Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.256
Filter
1.
Biomed Pharmacother ; 178: 117192, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098178

ABSTRACT

The activation of tumor cell immunogenicity through oxaliplatin (OXP)-induced immunogenic cell death (ICD) has significant implications in cancer treatment. However, the anti-tumor effect of OXP monotherapy still has many shortcomings, and the systemic administration of OXP leads to low drug concentration at the tumor site, which is susceptible to systemic toxic side effects. In this study, a combined therapeutic strategy using folate-modified nanoliposomes co-delivered with rapamycin (Rapa) and OXP (abbreviated as FA@R/O Lps) is proposed for the treatment of colorectal cancer (CRC). Rapa and OXP can directly inhibit tumor cell proliferation and induce apoptosis. OXP induces ICD by triggering the release of danger signals, such as HMGB1, ATP, and calreticulin. FA@R/O Lps with a particle size of about 134.1±1.8 nm and a small dispersion were successfully prepared. This novel liposomal system can be used to target and increase drug accumulation in tumors. In-vivo experiments showed that FA@R/O Lps successfully inhibit CRC growth and liver metastasis, and simultaneously reduce off-target toxicity. In particular, FA@R/O Lps showed greater therapeutic effects than free Rapa/OXP and R/O Lps. Taken together, this study provides a novel combination of Rapa and OXP, and a nano-delivery system for enhanced anti-CRC efficacy. The results suggest that FA@R/O Lps could be a promising strategy for the treatment of CRC.

2.
Methods Mol Biol ; 2818: 213-226, 2024.
Article in English | MEDLINE | ID: mdl-39126477

ABSTRACT

Conditional depletion of proteins is a potential strategy to elucidate protein function, especially in complex cellular processes like meiosis. Several methods are available to effectively deplete a protein in a conditional manner. Conditional loss of a protein function can be achieved by depleting it from its region of action by degrading it. A conditional loss of protein function can also be achieved by sequestering it to a functionally unavailable compartment inside the cell. This chapter describes anchor away, a conditional depletion tool that can deplete a protein both temporally and spatially by translocation. It utilizes the affinity of FRB to bind FKBP12 in the presence of rapamycin for a quick and efficient translocation of the protein to a designated location. Anchor away is a reliable tool for the study of meiotic proteins, as only small quantities of rapamycin are required to efficiently and rapidly translocate the protein of interest without compromising meiotic progression.


Subject(s)
Meiosis , Protein Transport , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Sirolimus , Sirolimus/pharmacology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Nuclear Proteins/metabolism , Tacrolimus Binding Protein 1A/metabolism , Tacrolimus Binding Protein 1A/genetics
3.
Aging Cell ; : e14292, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135281

ABSTRACT

The progress made in aging research using laboratory organisms is undeniable. Yet, with few exceptions, these studies are conducted in a limited number of isogenic strains. The path from laboratory discoveries to treatment in human populations is complicated by the reality of genetic variation in nature. To model the effect of genetic variation on the action of the drug rapamycin, here we use the growth of Drosophila melanogaster larvae. We screened 140 lines from the Drosophila Genetic References Panel for the extent of developmental delay and found wide-ranging variation in their response, from lines whose development time is nearly doubled by rapamycin, to those that appear to be completely resistant. Sensitivity did not associate with any single genetic marker, nor with any gene. However, variation at the level of genetic pathways was associated with rapamycin sensitivity and might provide insight into sensitivity. In contrast to the genetic analysis, metabolomic analysis showed a strong response of the metabolome to rapamycin, but only among the sensitive larvae. In particular, we found that rapamycin altered levels of amino acids in sensitive larvae, and in a direction strikingly similar to the metabolome response to nutrient deprivation. This work demonstrates the need to evaluate interventions across genetic backgrounds and highlights the potential of omic approaches to reveal biomarkers of drug efficacy and to shed light on mechanisms underlying sensitivity to interventions aimed at increasing lifespan.

4.
Int J Mol Med ; 54(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39092569

ABSTRACT

Non­SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single­cell sequencing data, gene­set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M­phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3­kinase (PI3K)­Akt­mammalian target of rapamycin (mTOR)/c­Myc signaling pathway and epithelial­mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease­specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M­phase transition, activation of the PI3K­Akt­mTOR/c­Myc signaling pathway and EMT progression in human liver cancer cells.


Subject(s)
Cell Proliferation , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Signal Transduction/genetics , Phosphatidylinositol 3-Kinases/metabolism , Male , Female , Cell Proliferation/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Middle Aged , Gene Expression Regulation, Neoplastic , Disease Progression , Cell Line, Tumor , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Epithelial-Mesenchymal Transition/genetics , Apoptosis/genetics , Cell Movement/genetics , Prognosis
5.
Article in English | MEDLINE | ID: mdl-39150882

ABSTRACT

Pharmacological inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway with rapamycin can extend lifespan in several organisms. Although this includes the nematode Caenorhabditis elegans, effects in this species are relatively weak and sometimes difficult to reproduce. Here we test effects of drug dosage and timing of delivery to establish the upper limits of its capacity to extend life, and investigate drug effects on age-related pathology and causes of mortality. Liposome-mediated rapamycin treatment throughout adulthood showed a dose-dependent effect, causing a maximal 21.9% increase in mean lifespan, but shortening of lifespan at the highest dose, suggesting drug toxicity. Rapamycin treatment of larvae delayed development, weakly reduced fertility and modestly extended lifespan. By contrast, treatment initiated later in life robustly increased lifespan, even from day 16 (or ~70 yr in human terms). The rapalog temsirolimus extended lifespan similarly to rapamycin, but effects of everolimus were weaker. As in mouse, rapamycin had mixed effects on age-related pathologies, inhibiting one (uterine tumor growth) but not several others, suggesting a segmental antigeroid effect. These findings should usefully inform future experimental studies with rapamycin and rapalogs in C. elegans.

6.
J Clin Med ; 13(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124572

ABSTRACT

Background: The use of mammalian target of rapamycin inhibitors (mTORis) in kidney transplantation increases the risk of donor-specific human leukocyte antigen (HLA) antibody formation and rejection. Here, we investigated the long-term consequences of early mTORi treatment compared to calcineurin inhibitor (CNI) treatment. Methods: In this retrospective single-center analysis, key outcome parameters were compared between patients participating in randomized controlled immunosuppression trials between 1998 and 2011, with complete follow-up until 2018. The outcomes of eligible patients on a CNI-based regimen (n = 384) were compared with those of patients randomized to a CNI-free mTORi-based regimen (n = 81) and 76 patients randomized to a combination of CNI and mTORi treatments. All data were analyzed according to the intention-to-treat (ITT) principle. Results: Deviation from randomized immunosuppression for clinical reasons occurred significantly more often and much earlier in both mTORi-containing regimens than in the CNI treatment. Overall patient survival, graft survival, and death-censored graft survival did not differ between the treatment groups. Donor-specific HLA antibody formation and BPARs were significantly more common in both mTORi regimens than in the CNI-based immunosuppression. Conclusions: The tolerability and efficacy of the mTORi treatment in kidney graft recipients are inferior to those of CNI-based immunosuppression, while the long-term patient and graft survival rates were similar.

7.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125671

ABSTRACT

Late endosomal/lysosomal adaptor, MAPK and mTOR, or LAMTOR, is a scaffold protein complex that senses nutrients and integrates growth factor signaling. The role of LAMTOR4 in tumorigenesis is still unknown. However, there is a considerable possibility that LAMTOR4 is directly involved in tumor cell proliferation and metastasis. In the current study, we investigated the protein expression of LAMTOR4 in a cohort of 314 men who were undergoing transurethral resection of prostate (TURP) consisting of incidental, advanced and castration-resistant cases. We also correlated the data with ERG and PTEN genomic status and clinicopathological features including Gleason score and patients' outcome. Additionally, we performed in vitro experiments utilizing knockdown of LAMTOR4 in prostate cell lines, and we performed mRNA expression assessment using TCGA prostate adenocarcinoma (TCGA-PRAD) to explore the potential differentially expressed genes and pathways associated with LAMTOR4 overexpression in PCa patients. Our data indicate that high LAMTOR4 protein expression was significantly associated with poor overall survival (OS) (HR: 1.44, CI: 1.01-2.05, p = 0.047) and unfavorable cause-specific survival (CSS) (HR: 1.71, CI: 1.06-2.77, p = 0.028). Additionally, when high LAMTOR4 expression was combined with PTEN-negative cases (score 0), we found significantly poorer OS (HR: 2.22, CI: 1.37-3.59, p = 0.001) and CSS (HR: 3.46, CI: 1.86-6.46, p < 0.0001). Furthermore, ERG-positive cases with high LAMTOR4 exhibited lower OS (HR: 1.98, CI: 1.18-3.31, p = 0.01) and CSS (HR: 2.54, CI: 1.32-4.87, p = 0.005). In vitro assessment showed that knockdown of LAMTOR4 decreases PCa cell proliferation, migration, and invasion. Our data further showed that knockdown of LAMTOR4 in the LNCaP cell line significantly dysregulated the ß catenin/mTOR pathway and tumorigenesis associated pathways. Inhibiting components of the mTOR pathway, including LAMTOR4, might offer a strategy to inhibit tumor progression and metastasis in prostate cancer.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , Humans , Male , Cell Proliferation/genetics , Cell Movement/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aged , Neoplasm Invasiveness , Gene Knockdown Techniques , Middle Aged , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Prognosis
8.
World J Gastroenterol ; 30(26): 3229-3246, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39086630

ABSTRACT

BACKGROUND: Monopolar spindle-binding protein 3B (MOB3B) functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers. AIM: To investigate the role of MOB3B in colorectal cancer (CRC). METHODS: This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis. After overexpression and knockdown of MOB3B expression were induced in CRC cell lines, changes in cell viability, migration, invasion, and gene expression were assayed. Tumor cell autophagy was detected using transmission electron microscopy, while nude mouse xenograft experiments were performed to confirm the in-vitro results. RESULTS: MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis. Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells, whereas knockdown of MOB3B expression had the opposite effects in CRC cells. At the molecular level, microtubule-associated protein light chain 3 II/I expression was elevated, whereas the expression of matrix metalloproteinase (MMP)2, MMP9, sequestosome 1, and phosphorylated mechanistic target of rapamycin kinase (mTOR) was downregulated in MOB3B-overexpressing RKO cells. In contrast, the opposite results were observed in tumor cells with MOB3B knockdown. The nude mouse data confirmed these in-vitro findings, i.e., MOB3B expression suppressed CRC cell xenograft growth, whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts. CONCLUSION: Loss of MOB3B expression promotes CRC development and malignant behaviors, suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.


Subject(s)
Autophagy , Cell Movement , Colorectal Neoplasms , Neoplasm Invasiveness , Signal Transduction , TOR Serine-Threonine Kinases , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Cell Survival , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Mice, Inbred BALB C , Mice, Nude , Prognosis , TOR Serine-Threonine Kinases/metabolism
9.
J Investig Med ; : 10815589241270489, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39091053

ABSTRACT

Hepatocellular carcinoma (HCC) is a prevalent form of primary liver cancer with a 5-year survival rate of just 18%. Ferulic acid, a natural compound found in fruits and vegetables such as sweet corn, rice bran, and dong quai, is an encouraging drug known for its diverse positive effects on the body, including anti-inflammatory, anti-apoptotic, and neuroprotective properties. Our study aimed to investigate the potential antitumor effects of ferulic acid to inhibit tumor growth and inflammation of HCC in rats. HCC was induced in rats by administering thioacetamide. Additionally, some rats were given 50 mg/kg of ferulic acid three times a week for 16 weeks. Liver function was assessed by measuring serum alpha-fetoprotein (AFP) and examining hepatic tissue sections stained with hematoxylin/eosin or anti-hypoxia induced factor-1α (HIF-1α). The hepatic mRNA and protein levels of HIF-1α, nuclear factor κB (NFκB), tumor necrosis factor-α (TNF-α), mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 (STAT3), cMyc, and cyclin D1 were examined. The results showed that ferulic acid increased the rats' survival rate by reducing serum AFP levels and suppressing hepatic nodules. Furthermore, ferulic acid ameliorated the appearance of vacuolated cytoplasm induced by HCC, reduced apoptotic nuclei, and necrotic nodules. Finally, ferulic acid decreased the expression of HIF-1α, NFκB, TNF-α, mTOR, STAT3, cMyc, and cyclin D1. In conclusion, ferulic acid is believed to possess antitumor properties by inhibiting HCC-induced hypoxia through the suppression of HIF-1α expression. Additionally, it helps in reducing the expression of mTOR, STAT3, cMyc, and cyclin D1, thereby slowing down tumor growth. Lastly, ferulic acid reduced hepatic tissue inflammation by downregulating NFκB and TNF-α.

10.
Bioimpacts ; 14(4): 28870, 2024.
Article in English | MEDLINE | ID: mdl-39104620

ABSTRACT

Introduction: The PI3K/AKT/mTOR signaling pathway plays a significant role in the development of T-cell acute lymphoblastic leukemia (T-ALL). Rapamycin is a potential therapeutic strategy for hematological malignancies due to its ability to suppress mTOR activity. Additionally, microRNAs (miRNAs) have emerged as key regulators in T-ALL pathophysiology and treatment. This study aimed to investigate the combined effects of rapamycin and miRNAs in inhibiting the PI3K/AKT/mTOR pathway in T-ALL cells. Methods: Bioinformatic algorithms were used to find miRNAs that inhibit the PI3K/AKT/mTOR pathway. Twenty-five bone marrow samples were collected from T-ALL patients, alongside five control bone marrow samples from non-leukemia patients. The Jurkat cell line was chosen as a representative model for T-ALL. Gene and miRNA expression levels were assessed using quantitative real-time PCR (qRT-PCR). Two miRNAs exhibiting down-regulation in both clinical samples and Jurkat cells were transfected to the Jurkat cell line to investigate their impact on target gene expression. Furthermore, in order to evaluate the potential of combination therapy involving miRNAs and rapamycin, apoptosis and cell cycle assays were carried out. Results: Six miRNAs (miR-3143, miR-3182, miR-99a/100, miR-155, miR-576-5p, and miR-501- 3p) were predicted as inhibitors of PI3K/AKT/mTOR pathway. The expression analysis of both clinical samples and the Jurkat cell line revealed a simultaneous downregulation of miR-3143 and miR-3182. Transfection investigation demonstrated that the exogenous overexpression of miR-3143 and miR-3182 can effectively inhibit PI3K/AKT/mTOR signaling in the Jurkat cell line. Moreover, when used as a dual inhibitor along with rapamycin, miR-3143 and miR-3182 significantly increased apoptosis and caused cell cycle arrest in the Jurkat cell line. Conclusion: These preliminary results highlight the potential for improving T-ALL treatment through multi-targeted therapeutic strategies involving rapamycin and miR-3143/miR-3182.

11.
Brain ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106285

ABSTRACT

Focal Cortical Dysplasia, Hemimegalencephaly and Cortical Tuber are pediatric epileptogenic malformations of cortical development (MCDs) frequently pharmaco-resistant and mostly surgically treated by the resection of epileptic cortex. Availability of cortical resection samples allowed significant mechanistic discoveries directly from human material. Causal brain somatic or germline mutations in the AKT/PI3K/DEPDC5/MTOR genes were identified. GABAa mediated paradoxical depolarization, related to altered chloride (Cl-) homeostasis, was shown to participate to ictogenesis in human pediatric MCDs. However, the link between genomic alterations and neuronal hyperexcitability is still unclear. Here we studied the post translational interactions between the mTOR pathway and the regulation of cation-chloride cotransporters (CCC), KCC2 and NKCC1, that are largely responsible for controlling intracellular Cl- and ultimately GABAergic transmission. For this study, 35 children (25 MTORopathies and 10 pseudo controls, diagnosed by histology plus genetic profiling) were operated for drug resistant epilepsy. Postoperative cortical tissues were recorded on multielectrode array (MEA) to map epileptic activities. CCC expression level and phosphorylation status of the WNK1/SPAK-OSR1 pathway was measured during basal conditions and after pharmacological modulation. Direct interactions between mTOR and WNK1 pathway components were investigated by immunoprecipitation. Membranous incorporation of MCD samples in Xenopus laevis oocytes enabled Cl- conductance and equilibrium potential (EGABA) for GABA measurement. Of the 25 clinical cases, half harbored a somatic mutation in the mTOR pathway, while pS6 expression was increased in all MCD samples. Spontaneous interictal discharges were recorded in 65% of the slices. CCC expression was altered in MCDs, with a reduced KCC2/NKCC1 ratio and decreased KCC2 membranous expression. CCC expression was regulated by the WNK1/SPAK-OSR1 kinases through direct phosphorylation of Thr906 on KCC2, that was reversed by WNK1 and SPAK antagonists (NEM and Staurosporine). mSIN1 subunit of MTORC2 was found to interact with SPAK-OSR1 and WNK1. Interactions between these key epileptogenic pathways could be reversed by the mTOR specific antagonist Rapamycin, leading to a dephosphorylation of CCCs and recovery of the KCC2/NKCC1 ratio. The functional effect of such recovery was validated by the restoration of the depolarizing shift in EGABA by rapamycin, measured after incorporation of MCD membranes to X. laevis oocytes, in line with a reestablishment of normal ECl-. Our study deciphers a protein interaction network through a phosphorylation cascade between MTOR and WNK1/SPAK-OSR1 leading to chloride cotransporters deregulation, increased neuronal chloride levels and GABAa dysfunction in malformations of Cortical Development, linking genomic defects and functional effects and paving the way to target epilepsy therapy.

12.
Front Cell Dev Biol ; 12: 1372573, 2024.
Article in English | MEDLINE | ID: mdl-39086659

ABSTRACT

Although highly active antiretroviral therapy (HAART) has changed infection with human immunodeficiency virus (HIV) from a diagnosis with imminent mortality to a chronic illness, HIV positive patients who do not develop acquired immunodeficiency syndrome (AIDs) still suffer from a high rate of cardiac dysfunction and fibrosis. Regardless of viral load and CD count, HIV-associated cardiomyopathy (HIVAC) still causes a high rate of mortality and morbidity amongst HIV patients. While this is a well characterized clinical phenomena, the molecular mechanism of HIVAC is not well understood. In this review, we consolidate, analyze, and discuss current research on the intersection between autophagy and HIVAC. Multiple studies have linked dysregulation in various regulators and functional components of autophagy to HIV infection regardless of mode of viral entry, i.e., coronary, cardiac chamber, or pericardial space. HIV proteins, including negative regulatory factor (Nef), glycoprotein 120 (gp120), and transactivator (Tat), have been shown to interact with type II microtubule-associated protein-1 ß light chain (LC3-II), Rubiquitin, SQSTM1/p62, Rab7, autophagy-specific gene 7 (ATG7), and lysosomal-associated membrane protein 1 (LAMP1), all molecules critical to normal autophagy. HIV infection can also induce dysregulation of mitochondrial bioenergetics by altering production and equilibrium of adenosine triphosphate (ATP), mitochondrial reactive oxygen species (ROS), and calcium. These changes alter mitochondrial mass and morphology, which normally trigger autophagy to clear away dysfunctional organelles. However, with HIV infection also triggering autophagy dysfunction, these abnormal mitochondria accumulate and contribute to myocardial dysfunction. Likewise, use of HAART, azidothymidine and Abacavir, have been shown to induce cardiac dysfunction and fibrosis by inducing abnormal autophagy during antiretroviral therapy. Conversely, studies have shown that increasing autophagy can reduce the accumulation of dysfunctional mitochondria and restore cardiomyocyte function. Interestingly, Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, has also been shown to reduce HIV-induced cytotoxicity by regulating autophagy-related proteins, making it a non-antiviral agent with the potential to treat HIVAC. In this review, we synthesize these findings to provide a better understanding of the role autophagy plays in HIVAC and discuss the potential pharmacologic targets unveiled by this research.

13.
Tissue Eng Regen Med ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093548

ABSTRACT

BACKGROUND: Oxidative stress plays an important role in the skin aging process. Rapamycin has been shown to have anti-aging effects, but its role in oxidative senescence of skin cells remains unclear. The aim of this study was to explore the effect of rapamycin on oxidative stress-induced skin cell senescence and to illustrate the mechanism. METHODS: Primary human skin fibroblasts (HSFs) were extracted and a model of H2O2-induced oxidative senescence was constructed, and the effects of rapamycin on their value-added and migratory capacities were detected by CCK-8 and scratch assays. SA-ß-gal was utilized to detect senescence, oxidatively closely related factors were also assessed. Gene and protein expressions of senescence, oxidative, and autophagy were detected by western blotting and quantitative-PCR. The data were analyzed by one-way analysis of variance. RESULTS: Rapamycin (0.1 nmol/L for 48 h) promoted the proliferative and migration of H2O2-treated HSFs (p < 0.05), decreased senescent phenotypes SA-ß-gal staining and the expression of P53, and MMP-1 proteins, and increased the expression level of COL1A-1 (p < 0.001). Rapamycin also enhanced the activities of SOD and HO-1, and effectively removed intracellular ROS, MDA levels (p < 0.05), in addition, autophagy-related proteins and genes were significantly elevated after rapamycin pretreatment (p < 0.001). Rapamycin upregulated the autophagy pathway to exert its protective effects. CONCLUSION: Our findings indicate that rapamycin shields HSFs from H2O2-induced oxidative damage, the mechanism is related to the reduction of intracellular peroxidation and upregulation of autophagy pathway. Therefore, rapamycin has the potential to be useful in the investigation and prevention of signs of aging and oxidative stress.

14.
Methods Mol Biol ; 2845: 27-37, 2024.
Article in English | MEDLINE | ID: mdl-39115655

ABSTRACT

Synthetic tethering approaches induced by chemical means offer precise control over protein interactions in cells. They enable the manipulation of when, where, and how proteins interact, making it possible to study their functions, dynamics, and cellular consequences at a molecular level. These methods are versatile, reversible, and adaptable, allowing the dissection of complex cellular processes and the engineering of cellular functions. Here, we describe two chemically induced dimerization systems in the model organism Saccharomyces cerevisiae. Using the autophagy pathway as an example, we show how these approaches can be used to dissect molecular events in cells.


Subject(s)
Autophagy , Protein Multimerization , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry
15.
BMC Genomics ; 25(1): 766, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107687

ABSTRACT

BACKGROUND: Many common diseases exhibit uncontrolled mTOR signaling, prompting considerable interest in the therapeutic potential of mTOR inhibitors, such as rapamycin, to treat a range of conditions, including cancer, aging-related pathologies, and neurological disorders. Despite encouraging preclinical results, the success of mTOR interventions in the clinic has been limited by off-target side effects and dose-limiting toxicities. Improving clinical efficacy and mitigating side effects require a better understanding of the influence of key clinical factors, such as sex, tissue, and genomic background, on the outcomes of mTOR-targeting therapies. RESULTS: We assayed gene expression with and without rapamycin exposure across three distinct body parts (head, thorax, abdomen) of D. melanogaster flies, bearing either their native melanogaster mitochondrial genome or the mitochondrial genome from a related species, D. simulans. The fully factorial RNA-seq study design revealed a large number of genes that responded to the rapamycin treatment in a sex-dependent and tissue-dependent manner, and relatively few genes with the transcriptional response to rapamycin affected by the mitochondrial background. Reanalysis of an earlier study confirmed that mitochondria can have a temporal influence on rapamycin response. CONCLUSIONS: We found significant and wide-ranging effects of sex and body part, alongside a subtle, potentially time-dependent, influence of mitochondria on the transcriptional response to rapamycin. Our findings suggest a number of pathways that could be crucial for predicting potential side effects of mTOR inhibition in a particular sex or tissue. Further studies of the temporal response to rapamycin are necessary to elucidate the effects of the mitochondrial background on mTOR and its inhibition.


Subject(s)
Mitochondria , Sirolimus , Animals , Sirolimus/pharmacology , Female , Male , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/drug effects , Sex Factors , TOR Serine-Threonine Kinases/metabolism , Organ Specificity/genetics , Drosophila/genetics , Drosophila/drug effects , Transcription, Genetic/drug effects , Gene Expression Profiling
16.
BMC Plant Biol ; 24(1): 753, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107711

ABSTRACT

BACKGROUND: When subject to stress conditions such as nutrient limitation microalgae accumulate triacylglycerol (TAG). Fatty acid, a substrate for TAG synthesis is derived from de novo synthesis or by membrane remodeling. The model industrial alga Chlorellasorokiniana accumulates TAG and other storage compounds under nitrogen (N)-limited growth. Molecular mechanisms underlying these processes are still to be elucidated. RESULT: Previously we used transcriptomics to explore the regulation of TAG synthesis in C. sorokiniana. Surprisingly, our analysis showed that the expression of several key genes encoding enzymes involved in plastidic fatty acid synthesis are significantly repressed. Metabolic labeling with radiolabeled acetate showed that de novo fatty acid synthesis is indeed downregulated under N-limitation. Likewise, inhibition of the Target of Rapamycin kinase (TOR), a key regulator of metabolism and growth, decreased fatty acid synthesis. We compared the changes in proteins and phosphoprotein abundance using a proteomics and phosphoproteomics approach in C. sorokiniana cells under N-limitation or TOR inhibition and found extensive overlap between the N-limited and TOR-inhibited conditions. We also identified changes in the phosphorylation status of TOR complex proteins, TOR-kinase, and RAPTOR, under N-limitation. This indicates that TOR signaling is altered in a nitrogen-dependent manner. We find that TOR-mediated metabolic remodeling of fatty acid synthesis under N-limitation is conserved in the chlorophyte algae Chlorella sorokiniana and Chlamydomonas reinhardtii. CONCLUSION: Our results indicate that under N-limitation there is significant metabolic remodeling, including fatty acid synthesis, mediated by TOR signaling. This process is conserved across chlorophyte algae. Using proteomic and phosphoproteomic analysis, we show that N-limitation affects TOR signaling and this in-turn affects the metabolic status of the cells. This study presents a link between N-limitation, TOR signaling and fatty acid synthesis in green-lineage.


Subject(s)
Chlamydomonas reinhardtii , Chlorella , Down-Regulation , Fatty Acids , Nitrogen , Chlorella/metabolism , Chlorella/genetics , Nitrogen/metabolism , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , TOR Serine-Threonine Kinases/metabolism , Proteomics , Plant Proteins/metabolism , Plant Proteins/genetics , Triglycerides/metabolism , Triglycerides/biosynthesis
17.
Theranostics ; 14(11): 4375-4392, 2024.
Article in English | MEDLINE | ID: mdl-39113803

ABSTRACT

Rationale: Autism spectrum disorder (ASD) represents a complex neurodevelopmental condition lacking specific pharmacological interventions. Given the multifaced etiology of ASD, there exist no effective treatment for ASD. Rapamycin (RAPA) can activate autophagy by inhibiting the mTOR pathway and has exhibited promising effects in treating central nervous system disorders; however, its limited ability to cross the blood-brain barrier (BBB) has hindered its clinical efficacy, leading to substantial side effects. Methods: To address this challenge, we designed a drug delivery system utilizing red blood cell membrane (CM) vesicles modified with SS31 peptides to enhance the brain penetration of RAPA for the treatment of autism. Results: The fabricated SCM@RAPA nanoparticles, with an average diameter of 110 nm, exhibit rapid release of RAPA in a pathological environment characterized by oxidative stress. In vitro results demonstrate that SCM@RAPA effectively activate cellular autophagy, reduce intracellular ROS levels, improve mitochondrial function, thereby ameliorating neuronal damage. SS31 peptide modification significantly enhances the BBB penetration and rapid brain accumulation of SCM@RAPA. Notably, SCM@RAPA nanoparticles demonstrate the potential to ameliorate social deficits, improve cognitive function, and reverse neuronal impairments in valproic acid (VPA)-induced ASD models. Conclusions: The therapeutic potential of SCM@RAPA in managing ASD signifies a paradigm shift in autism drug treatment, holding promise for clinical interventions in diverse neurological conditions.


Subject(s)
Autism Spectrum Disorder , Autophagy , Blood-Brain Barrier , Nanoparticles , Oxidative Stress , Sirolimus , Sirolimus/administration & dosage , Sirolimus/pharmacology , Oxidative Stress/drug effects , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/metabolism , Animals , Autophagy/drug effects , Nanoparticles/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Mice , Humans , Drug Delivery Systems/methods , Disease Models, Animal , Male , Biomimetic Materials/administration & dosage , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetics/methods , Brain/metabolism , Brain/drug effects , Peptides/administration & dosage , Reactive Oxygen Species/metabolism , Valproic Acid/administration & dosage , Valproic Acid/pharmacology
18.
Cureus ; 16(7): e65132, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39040610

ABSTRACT

Subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC) occurs in 5-20% of TSC patients, with a subset developing hydrocephalus. We present a case of a 14-year-old male diagnosed with TSC in the neonatal period who developed SEGA and subsequent hydrocephalus. Despite reducing the tumor size with the mammalian target of rapamycin (mTOR) inhibitors, ventricular enlargement persisted, indicating that obstructive hydrocephalus due to the foramen of Monro blockage was not the sole mechanism. Elevated cerebrospinal fluid (CSF) protein levels suggested additional factors like impaired CSF outflow. This case underscores the need for comprehensive treatment strategies and further research to better understand and manage hydrocephalus in TSC patients with SEGA.

19.
J Med Life ; 17(3): 261-272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39044934

ABSTRACT

Obesity is a global health concern owing to its association with numerous degenerative diseases and the fact that it may lead to early aging. Various markers of aging, including telomere attrition, epigenetic alterations, altered protein homeostasis, mitochondrial dysfunction, cellular senescence, stem cell disorders, and intercellular communication, are influenced by obesity. Consequently, there is a critical need for safe and effective approaches to prevent obesity and mitigate the onset of premature aging. In recent years, intermittent fasting (IF), a dietary strategy that alternates between periods of fasting and feeding, has emerged as a promising dietary strategy that holds potential in counteracting the aging process associated with obesity. This article explores the molecular and cellular mechanisms through which IF affects obesity-related early aging. IF regulates various physiological processes and organ systems, including the liver, brain, muscles, intestines, blood, adipose tissues, endocrine system, and cardiovascular system. Moreover, IF modulates key signaling pathways such as AMP-activated protein kinase (AMPK), sirtuins, phosphatidylinositol 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR), and fork head box O (FOXO). By targeting these pathways, IF has the potential to attenuate aging phenotypes associated with obesity-related early aging. Overall, IF offers promising avenues for promoting healthier lifestyles and mitigating the premature aging process in individuals affected by obesity.


Subject(s)
Aging, Premature , Intermittent Fasting , Obesity , Animals , Humans , Aging , Aging, Premature/prevention & control , Cellular Senescence , Obesity/prevention & control , Signal Transduction
20.
Cancer Diagn Progn ; 4(4): 396-401, 2024.
Article in English | MEDLINE | ID: mdl-38962555

ABSTRACT

Background/Aim: Rapamycin inhibits the mTOR protein kinase. Methioninase (rMETase), by degrading methionine, targets the methionine addiction of cancer cells and has been shown to improve the efficacy of chemotherapy drugs, reducing their effective doses. Our previous study demonstrated that rapamycin and rMETase work synergistically against colorectal-cancer cells, but not on normal cells, when administered simultaneously in vitro. In the present study, we aimed to further our previous findings by exploring whether  synergy exists between rapamycin and rMETase when used sequentially against HCT-116 colorectal-carcinoma cells, compared to simultaneous administration, in vitro. Materials and Methods: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line were previously determined using the CCK-8 cell viability assay (11). We then examined the efficacy of rapamycin and rMETase, both at their IC50, administered simultaneously or sequentially on the HCT-116 cell line, with rapamycin administered before rMETase and vice versa. Results: The IC50 for rapamycin and rMETase, determined from previous experiments (11), was 1.38 nM and 0.39 U/ml, respectively, of HCT-116 cells. When rMETase was administered four days before rapamycin, both at the IC50, there was a 30.46% inhibition of HCT-116 cells. When rapamycin was administered four days before rMETase, both at the IC50, there was an inhibition of 41.13%. When both rapamycin and rMETase were simultaneously administered, both at the IC50, there was a 71.03% inhibition. Conclusion: Rapamycin and rMETase have synergistic efficacy against colorectal-cancer cells in vitro when administered simultaneously, but not sequentially.

SELECTION OF CITATIONS
SEARCH DETAIL