCM) from irradiated cells and were reflected by p21 expression, 53BP1 foci, and γH2AX foci. Compared with unirradiated control, both A549 and Beas-2B cells expressed and secreted more TGF-ß1 after carbon ion beam or X-ray irradiation. RCM collected from irradiated cells or TGF-ß1 treatment caused an increase of DNA damage in cocultured unirradiated Beas-2B cells while blockage of TGF-ß signaling by TßR1 inhibitor or TGF-ß1 neutral antibody alleviates this phenomenon. IFT88 siRNA or KIF3a siRNA impaired PC formation resulted in an aggravated DNA damage in bystander cells, while elevated PC formation by CytoD or STIL siRNA resulted in a decrease of DNA damage. Furthermore, TGF-ß1 induced more DNA damages in S phases cells which showed lower PC formation rate and less DNA damages in G0 /G1 phase cells which showed higher PC formation rate. This study demonstrates the particular role of primary cilia during RCM induced DNA damages through TGF-ß1 signaling restriction and thereby provides a functional link between primary cilia and RIBEs.


Subject(s)
Bystander Effect , Transforming Growth Factor beta1 , Bystander Effect/genetics , Bystander Effect/radiation effects , Cilia/metabolism , DNA , RNA, Small Interfering/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Humans , Cell Line, Tumor
2.
Dose Response ; 20(3): 15593258221113797, 2022.
Article in English | MEDLINE | ID: mdl-36106056

ABSTRACT

Objective: To determine whether the width of the shoulder and the size of the bystander effect are correlated using clonal lineages derived from a cultured cell line. Methods: HCT 116 (p53 wildtype) cells were grown at cloning density and individual viable colonies were picked off and grown to establish a series of cell lines from both unirradiated and irradiated progenitors. These cell lines were then irradiated to generate full survival curves. Highly variant clones were then tested to determine the level of the bystander effect using a medium transfer protocol. Results: The multi-target model gave the best fit in these experiments and size of the shoulder n is assessed in terms of radiosensitivity. The parent cell line has an n value of 1.1 while the most variant clones have n values of 0.88 (Clone G) and 5.5 (Clone A). Clonal lines subject to irradiation prior to isolation differed in bystander signal strength in comparison to clonal lines which were not initially irradiated (P = .055). Conclusions: Based on these experiments we suggest there may be a link between shoulder size of a mammalian cell line and the strength of a bystander effect produced in vitro. This may have implications for radiotherapy related to out-of-field effects.

3.
Phys Med Biol ; 66(22)2021 11 11.
Article in English | MEDLINE | ID: mdl-34666318

ABSTRACT

Radiation induced bystander effects (RIBEs) have been shown to cause death in cells receiving little or no physical dose. In standard radiotherapy, where uniform fields are delivered and all cells are directly exposed to radiation, this phenomenon can be neglected. However, the role of RIBEs may become more influential when heterogeneous fields are considered. Mathematical modelling can be used to determine how these heterogeneous fields might influence cell survival, but most established techniques account only for the direct effects of radiation. To gain a full appreciation of how non-uniform fields impact cell survival, it is also necessary to consider the indirect effects of radiation. In this work, we utilise a mathematical model that accounts for both the direct effects of radiation on cells and RIBEs. This model is used to investigate how spatially fractionated radiotherapy plans impact cell survivalin vitro. These predictions were compared to survival in normal and cancerous cells following exposure to spatially fractionated plans using a clinical linac. The model is also used to explore how spatially fractionated radiotherapy will impact tumour controlin vivo. Results suggest that spatially fractionated plans are associated with higher equivalent uniform doses than conventional uniform plans at clinically relevant doses. The model predicted only small changes changes in normal tissue complication probability, compared to the larger protection seen clinically. This contradicts a central paradigm of radiotherapy where uniform fields are assumed to maximise cell kill and may be important for future radiotherapy optimisation.


Subject(s)
Neoplasms , Radiation Injuries , Bystander Effect/radiation effects , Dose Fractionation, Radiation , Humans , Models, Biological , Neoplasms/radiotherapy
4.
Mutat Res Rev Mutat Res ; 787: 108368, 2021.
Article in English | MEDLINE | ID: mdl-34083032

ABSTRACT

Redox homeostasis is imperative to maintain normal physiologic and metabolic functions. Radiotherapy disturbs this balance and induces genomic instability in diseased cells. However, radiation-induced effects propagate beyond the targeted cells, affecting the adjacent non-targeted cells (bystander effects). The cellular impact of radiation, thus, encompasses both targeted and non-targeted effects. Use of external modulators along with radiation can increase radio-therapeutic efficiency. The modulators' classification as protectors or sensitizers depends on interactions with damaged DNA molecules. Thus, it is necessary to realize the functions of various radio-sensitizers or radio-protectors in both irradiated and bystander cells. This review focuses on some modulators of radiation-induced bystander effects (RIBE) and their action mechanisms. Knowledge about the underlying signaling cross-talk may promote selective sensitization of radiation-targeted cells and protection of bystander cells.


Subject(s)
Genomic Instability/physiology , Animals , Bystander Effect , Genomic Instability/genetics , Homeostasis/genetics , Homeostasis/physiology , Humans , Oxidation-Reduction , Signal Transduction/genetics , Signal Transduction/physiology
5.
Cells ; 10(4)2021 04 07.
Article in English | MEDLINE | ID: mdl-33916980

ABSTRACT

Genotoxic bystander signals released from irradiated human mesenchymal stromal cells (MSC) may induce radiation-induced bystander effects (RIBEs) in human hematopoietic stem and progenitor cells (HSPC), potentially causing leukemic transformation. Although the source of bystander signals is evident, the identification and characterization of these signals is challenging. Here, RIBEs were analyzed in human CD34+ cells cultured in distinct molecular size fractions of medium, conditioned by 2 Gy irradiated human MSC. Specifically, γH2AX foci (as a marker of DNA double-strand breaks) and chromosomal instability were evaluated in CD34+ cells grown in approximate (I) < 10 kDa, (II) 10-100 kDa and (III) > 100 kDa fractions of MSC conditioned medium and un-/fractionated control medium, respectively. Hitherto, significantly increased numbers of γH2AX foci (p = 0.0286) and aberrant metaphases (p = 0.0022) were detected in CD34+ cells grown in the (II) 10-100 kDa fraction (0.67 ± 0.10 γH2AX foci per CD34+ cell ∨ 3.8 ± 0.3 aberrant metaphases per CD34+ cell sample; mean ± SEM) when compared to (I) < 10 kDa (0.19 ± 0.01 ∨ 0.3 ± 0.2) or (III) > 100 kDa fractions (0.23 ± 0.04 ∨ 0.4 ± 0.4) or un-/fractionated control medium (0.12 ± 0.01 ∨ 0.1 ± 0.1). Furthermore, RIBEs disappeared after heat inactivation of medium at 75 °C. Taken together, our data suggest that RIBEs are mainly mediated by the heat-sensitive (II) 10-100 kDa fraction of MSC conditioned medium. We postulate proteins as RIBE mediators and in-depth proteome analyses to identify key bystander signals, which define targets for the development of next-generation anti-leukemic drugs.


Subject(s)
Bystander Effect/radiation effects , Culture Media, Conditioned/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/radiation effects , Mutagens/toxicity , Aged , Aged, 80 and over , Antigens, CD34/metabolism , Bystander Effect/drug effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Chromosomal Instability/drug effects , Chromosomal Instability/radiation effects , DNA Damage , Female , Humans , Male , Mesenchymal Stem Cells/drug effects , Middle Aged , Molecular Weight , X-Rays
6.
Biosens Bioelectron ; 181: 113142, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33752028

ABSTRACT

Radiation-induced bystander effects (RIBE) have raised many concerns about radiation safety and protection. In RIBE, unirradiated cells receive signals from irradiated cells and exhibit irradiation effects. Until now, most RIBE studies have been based on morphological and biochemical characterization. However, research on the impact of RIBE on biophysical properties of cells has been lagging. Non-invasive indium tin oxide (ITO)-based impedance systems have been used as bioimpedance sensors for monitoring cell behaviors. This powerful technique has not been applied to RIBE research. In this work, we employed an electrical cell-ITO substrate impedance system (ECIIS) to study the RIBE on Chinese hamster ovary (CHO) cells. The bioimpedance of bystander CHO cells (BCHO), alpha(α)-particle (Am-241) irradiated CHO (ICHO), and untreated/unirradiated CHO (UCHO) cells were monitored with a sampling interval of 8 s over a period of 24 h. Media from ICHO cells exposed to different radiation doses (0.3 nGy, 0.5 nGy, and 0.7 nGy) were used to investigate the radiation dose dependence of BCHO cells' impedance. In parallel, we imaged the cells at times where impedance changes were observed. By analyzing the changes in absolute impedance and cell size/cell number with time, we observed that BCHO cells mimicked ICHO cells in terms of modification in cell morphology and proliferation rate. Furthermore, these effects appeared to be time-dependent and inversely proportional to the radiation dose. Hence, this approach allows a label-free study of cellular responses to RIBE with high sensitivity and temporal resolution and can provide crucial insights into the RIBE mechanism.


Subject(s)
Biosensing Techniques , Animals , Bystander Effect , CHO Cells , Cricetinae , Cricetulus , Electric Impedance
7.
Front Physiol ; 11: 603081, 2020.
Article in English | MEDLINE | ID: mdl-33329055

ABSTRACT

Exosomal microRNAs have been investigated in bystander effect, but it is unclear whether microRNA works in ultraviolet radiation-induced bystander effects (UV-RIBEs) and what the underlying mechanism could be. Exosomes from ultraviolet (UV)-irradiated human skin fibroblasts (HSFs) were isolated and transferred to normal HSFs, followed by the detection of proliferation rate, oxidative damage level, and apoptosis rate. Exosomal miRNAs were evaluated and screened with miRNA sequencing and quantitative reverse transcriptase-polymerase chain reaction method. MiRNA shuttle and bystander photodamage reactions were observed after transfection of miR-769-5p. MiR-769-5p targeting gene transforming growth factor-ß1 (TGFBR1), and TGFBR1 mRNA 3'-untranslated region (UTR) was assessed and identified by Western blotting and dual-luciferase reporter assay. Bystander effects were induced after being treated with isolated exosomes from UV-irradiated HSFs. Exosomal miR-769-5p expression was significantly upregulated. Human skin fibroblasts showed lower proliferation, increasing oxidative damage, and faster occurrence of apoptosis after transfection. Exosome-mediated transfer of miR-769-5p was observed. Upregulation of miR-769-5p induced bystander effects, whereas downregulation of miR-769-5p can suppress UV-RIBEs. In addition, miR-769-5p was found to downregulate TGFBR1 gene expression by directly targeting its 3'-UTR. Our results demonstrate that exosome-mediated miR-769-5p transfer could function as an intercellular messenger and exacerbate UV-RIBEs. MiR-769-5p inhibits the expression of TGFBR1 by targeting TGFBR1 mRNA 3'-UTR.

8.
Life Sci ; 257: 118087, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32702442

ABSTRACT

AIMS: Recent studies suggest that direct exposure of cells to fractionated radiotherapy might induce radioresistance. However, the effects of fractionated radiotherapy on the non-irradiated bystander cells remain unclear. We hypothesized that fractionated radiotherapy could enhance radioresistance and proliferation of bystander cells. MAIN METHODS: Human tumor cell lines, including A549 and HT29 were irradiated (2 Gy per day). The irradiated cells (either A549 or HT29) were co-cultured with non-irradiated cells of the same line using transwell co-culture system. Tumor cell proliferation, radioresistance and apoptosis were measured using MTT assay, clonogenic survival assay and Annexin-V in bystander cells, respectively. In addition, activation of Chk1 (Ser 317), Chk2 (Thr 68) and Akt (Ser473) were measured via western blot. KEY FINDINGS: Irradiated HT29 cells induced conventional bystander effects detected as modulation of clonogenic survival parameters (decreased area under curve, D10 and ED50 and increased α) and proliferation in recipient neighbors. While, irradiated A549 cells significantly enhanced the radioresistance and proliferation of bystander cells. These changes were accompanied with enhanced activation of Chk1, Chk2 and Akt in non-irradiated bystander A549 cells. Moreover, both bystander effects (damaging and protective) were mediated through secreted factors. SIGNIFICANCE: These findings suggest that fractionated radiotherapy could promote proliferation and radioresistance of bystander cells probably through survival and proliferation pathways.


Subject(s)
Apoptosis/radiation effects , Bystander Effect/radiation effects , Cell Proliferation/radiation effects , Radiation Tolerance/radiation effects , A549 Cells , Cell Survival/radiation effects , Coculture Techniques , HT29 Cells , Humans
9.
Environ Res ; 180: 108807, 2020 01.
Article in English | MEDLINE | ID: mdl-31629087

ABSTRACT

Ionizing radiation (IR) is an environmental carcinogen and the biological damages it elicits are mechanistically distinct between high and low doses. Non-targeted effects occurring in nonirradiated cells such as the radiation-induced bystander effect predominate at low doses of IR. However, the role of non-targeted effects in environmental radiation protection is often overlooked because the governing mechanisms are complex and multifactorial. An improved understanding of the signaling molecules and their capacity to sensitize specific cell types are essential in establishing environmental IR risks. In particular, serotonin (5-HT) has been identified to exacerbate both direct irradiation and bystander-induced cell death (CD) in certain cell types, although not all cell types are responsive to 5-HT in this respect. In this study, we further characterize the role of 5-HT and 5-HT receptors (5-HTR) in the amplification of CD following IR exposure in human keratinocytes. We examined the survival of HaCaT cells treated with 5-HT and the 5-HTR antagonists ketanserin (5-HT2A) and ondansetron (5-HT3) following exposure to direct IR and irradiated cell condition medium (ICCM). Nonirradiated cell survival was consistent with the vehicle control among 5-HT concentrations ranging from 0.001 to 100 µM. Significant 5-HT concentration-dependent increases in CD occurred following direct IR exposure. Nonirradiated ICCM-recipient CD was not altered by 5-HT (0.001-100 µM) when present during donor cell irradiation among all IR doses. Increases in direct irradiation CD evoked by 5-HT were significantly attenuated by ondansetron, blocking the effect of 5-HT, whereas ketanserin did not alter CD. Western blotting of these target 5-HTRs revealed protein expression of the 5-HT3 receptor, while the 5-HT2A receptor was not detected. We have demonstrated a definitive role for 5-HT in the exacerbation of CD following direct IR exposure and identified the 5-HT3 receptor as a potential target for ameliorating radiation damage in keratinocytes.


Subject(s)
Bystander Effect , Serotonin , Skin , Cell Death , Humans , Keratinocytes
10.
Int J Radiat Biol ; 95(1): 12-22, 2019 01.
Article in English | MEDLINE | ID: mdl-29533121

ABSTRACT

PURPOSE: Radiation-induced bystander effects (RIBE) imply the involvement of complex signaling mechanisms, which can be mediated by extracellular vesicles (EVs). Using an in vivo model, we investigated EV-transmitted RIBE in blood plasma and radiation effects on plasma EV miRNA profiles. MATERIALS AND METHODS: C57Bl/6 mice were total-body irradiated with 0.1 and 2 Gy, bone marrow-derived EVs were isolated, and injected systemically into naive, 'bystander' animals. Proteome profiler antibody array membranes were used to detect alterations in plasma, both in directly irradiated and bystander mice. MiRNA profile of plasma EVs was determined by PCR array. RESULTS: M-CSF and pentraxin-3 levels were increased in the blood of directly irradiated and bystander mice both after low and high dose irradiations, CXCL16 and lipocalin-2 increased after 2 Gy in directly irradiated and bystander mice, CCL5 and CCL11 changed in bystander mice only. Substantial overlap was found in the cellular pathways regulated by those miRNAs whose level were altered in EVs isolated from the plasma of mice irradiated with 0.1 and 2 Gy. Several of these pathways have already been associated with bystander responses. CONCLUSION: Low and high dose effects overlapped both in EV-mediated alterations in signaling pathways leading to RIBE and in their systemic manifestations.


Subject(s)
Extracellular Vesicles/radiation effects , Plasma/immunology , Plasma/radiation effects , Animals , Blood Proteins/chemistry , Blood Proteins/metabolism , Bystander Effect/immunology , Bystander Effect/radiation effects , Dose-Response Relationship, Radiation , Extracellular Vesicles/pathology , Inflammation/blood , Inflammation/etiology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Plasma/metabolism , Polymerase Chain Reaction , Signal Transduction/immunology , Signal Transduction/radiation effects , Solubility
11.
Cancers (Basel) ; 9(12)2017 11 25.
Article in English | MEDLINE | ID: mdl-29186820

ABSTRACT

Ionizing radiation-induced bystander effects (RIBE) encompass a number of effects with potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular events is initiated in response to the exposure to ionizing radiation (IR), something that may occur during diagnostic or therapeutic medical applications. In order to better investigate these complex response mechanisms, we employed a unified framework integrating statistical microarray analysis, signal normalization, and translational bioinformatics functional analysis techniques. This approach was applied to several microarray datasets from Gene Expression Omnibus (GEO) related to RIBE. The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and prioritization methodologies, revealed discrete biological processes, at the cellular level. For example, the negative regulation of growth, cellular response to Zn2+-Cd2+, and Wnt and NIK/NF-kappaB signaling, thus refining the description of the phenotypic landscape of RIBE. Our results provide a more solid understanding of RIBE cell-specific response patterns, especially in the case of high-LET radiations, like α-particles and carbon-ions.

12.
Front Immunol ; 8: 664, 2017.
Article in English | MEDLINE | ID: mdl-28638385

ABSTRACT

Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-612433

ABSTRACT

Objective To discuss the protective effects ofGuiqi YiyuanOintment on damages caused by heavy ion radiation induced bystander effects; To explore the possible mechanism.Methods Totally 42 Wistar male rats were randomly divided into blank control group, pure radiation group andGuiqi Yiyuan Ointment group. TheGuiqi Yiyuan Ointment group was givenGuiqi Yiyuan Ointment by gavage for two weeks in advance. Later the right lungs of the rats in the pure radiation group andGuiqi Yiyuan Ointment group were radiated once by 2 Gy12C6+, while the blank control group received no radiation. 6, 12, 24 h after radiation all groups of rats were executed. Peripheral hemogram and the levels of IL-6, TGF-β1 and IL-1β in serum of the rats were examined. The changes of lung tissue pathology morphology in the rats were observed by HE staining.Results Compared with the blank control group, the contents of IL-6, TGF-β1 and IL-1β in serum of the pure radiation group increased obviously at 12 h after radiation (P<0.01), and the amount of leukocyte, erythrocyte, blood platelet and hemoglobin distinctly declined at 12 h after radiation (P<0.01); HE staining showed that the alveolar wall was thickened at 24 h after radiation, and there were exudate and inflammatory cell infiltration in the alveolar cavity. Compare with the pure radiation group at 12 h after radiation, the levels of IL-6, TGF-β1 and IL-1β inGuiqi Yiyuan Ointment group decreased significantly at 12 h after radiation (P<0.01). Indexes of blood routine significantly increased (P<0.01), and the pathological changes of lung tissue in rats improved (P<0.01). ConclusionGuiqi Yiyuan Ointment can protect damages caused by heavy ion radiation induced bystander effects.

14.
J Theor Biol ; 401: 1-14, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27084360

ABSTRACT

Radiotherapy is a commonly used treatment for cancer and is usually given in varying doses. At low radiation doses relatively few cells die as a direct response to radiation but secondary radiation effects, such as DNA mutation or bystander phenomena, may affect many cells. Consequently it is at low radiation levels where an understanding of bystander effects is essential in designing novel therapies with superior clinical outcomes. In this paper, we use a hybrid multiscale mathematical model to study the direct effects of radiation as well as radiation-induced bystander effects on both tumour cells and normal cells. We show that bystander responses play a major role in mediating radiation damage to cells at low-doses of radiotherapy, doing more damage than that due to direct radiation. The survival curves derived from our computational simulations showed an area of hyper-radiosensitivity at low-doses that are not obtained using a traditional radiobiological model.


Subject(s)
Bystander Effect/radiation effects , Computer Simulation , Radiotherapy/adverse effects , Animals , DNA Damage , Humans , Models, Biological , Radiation Tolerance
15.
Phys Med ; 31(6): 584-95, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25817634

ABSTRACT

The question of whether bystander and abscopal effects are the same is unclear. Our experimental system enables us to address this question by allowing irradiated organisms to partner with unexposed individuals. Organs from both animals and appropriate sham and scatter dose controls are tested for expression of several endpoints such as calcium flux, role of 5HT, reporter assay cell death and proteomic profile. The results show that membrane related functions of calcium and 5HT are critical for true bystander effect expression. Our original inter-animal experiments used fish species whole body irradiated with low doses of X-rays, which prevented us from addressing the abscopal effect question. Data which are much more relevant in radiotherapy are now available for rats which received high dose local irradiation to the implanted right brain glioma. The data were generated using quasi-parallel microbeams at the biomedical beamline at the European Synchrotron Radiation Facility in Grenoble France. This means we can directly compare abscopal and "true" bystander effects in a rodent tumour model. Analysis of right brain hemisphere, left brain and urinary bladder in the directly irradiated animals and their unirradiated partners strongly suggests that bystander effects (in partner animals) are not the same as abscopal effects (in the irradiated animal). Furthermore, the presence of a tumour in the right brain alters the magnitude of both abscopal and bystander effects in the tissues from the directly irradiated animal and in the unirradiated partners which did not contain tumours, meaning the type of signal was different.


Subject(s)
Brain Neoplasms/physiopathology , Brain Neoplasms/radiotherapy , Bystander Effect/radiation effects , Cell Survival/radiation effects , Dose Fractionation, Radiation , Radiotherapy, High-Energy/methods , Animals , Cell Line, Tumor , Equipment Design , Evidence-Based Medicine , Male , Radiotherapy Dosage , Radiotherapy, High-Energy/instrumentation , Rats , Synchrotrons/instrumentation , Technology Assessment, Biomedical , Treatment Outcome
16.
Cancer Lett ; 356(1): 72-81, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-24041866

ABSTRACT

A spectrum of radiation-induced non-targeted effects has been reported during the last two decades since Nagasawa and Little first described a phenomenon in cultured cells that was later called the "bystander effect". These non-targeted effects include radiotherapy-related abscopal effects, where changes in organs or tissues occur distant from the irradiated region. The spectrum of non-targeted effects continue to broaden over time and now embrace many types of exogenous and endogenous stressors that induce a systemic genotoxic response including a widely studied tumor microenvironment. Here we discuss processes and factors leading to DNA damage induction in non-targeted cells and tissues and highlight similarities in the regulation of systemic effects caused by different stressors.


Subject(s)
Bystander Effect/immunology , Cytokines/metabolism , DNA Damage/genetics , Inflammation/immunology , Oxidative Stress/radiation effects , Radiation Injuries/immunology , Bystander Effect/radiation effects , Cell Transformation, Neoplastic/radiation effects , Cytokines/blood , DNA Damage/immunology , Humans , Macrophages/immunology , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
17.
RNA Biol ; 11(9): 1161-70, 2014.
Article in English | MEDLINE | ID: mdl-25483031

ABSTRACT

Radiation-induced bystander effects are well-established phenomena, in which DNA damage responses are induced not only in the directly irradiated cells but also in the non-irradiated bystander cells through intercellular signal transmission. Recent studies hint that bystander effects are possibly mediated via small non-coding RNAs, especially microRNAs. Thus, more details about the roles of microRNA in bystander effects are urgently needed to be elucidated. Here we demonstrated that bystander effects were induced in human fetal lung MRC-5 fibroblasts through medium-mediated way by different types of radiation. We identified a set of differentially expressed microRNAs in the cell culture medium after irradiation, among which the up-regulation of miR-21 was further verified with qRT-PCR. In addition, we found significant upregulation of miR-21 in both directly irradiated cells and bystander cells, which was confirmed by the expression of miR-21 precursor and its target genes. Transfection of miR-21 mimics into non-irradiated MRC-5 cells caused bystander-like effects. Taken together, our data reveals that miR-21 is involved in radiation-induced bystander effects. Elucidation of such a miRNA-mediated bystander effect is of utmost importance in understanding the biological processes related to ionizing radiation and cell-to-cell communication.


Subject(s)
Bystander Effect , Fetus/metabolism , Fibroblasts/metabolism , Gene Expression Regulation/radiation effects , Lung/metabolism , MicroRNAs/genetics , Radiation, Ionizing , Apoptosis , Blotting, Western , Cell Communication/radiation effects , Cell Proliferation , Cells, Cultured , DNA Damage/radiation effects , Fetus/cytology , Fetus/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Fluorescent Antibody Technique , Humans , Lung/cytology , Lung/drug effects , RNA, Messenger/genetics , Reactive Oxygen Species , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/radiation effects , Tumor Stem Cell Assay
18.
Dose Response ; 11(1): 82-98, 2013.
Article in English | MEDLINE | ID: mdl-23550268

ABSTRACT

Many so-called "alternative medicine" techniques such as Reiki and acupuncture produce very good outcomes for intractable pain and other chronic illnesses but the efficacy is often dismissed as being psychosomatic. However a plausible mechanism does exist i.e. that the treatments alter the electromagnetic fields in living organisms and thereby prevent or reduce activity of neurons which lead to the pain. Low doses of ionising radiation have similar effects on electromagnetic fields and are known to induce signaling cascades in tissues due to ion gradients. To test this hypothesis cell cultures were exposed to Reiki - like and to acupuncture - like treatments, both performed by qualified practitioners. The cells were exposed either before or after the treatment to x-rays and were monitored for production of direct damage or bystander signals. The data suggest that the alternative techniques altered the response of cells to direct irradiation and altered bystander signal mechanisms. We conclude that alternative medicine techniques involving electromagnetic perturbations may modify the response of cells to ionizing radiation. In addition to the obvious implications for mechanistic studies of low dose effects, this could provide a novel target to exploit in radiation protection and in optimizing therapeutic gain during radiotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL