Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Cell Rep ; 43(7): 114515, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39003743

ABSTRACT

Wounding is a general stress in plants that results from various pest and pathogenic infections in addition to environment-induced mechanical damages. Plants have sophisticated molecular mechanisms to recognize and respond to wounding, with those of monocots being distinct from dicots. Here, we show the involvement of two distinct categories of temporally separated, endogenously derived peptides, namely, plant elicitor peptides (PEPs) and phytosulfokine (PSK), mediating wound responses in rice. These peptides trigger a dynamic signal relay in which a receptor kinase involved in PSK perception named OsPSKR plays a major role. Perturbation of OsPSKR expression in rice leads to compromised development and constitutive autoimmune phenotypes. OsPSKR regulates the transitioning of defense to growth signals upon wounding. OsPSKR displays mutual antagonism with the OsPEPR1 receptor involved in PEP perception. Collectively, our work indicates the presence of a stepwise peptide-mediated signal relay that regulates the transition from defense to growth upon wounding in monocots.


Subject(s)
Oryza , Plant Proteins , Signal Transduction , Oryza/metabolism , Oryza/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Peptides/metabolism , Plant Diseases/immunology
2.
Proc Natl Acad Sci U S A ; 121(30): e2318982121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012828

ABSTRACT

The mutualistic arbuscular mycorrhizal (AM) symbiosis arose in land plants more than 450 million years ago and is still widely found in all major land plant lineages. Despite its broad taxonomic distribution, little is known about the molecular components underpinning symbiosis outside of flowering plants. The ARBUSCULAR RECEPTOR-LIKE KINASE (ARK) is required for sustaining AM symbiosis in distantly related angiosperms. Here, we demonstrate that ARK has an equivalent role in symbiosis maintenance in the bryophyte Marchantia paleacea and is part of a broad AM genetic program conserved among land plants. In addition, our comparative transcriptome analysis identified evolutionarily conserved expression patterns for several genes in the core symbiotic program required for presymbiotic signaling, intracellular colonization, and nutrient exchange. This study provides insights into the molecular pathways that consistently associate with AM symbiosis across land plants and identifies an ancestral role for ARK in governing symbiotic balance.


Subject(s)
Embryophyta , Gene Expression Regulation, Plant , Mycorrhizae , Plant Proteins , Symbiosis , Symbiosis/genetics , Mycorrhizae/physiology , Mycorrhizae/genetics , Embryophyta/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Marchantia/genetics , Marchantia/microbiology , Phylogeny
3.
Mol Biol Rep ; 51(1): 735, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874770

ABSTRACT

BACKGROUND: Pomegranate (Punica granatum L.) is a tropical fruit crop of pharma-nutritional importance. However, it faces farming challenges due to pests and diseases, particularly bacterial blight and wilt. Developing resistant cultivars is crucial for sustainable pomegranate cultivation, and understanding resistance's genetic basis is essential. METHODS AND RESULTS: We used an extensive resistance gene analogues (RGA) prediction tool to identify 958 RGAs, classified into Nucleotide Binding Site-leucine-rich repeat (NBS-LRR) proteins, receptor-like kinases (RLKs), receptor-like proteins (RLPs), Transmembrane coiled-coil (TM-CC), and nine non-canonical RGAs. RGAs were distributed across all eight chromosomes, with chromosome 02 containing the most RGAs (161), and chromosome 08 having the highest density (4.42 RGA/Mb). NBS-LRR genes were predominantly present on chromosomes 08 and 02, whereas RLKs and RLPs were primarily located on chromosomes 04 and 07. Gene ontology analysis revealed that 475 RGAs were associated with defence against various biotic stresses. Using RNAseq, we identified 120 differentially expressed RGAs, with RLKs (74) being prominent among the differentially expressed genes. CONCLUSION: The discovery of these RGAs is a significant step towards breeding pomegranates for pest and disease resistance. The differentially expressed RLKs hold promise for developing resistant cultivars against bacterial blight, thereby contributing to the sustainability of pomegranate cultivation.


Subject(s)
Disease Resistance , Plant Diseases , Plant Proteins , Pomegranate , Transcriptome , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Pomegranate/genetics , Transcriptome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Regulation, Plant , Gene Expression Profiling/methods , Xanthomonas/pathogenicity
4.
Physiol Mol Biol Plants ; 30(5): 851-866, 2024 May.
Article in English | MEDLINE | ID: mdl-38846461

ABSTRACT

Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subgroup of receptor-like kinases (RLKs) in plants. While some LRR-RLK members play a role in regulating various plant growth processes related to morphogenesis, disease resistance, and stress response, the functions of most LRR-RLK genes remain unclear. In this study, we identified 397 LRR-RLK genes from the genome of Camellia sinensis and categorized them into 16 subfamilies. Approximately 62% of CsLRR-RLK genes are situated in regions resulting from segmental duplications, suggesting that the expansion of CsLRR-RLK genes is due to segmental duplications. Analysis of gene expression patterns revealed differential expression of CsLRR-RLK genes across different tissues and in response to stress. Furthermore, we demonstrated that CssEMS1 localizes to the cell membrane and can complement Arabidopsis ems1 mutant. This study is the initial in-depth evolutionary examination of LRR-RLKs in tea and provides a basis for future investigations into their functionality. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01458-1.

5.
Plant Cell Physiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757845

ABSTRACT

Whole genome duplication (WGD) events are widespread in plants and animals, thus their long-term evolutionary contribution has long been speculated, yet a specific contribution is difficult to verify. Here, we show that ɛ-WGD and ζ-WGD contribute to the origin and evolution of bona fide brassinosteroid (BR) signaling through the innovation of active BR biosynthetic enzymes and active BR receptors from their respective ancestors. We found that BR receptors BRI1 (BR Insensitive 1) and BRL1/3 (BRI1-likes 1/3) derived by ɛ-WGD and ζ-WGD, which occurred in the common ancestor of angiosperms and seed plants, respectively, while orphan BR receptor BRL2 first appeared in stomatophytes. Additionally, CYP85A enzymes synthesizing the bioactive BRs derived from a common ancestor of seed plants while its sister enzymes CYP90 synthesizing BR precursors presented in all land plants, implying possible ligand-receptor coevolution. Consistently, the island domains (IDs) responsible for BR perception in BR receptors were most divergent among different receptor branches, supporting ligand-driven evolution. As a result, BRI1 was the most diversified BR receptor in angiosperms. Importantly, relative to the BR biosynthetic DET2 gene presented in all land plants, BRL2, BRL1/3 and BRI1 had high expression in vascular plants ferns, gymnosperms and angiosperms, respectively. Notably, BRI1 is the most diversified BR receptor with the most abundant expression in angiosperms, suggesting potential positive selection. Therefore, WGDs initiate a neofunctionalization process diverged by ligand-perception and transcriptional expression, which might optimize both BR biosynthetic enzymes and BR receptors, likely contributing to the evolution of land plants, especially seed plants and angiosperms.

6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731974

ABSTRACT

Tomato (Solanum lycopersicum) breeding for improved fruit quality emphasizes selecting for desirable taste and characteristics, as well as enhancing disease resistance and yield. Seed germination is the initial step in the plant life cycle and directly affects crop productivity and yield. ERECTA (ER) is a receptor-like kinase (RLK) family protein known for its involvement in diverse developmental processes. We characterized a Micro-Tom EMS mutant designated as a knock-out mutant of sler. Our research reveals that SlER plays a central role in controlling critical traits such as inflorescence development, seed number, and seed germination. The elevation in auxin levels and alterations in the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI5 in sler seeds compared to the WT indicate that SlER modulates seed germination via auxin and abscisic acid (ABA) signaling. Additionally, we detected an increase in auxin content in the sler ovary and changes in the expression of auxin synthesis genes YUCCA flavin monooxygenases 1 (YUC1), YUC4, YUC5, and YUC6 as well as auxin response genes AUXIN RESPONSE FACTOR 5 (ARF5) and ARF7, suggesting that SlER regulates fruit development via auxin signaling.


Subject(s)
Fruit , Germination , Indoleacetic Acids , Plant Proteins , Signal Transduction , Solanum lycopersicum , Abscisic Acid/metabolism , Fruit/growth & development , Fruit/metabolism , Fruit/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/growth & development , Seeds/metabolism , Seeds/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism
7.
Bioorg Med Chem Lett ; 108: 129797, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38759932

ABSTRACT

TGF-ß is an immunosuppressive cytokine and plays a key role in progression of cancer by inducing immunosuppression in tumor microenvironment. Therefore, inhibition of TGF-ß signaling pathway may provide a potential therapeutic intervention in treating cancers. Herein, we report the discovery of a series of novel thiazole derivatives as potent inhibitors of ALK5, a serine-threonine kinase which is responsible for TGF-ß signal transduction. Compound 29b was identified as a potent inhibitor of ALK5 with an IC50 value of 3.7 nM with an excellent kinase selectivity.


Subject(s)
Drug Design , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta , Thiazoles , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/metabolism , Molecular Structure , Dose-Response Relationship, Drug
8.
PeerJ ; 12: e17370, 2024.
Article in English | MEDLINE | ID: mdl-38737737

ABSTRACT

Cysteine-rich receptor-like kinases (CRKs) play many important roles during plant development, including defense responses under both biotic and abiotic stress, reactive oxygen species (ROS) homeostasis, callose deposition and programmed cell death (PCD). However, there are few studies on the involvement of the CRK family in male sterility due to heat stress in wheat (Triticum aestivum L.). In this study, a genome-wide characterization of the CRK family was performed to investigate the structural and functional attributes of the wheat CRKs in anther sterility caused by heat stress. A total of 95 CRK genes were unevenly distributed on 18 chromosomes, with the most genes distributed on chromosome 2B. Paralogous homologous genes with Ka/Ks ratios less than 1 may have undergone strong purifying selection during evolution and are more functionally conserved. The collinearity analysis results of CRK genes showed that wheat and Arabidopsis (A. thaliana), foxtail millet, Brachypodium distachyon (B. distachyon), and rice have three, 12, 15, and 11 pairs of orthologous genes, respectively. In addition, the results of the network interactions of genes and miRNAs showed that five miRNAs were in the hub of the interactions map, namely tae-miR9657b-5p, tae-miR9780, tae-miR9676-5p, tae-miR164, and tae-miR531. Furthermore, qRT-PCR validation of the six TaCRK genes showed that they play key roles in the development of the mononuclear stage anthers, as all six genes were expressed at highly significant levels in heat-stressed male sterile mononuclear stage anthers compared to normal anthers. We hypothesized that the TaCRK gene is significant in the process of high-temperature-induced sterility in wheat based on the combination of anther phenotypes, paraffin sections, and qRT-PCR data. These results improve our understanding of their relationship.


Subject(s)
Gene Expression Regulation, Plant , Plant Infertility , Triticum , Triticum/genetics , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant/genetics , Hot Temperature/adverse effects , Multigene Family , Chromosomes, Plant/genetics , Heat-Shock Response/genetics , Gene Expression Profiling
9.
Plants (Basel) ; 13(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732488

ABSTRACT

Dioscorea alata, commonly known as "greater yam", is a vital crop in tropical and subtropical regions of the world, yet it faces significant threats from anthracnose disease, mainly caused by Colletotrichum gloeosporioides. However, exploring disease resistance genes in this species has been challenging due to the difficulty of genetic mapping resulting from the loss of the flowering trait in many varieties. The receptor-like kinase (RLK) gene family represents essential immune receptors in plants. In this study, genomic analysis revealed 467 RLK genes in D. alata. The identified RLKs were distributed unevenly across chromosomes, likely due to tandem duplication events. However, a considerable number of ancient whole-genome or segmental duplications dating back over 100 million years contributed to the diversity of RLK genes. Phylogenetic analysis unveiled at least 356 ancient RLK lineages in the common ancestor of Dioscoreaceae, which differentially inherited and expanded to form the current RLK profiles of D. alata and its relatives. The analysis of cis-regulatory elements indicated the involvement of RLK genes in diverse stress responses. Transcriptome analysis identified RLKs that were up-regulated in response to C. gloeosporioides infection, suggesting their potential role in resisting anthracnose disease. These findings provide novel insights into the evolution of RLK genes in D. alata and their potential contribution to disease resistance.

10.
Plant Cell Physiol ; 65(7): 1149-1159, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38581668

ABSTRACT

Establishment of arbuscular mycorrhiza relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short-chain chitooligosaccharides and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF); however, its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization and carry mutations in LysM1 and 2, respectively, have similar LCO-binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter [genetically encoded Ca2+ indicators (GECO)], showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short-chain chitooligosaccharides also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+ spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.


Subject(s)
Mycorrhizae , Plant Proteins , Plant Roots , Signal Transduction , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/enzymology , Solanum lycopersicum/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/genetics , Mycorrhizae/physiology , Chitin/metabolism , Lipopolysaccharides/pharmacology , Oligosaccharides/metabolism , Mutation/genetics , Gene Expression Regulation, Plant , Nicotiana/genetics , Nicotiana/metabolism , Chitosan/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Medicago truncatula/enzymology
11.
J Exp Bot ; 75(12): 3685-3699, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38683617

ABSTRACT

Every cell constantly receives signals from its neighbours or the environment. In plants, most signals are perceived by RECEPTOR-LIKE KINASEs (RLKs) and then transmitted into the cell. The molecular switches RHO OF PLANTS (ROP) are critical proteins for polar signal transduction and regulate multiple cell polarity processes downstream of RLKs. Many ROP-regulating proteins and scaffold proteins of the ROP complex are known. However, the spatiotemporal ROP signalling complex composition is not yet understood. Moreover, how specificity is achieved in different ROP signalling pathways within one cell still needs to be determined. This review gives an overview of recent advances in ROP signalling and how specificity by downstream scaffold proteins can be achieved. The composition of the ROP signalling complexes is discussed, focusing on the possibility of the simultaneous presence of ROP activators and inactivators within the same complex to balance ROP activity. Furthermore, this review highlights the function of plant-specific ROP GUANINE NUCLEOTIDE EXCHANGE FACTORS polarizing ROP signalling and defining the specificity of the initiated ROP signalling pathway.


Subject(s)
Guanine Nucleotide Exchange Factors , Plant Proteins , Plants , Signal Transduction , Guanine Nucleotide Exchange Factors/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plants/metabolism
12.
Trends Plant Sci ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38594153

ABSTRACT

To resist biotic attacks, plants have evolved a sophisticated, receptor-based immune system. Cell-surface immune receptors, which are either receptor-like kinases (RLKs) or receptor-like proteins (RLPs), form the front line of the plant defense machinery. RLPs lack a cytoplasmic kinase domain for downstream immune signaling, and leucine-rich repeat (LRR)-containing RLPs constitutively associate with the RLK SOBIR1. The RLP/SOBIR1 complex was proposed to be the bimolecular equivalent of genuine RLKs. However, it appears that the molecular mechanisms by which RLP/SOBIR1 complexes and RLKs mount immunity show some striking differences. Here, we summarize the differences between RLP/SOBIR1 and RLK signaling, focusing on the way these receptors recruit the BAK1 co-receptor and elaborating on the negative crosstalk taking place between the two signaling networks.

13.
Stress Biol ; 4(1): 18, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483708

ABSTRACT

In plant immunity, a well-orchestrated cascade is initiated by the dimerization of receptor-like kinases (RLKs), followed by the phosphorylation of receptor-like cytoplasmic kinases (RLCKs) and subsequent activation of NADPH oxidases for ROS generation. Recent findings by Zhong et al. illustrated that a maize signaling module comprising ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 governs quantitative disease resistance to grey leaf spot, a pervasive fungal disease in maize worldwide, unveiling the conservation of this signaling quartet in plant immunity.

14.
Front Plant Sci ; 15: 1305599, 2024.
Article in English | MEDLINE | ID: mdl-38362444

ABSTRACT

All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.

15.
J Adv Res ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38101748

ABSTRACT

BACKGROUND: How plants emit, perceive, and respond to sound vibrations (SVs) is a long-standing question in the field of plant sensory biology. In recent years, there have been numerous studies on how SVs affect plant morphological, physiological, and biochemical traits related to growth and adaptive responses. For instance, under drought SVs navigate plant roots towards water, activate their defence responses against stressors, and increase nectar sugar in response to pollinator SVs. Also, plants emit SVs during stresses which are informative in terms of ecological and adaptive perspective. However, the molecular mechanisms underlying the SV perception and emission in plants remain largely unknown. Therefore, deciphering the complexity of plant-SV interactions and identifying bonafide receptors and signaling players will be game changers overcoming the roadblocks in phytoacoustics. AIM OF REVIEW: The aim of this review is to provide an overview of recent developments in phytoacoustics. We primarily focuss on SV signal perception and transduction with current challenges and future perspectives. KEY SCIENTIFIC CONCEPTS OF REVIEW: Timeline breakthroughs in phytoacoustics have constantly shaped our understanding and belief that plants may emit and respond to SVs like other species. However, unlike other plant mechanostimuli, little is known about SV perception and signal transduction. Here, we provide an update on phytoacoustics and its ecological importance. Next, we discuss the role of cell wall receptor-like kinases, mechanosensitive channels, intracellular organelle signaling, and other key players involved in plant-SV receptive pathways that connect them. We also highlight the role of calcium (Ca2+), reactive oxygen species (ROS), hormones, and other emerging signaling molecules in SV signal transduction. Further, we discuss the importance of molecular, biophysical, computational, and live cell imaging tools for decoding the molecular complexity of acoustic signaling in plants. Finally, we summarised the role of SV priming in plants and discuss how SVs could modulate plant defense and growth trade-offs during other stresses.

16.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834209

ABSTRACT

The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.


Subject(s)
Plants , Protein Kinases , Protein Kinases/genetics , Protein Kinases/metabolism , Plants/genetics , Plants/metabolism , Stress, Physiological , Signal Transduction/physiology
17.
Front Genet ; 14: 1252020, 2023.
Article in English | MEDLINE | ID: mdl-37799143

ABSTRACT

Arachis hypogaea (peanut) is a leading oil and protein-providing crop with a major food source in many countries. It is mostly grown in tropical regions and is largely affected by abiotic and biotic stresses. Cysteine-rich receptor-like kinases (CRKs) is a family of transmembrane proteins that play important roles in regulating stress-signaling and defense mechanisms, enabling plants to tolerate stress conditions. However, almost no information is available regarding this gene family in Arachis hypogaea and its progenitors. This study conducts a pangenome-wide investigation of A. hypogaea and its two progenitors, A. duranensis and A. ipaensis CRK genes (AhCRKs, AdCRKs, and AiCRKs). The gene structure, conserved motif patterns, phylogenetic history, chromosomal distribution, and duplication were studied in detail, showing the intraspecies structural conservation and evolutionary patterns. Promoter cis-elements, protein-protein interactions, GO enrichment, and miRNA targets were also predicted, showing their potential functional conservation. Their expression in salt and drought stresses was also comprehensively studied. The CRKs identified were divided into three groups, phylogenetically. The expansion of this gene family in peanuts was caused by both types of duplication: tandem and segmental. Furthermore, positive as well as negative selection pressure directed the duplication process. The peanut CRK genes were also enriched in hormones, light, development, and stress-related elements. MicroRNA (miRNA) also targeted the AhCRK genes, which suggests the regulatory association of miRNAs in the expression of these genes. Transcriptome datasets showed that AhCRKs have varying expression levels under different abiotic stress conditions. Furthermore, the multi-stress responsiveness of the AhCRK genes was evaluated using a machine learning-based method, Random Forest (RF) classifier. The 3D structures of AhCRKs were also predicted. Our study can be utilized in developing a detailed understanding of the stress regulatory mechanisms of the CRK gene family in peanuts and its further studies to improve the genetic makeup of peanuts to thrive better under stress conditions.

18.
Trends Plant Sci ; 28(12): 1406-1421, 2023 12.
Article in English | MEDLINE | ID: mdl-37625950

ABSTRACT

Heterotrimeric G-protein-mediated signaling is a key mechanism to transduce a multitude of endogenous and environmental signals in diverse organisms. The scope and expectations of plant G-protein research were set by pioneering work in metazoans. Given the similarity of the core constituents, G-protein-signaling mechanisms were presumed to be universally conserved. However, because of the enormous diversity of survival strategies and endless forms among eukaryotes, the signal, its interpretation, and responses vary even among different plant groups. Earlier G-protein research in arabidopsis (Arabidopsis thaliana) has emphasized its divergence from Metazoa. Here, we compare recent evidence from diverse plant lineages with the available arabidopsis G-protein model and discuss the conserved and novel protein components, signaling mechanisms, and response regulation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Heterotrimeric GTP-Binding Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Signal Transduction , Plants/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Plant Proteins/metabolism
19.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511479

ABSTRACT

Cysteine-rich receptor-like kinases (CRKs) are a type of receptor-like kinases (RLKs) that are important for pathogen resistance, extracellular reactive oxygen species (ROS) signaling, and programmed cell death in plants. In a previous study, we identified 46 CRK family members in the Phaseolus vulgaris genome and found that CRK12 was highly upregulated under root nodule symbiotic conditions. To better understand the role of CRK12 in the Phaseolus-Rhizobia symbiotic interaction, we functionally characterized this gene by overexpressing (CRK12-OE) and silencing (CRK12-RNAi) it in a P. vulgaris hairy root system. We found that the constitutive expression of CRK12 led to an increase in root hair length and the expression of root hair regulatory genes, while silencing the gene had the opposite effect. During symbiosis, CRK12-RNAi resulted in a significant reduction in nodule numbers, while CRK12-OE roots showed a dramatic increase in rhizobial infection threads and the number of nodules. Nodule cross sections revealed that silenced nodules had very few infected cells, while CRK12-OE nodules had enlarged infected cells, whose numbers had increased compared to controls. As expected, CRK12-RNAi negatively affected nitrogen fixation, while CRK12-OE nodules fixed 1.5 times more nitrogen than controls. Expression levels of genes involved in symbiosis and ROS signaling, as well as nitrogen export genes, supported the nodule phenotypes. Moreover, nodule senescence was prolonged in CRK12-overexpressing roots. Subcellular localization assays showed that the PvCRK12 protein localized to the plasma membrane, and the spatiotemporal expression patterns of the CRK12-promoter::GUS-GFP analysis revealed a symbiosis-specific expression of CRK12 during the early stages of rhizobial infection and in the development of nodules. Our findings suggest that CRK12, a membrane RLK, is a novel regulator of Phaseolus vulgaris-Rhizobium tropici symbiosis.


Subject(s)
Phaseolus , Rhizobium tropici , Rhizobium , Symbiosis/genetics , Rhizobium tropici/genetics , Rhizobium tropici/metabolism , Phaseolus/metabolism , Reactive Oxygen Species/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Rhizobium/metabolism , Nitrogen Fixation/genetics , Root Nodules, Plant/metabolism
20.
Front Plant Sci ; 14: 1201805, 2023.
Article in English | MEDLINE | ID: mdl-37396638

ABSTRACT

Lectin receptor-like kinases (LecRKs) locate on the cell membrane and play diverse roles in perceiving environmental factors in higher plants. Studies have demonstrated that LecRKs are involved in plant development and response to abiotic and biotic stresses. In this review, we summarize the identified ligands of LecRKs in Arabidopsis, including extracellular purine (eATP), extracellular pyridine (eNAD+), extracellular NAD+ phosphate (eNADP+) and extracellular fatty acids (such as 3-hydroxydecanoic acid). We also discussed the posttranslational modification of these receptors in plant innate immunity and the perspectives of future research on plant LecRKs.

SELECTION OF CITATIONS
SEARCH DETAIL